
HAL Id: hal-00372017
https://hal.science/hal-00372017v1

Submitted on 31 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An inductive database prototype based on virtual
mining views

Hendrik Blockeel, Toon Calders, Elisa Fromont, Bart Goethals, Adriana
Prado, Céline Robardet

To cite this version:
Hendrik Blockeel, Toon Calders, Elisa Fromont, Bart Goethals, Adriana Prado, et al.. An in-
ductive database prototype based on virtual mining views. SIGKDD international conference
on Knowledge discovery and data mining, Aug 2008, Las Vegas, United States. pp.1061-1064,
�10.1145/1401890.1402019�. �hal-00372017�

https://hal.science/hal-00372017v1
https://hal.archives-ouvertes.fr

An Inductive Database Prototype Based on
Virtual Mining Views

Hendrik Blockeel
K.U. Leuven

Leuven, Belgium

Toon Calders
T.U. Eindhoven

Eindhoven, The Netherlands

Elisa Fromont
K.U. Leuven

Leuven, Belgium

Bart Goethals
Universiteit Antwerpen

Antwerp, Belgium

Adriana Prado
Universiteit Antwerpen

Antwerp, Belgium

Céline Robardet
LIRIS, UMR 5208 INSA-LYON

Lyon, France

ABSTRACT
We present a prototype of an inductive database. Our sys-
tem enables the user to query not only the data stored in the
database but also generalizations (e.g. rules or trees) over
these data through the use of virtual mining views. The
mining views are relational tables that virtually contain the
complete output of data mining algorithms executed over a
given dataset. The prototype implemented into PostgreSQL
currently integrates frequent itemset, association rule and
decision tree mining. We illustrate the interactive and it-
erative capabilities of our system with a description of a
complete data mining scenario.

Categories and Subject Descriptors: H.2.4 [Database
Management]: System.

General Terms: Algorithms, Experimentation.

Keywords: Data Mining, Inductive Databases.

1. INTRODUCTION
Data mining is not a one-shot activity, but rather an it-

erative and interactive process. During the whole discovery
process, typically, many different data mining tasks are per-
formed, their results are combined, and possibly used as
input for other data mining tasks. To support this knowl-
edge discovery process, there is a need for integrating data
mining with data storage and management. The concept of
inductive databases (IDBs) has been proposed as a means
of achieving such integration [7]. In [3, 4, 5, 6], we describe
how such an inductive database can be designed in practice,
by using virtual mining views.

In an IDB, one can not only query the data stored in the
database, but also the patterns that are implicitly present
in these data. One of the main advantages of our system
is the flexibility of ad-hoc querying, that is, the user can
specify new types of constraints and query the patterns and

Copyright is held by the author/owner(s).
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
ACM 978-1-60558-193-4/08/08.

models in combination with the data itself and so forth. In
this paper, we illustrate this feature with a data mining sce-
nario in which we first learn a classifier over a given dataset
and, afterwards, we look for correct association rules, which
describes the misclassified examples w.r.t this classifier. No-
tice that the functionality of an inductive database goes far
beyond that of data mining suites such as, Weka [10] and
Yale [8]. These systems have the advantage of imposing one
uniform data format for a group of algorithms. On the other
hand, they do not allow ad-hoc queries.

The rest of the paper is organized as follows. Section
2 addresses the idea behind the development of our proto-
type. Section 3 presents the virtual mining views framework.
In Section 4, we describe how the system is implemented.
Finally, Section 5 describes a complete database scenario,
which illustrates the interactive and iterative capabilities of
our system.

2. DESCRIPTION OF THE SYSTEM
The system presented in this paper builds upon our pre-

liminary work in [3, 5, 6]. In contrast to the numerous pro-
posals for data mining query languages, we propose to inte-
grate data mining into database systems without extending
the query language. Instead, we extend the database schema
with new tables containing, for instance, association rules,
decision trees, or other descriptive or predictive models. As
far as the user is concerned, these tables contain all possi-
ble patterns, trees, and models that can be learned over the
data. Of course, such tables would in most cases be huge.
Therefore, they are in fact implemented as views, called vir-
tual mining views.

Whenever a query is formulated, selecting for instance as-
sociation rules from these tables, a run of a data mining
algorithm is triggered (e.g., Apriori [1]) to compute the re-
sult of the query, in exactly the same way that normal views
in databases are only computed at query time, and only to
the extent necessary for answering the query.

When the user formulates his or her mining query, the
parser is invoked by the DBMS, creating an equivalent re-
lational algebra expression. At this point, the expression
is processed by the Mining Extension, which extracts from
the query the constraints that can be pushed into the data
mining algorithms. The output of these algorithms is then
materialized in the virtual mining views. After the material-

ization, the work-flow of the DBMS continues as usual and,
as a result, the query is executed as if all patterns and mod-
els were stored in the database. Observe that this system
can possibly cover every mining technique whose output can
be completely stored in relational tables.

This approach also integrates constraint-based mining in
a natural way. Within a query, one can impose conditions
on the kind of patterns or models that one wants to find. In
many cases, these constraints can be pushed into the min-
ing process. In [5], Calders et al. present an algorithm
that extracts from a query a set of constraints relevant for
association rules to be pushed into the mining algorithm.
In this way, not all possible patterns or models need to be
generated, but only those required to evaluate the query
correctly as if all possible patterns or models were stored.
We have extended this constraint extraction algorithm to
extract constraints from queries over decision trees. The
reader can refer to [3] for more details on the algorithm.

3. THE VIRTUAL MINING VIEWS
The virtual mining views framework consists of a set of

relational tables that virtually contain the complete output
of data mining algorithms executed over a given dataset.
Every time a dataset D is created in the system, all virtual
mining views associated with D are automatically created.
Figure 1 illustrates the virtual mining views for the dataset
Playtennis [9]. They are the following:

• Concepts: Virtually contains all conjunctive concepts
with conditions of the form “Attribute=value”that ex-
ist in the domain of the dataset. We represent them
as tuples, using ′?′ as the wildcard value and assume
it does not exist in the domain of any attribute. The
attribute cid identifies every concept.

• Sets: As itemsets in a relational database are conjunc-
tions of the form“Attribute=value”, they can be repre-
sented as concepts. Thus, Sets represents all itemsets
that can be mined over the dataset along with their
characteristics, such as support (supp) and size (sz).

• Rules: Represents all association rules that can be
mined over the dataset. The attribute rid is the rule
identifier, cida and cidc are identifiers of the concepts
repesenting, respectively, the antecedent and conse-
quent of the rule, cid is their union, and conf is the
confidence of the corresponding rule.

• Trees Attr: Represents all decison trees that can be
learned for one specific target attribute Attr. A unique
identifier treeid is associated to every decison tree and
each of the decision trees is described as a set of con-
cepts. Each concept represents one path from the root
to a leaf of the tree.

• Treescharac Attr: Represents the characteristics of
all decision trees that can be learned for the target
attribute Attr. For every decision tree, there is a tuple
with the decision tree identifier treeid, acc its accuracy
and sz its size (in number of nodes).

In Section 5, we give some concrete examples of common
data mining tasks and well-known constraints (such as min-
imum confidence and minimum accuracy) that can be ex-
pressed quite naturally with SQL queries over the mining
views. For more examples, we refer the reader to [3, 4].

PlayTennis
Day Outlook Temp Humidity Wind Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
.

Concepts
cid Day Outlook Temp Humidity Wind Play

1 ? Sunny ? High ? No
2 ? Sunny ? Normal ? Yes
3 ? Overcast ? ? ? Yes
4 ? Rain ? ? Strong No
5 ? Rain ? ? Weak Yes
6 ? ? ? ? ? ?

. .

Sets

cid supp sz . . .

1 40 2 . . .

2 60 3 . . .

.

Rules
rid cida cidc cid conf . . .

1 8 10 11 0.5 . . .

.

Trees Play

treeid cid

1 1
1 2
1 3
1 4
1 5

Outlook

sunnyo
ooo

ooo overcast rain
MM

M

MMM

Humidity

high
��

��
normal

@@

@@@

?>=<89:;Yes Windy

strong
��

��
weak
;;

;;

?>=<89:;No ?>=<89:;Yes ?>=<89:;No ?>=<89:;Yes

Treescharac Play

treeid acc sz . . .

1 0.7 8 . . .

.

Figure 1: The Virtual Mining Views Framework.

4. IMPLEMENTATION
The system was developed into PostgreSQL1 (written in

C). We adapted the web-based administration tool PhpP-
gAdmin2, in order to have a friendly interface to the system.

When the user writes a query, PostgreSQL generates a
data structure representing its corresponding relational al-
gebra expression. After this data structure is generated, our
Mining Extension is called. Here, we process the relational
algebra structure, extract the constraints, trigger the data
mining algorithms and materialize the results in the virtual
mining views. Just after the materialization, the work-flow
of the DBMS continues and the query is executed as if the
patterns or models were there all the time.

The system is currently linked to algorithms for frequent
itemset mining, association rule discovery and exhaustive
decision tree learning [6]. The constraints represented as
attributes of the mining views (size, accuracy, support, con-
fidence) can be extracted and efficiently exploited by the
integrated data mining algorithms.

Experiments published in [4] showed that the execution
times of the queries are rather low which support our claim
that the virtual mining views provide an elegant way to in-
corporate data mining capacities to database systems with-
out changing the query language.

1http://www.postgresql.org/
2http://phppgadmin.sourceforge.net/

create table simple mushroom
as select cap color, odor, gill size,

gill color, spore print color, class
from mushroom;

alter table simple mushroom add column id serial;

Figure 2: Pre-processing.

Figure 3: Mining views for table simple mushroom.

5. AN ILLUSTRATIVE SCENARIO
In this section, we describe an extended scenario that ex-

plores the interactive and iterative capabilities of our sys-
tem. The scenario consists of mining decision trees over the
mushroom dataset [2] and also association rules over inter-
mediate query results. We assume that table mushroom is
already stored in our system. It contains 8,124 tuples and
23 categorical attributes. The attribute class discriminates
mushrooms from being poisonous or edible, while the other
attributes describe features of the mushrooms, such as the
color of the cap and odor.

Step 1: Pre-processing.
To illustrate how it is possible to preprocess data using

our system, we create a new table called simple mushroom

selecting only a subset of the attributes of the original table
mushroom.

Figure 2 shows the corresponding pre-procecessing query,
followed by a query that adds an identifier to every example
in the new table (it is worth noticing that the chosen at-
tributes are known to be important for classification). The
mining views automatically created for table simple mush-

room can be visualized in the screenshot in Figure 3.

Step 2: Mining over decision trees.
In this step, we look for decision trees over table sim-

ple mushroom, targetting the attribute class and with max-
imum accuracy among those trees of size ≤ 5.

The query is shown in Figure 4. The subquery selects the
maximum accuracy achieved by the trees with size ≤ 5 and
accuracy ≥ 90% (the latter constraint is added in order to

create table best tree
as select t.treeid, c.*, d.acc, d.sz

from simple mushroom trees class t,
simple mushroom treescharac class d,
simple mushroom concepts c

where t.cid = c.cid
and t.treeid = d.treeid
and d.sz <=5
and d.acc >= 90
and d.acc = (select max(acc)

from simple mushroom treescharac class
where sz<=5 and acc >= 90)

order by t.treeid, c.cid

Figure 4: Query selecting trees with maximum ac-
curacy.

prune the search space of possible trees). The main query
creates a table containing the trees with the characteristics
mentioned above, having the pre-selected maximum accu-
racy. We use views Concepts and Treescharac in order to
retrieve the concepts of the trees along with their character-
istics. In the end, 3 trees are stored in table best tree. All
of them have an accuracy of 95% and 5 nodes.

Step 3: Post-processing 1.
Having learned the trees with maximum accuracy in the

previous step, we now want to explore the predictive capac-
ity of these trees. Since all trees have the same accuracy, we
choose the most balanced one, presented in Figure 5. This
tree has treeid equal to 6.

Gill size

broad
nnn

n

nnn
n narrow

EE
E

EEE

Odor

foul
{{
{

{{
¬ foul
===

==

76 5401 23Edible

?> =<89 :;Poisonous ?> =<89 :;Edible

Figure 5: Decision tree (¬ foul = {spicy, pungent,
none, musty, fishy, creosote, anise, almond})

Step 4: Post-processing 2.
Next, we want to store in the database the examples in

simple mushroom that are misclassified w.r.t. the selected
tree. To classify a new example using that tree, one simply
looks up the concept that covers the new example. More
generally, if we have a test set S, all predictions of the ex-
amples in S are obtained by equi-joining S with the semantic
representation of the tree given in the view Concepts. We
join S to Concepts using a variant of the equi-join that re-
quires that either the values are equal or there is a wildcard
value ’?’.

Figure 6 shows the corresponding query. To suit our pur-
poses, the equi-join is made between tables simple mush-

room and best tree, from which the tree with treeid = 6
is selected. The misclassified examples are those for which
the prediction is different from the real class (stated in the
last line of the query).

Step 5: Post-processing 3.
In this final step, we are interested in describing the mis-

create table misclassified mushroom
as select test.*

from simple mushroom test, best tree tree
where (test.cap color= tree.cap color

or tree.cap color = ’?’)
and (test.odor = tree.odor

or tree.odor = ’?’)
and (test.gill size = tree.gill size

or tree.gill size = ’?’)
and (test.gill color = tree.gill color

or tree.gill color = ’?’)
and (test.spore print color

= tree.spore print color
or tree.spore print color = ’?’)

and tree.treeid = 6
and test.class <> tree.class

Figure 6: Query selecting the misclassified mush-
rooms.

classified examples obtained in the former step. To this end,
first we create table mushroom status in which every ex-
ample in table simple mushroom is labeled as well classi-
fied (status = 1) or misclassified (status = 0). The query is
shown in Figure 7.

create table mushroom status
as select s.*, ’0’ as ”status”

from simple mushroom s
where exists

(select *
from misclassified mushroom m
where s.id = m.id)

union
select s.*, ’1’ as ”status”
from simple mushroom s
where not exists

(select *
from misclassified mushroom m
where s.id = m.id)

Figure 7: Query labeling the examples w.r.t. the
selected decision tree.

Second, we mine table mushroom status for correct (100%
confidence) class association rules (the class is the attribute
status), having one attribute-value pair in the antecedent,
i.e. the most general rules. The query is shown in Figure 8.

select S.supp, S.sz, R.conf,
C1.spore print color, C1.cap color,
C1.gill size, C1.gill color, C1.odor,
’=>’ as ”=>”, C2.status

from mushroom status sets S,
mushroom status sets S1,
mushroom status rules R,
mushroom status concepts C1,
mushroom status concepts C2

where R.cid = S.cid
and R.cidc = S1.cid
and C1.cid = R.cida
and C2.cid = R.cidc
and S.supp >= 15
and R.conf >= 100
and S.sz = 2 //total size of the rules
and S1.sz = 1 //size of the consequent
and C2.status <> ’?’

order by C2.status

Figure 8: Query over association rules.

Figure 9 shows a screenshot with the rules output by the
query in Figure 8. As we are interested in describing the
misclassified examples, we focus on the rules having conse-

Figure 9: Association rules describing the well clas-
sified and misclassified mushrooms.

quent “status=0”. Clearly, these rules reveal odor=“musty”,
gill color=“green”, cap color={“green”,“purple”}, and
spore print color={“green”,“purple”} as discriminative fea-
tures to explain the misclassifications.

This ends the data mining scenario. In conclusion, we
have developed a prototype of an inductive database based
on virtual mining views. The advantages of our system are
threefold: Firstly, the data are mined where they are lo-
cated: in the database. Secondly, the user can specify in
a declarative way (SQL queries) the patterns or models in
which he or she is interested. Finally, thanks to the flexi-
bility of ad-hoc querying of our system, the output of some
queries can be used as input for subsequent queries.

Acknowledgment
Hendrik Blockeel is a post-doctoral fellow from the Research
Foundation – Flanders (FWO-Vlaanderen). This research
was funded through K.U.Leuven GOA project 2003/8 “In-
ductive Knowledge bases”, FWO project “Foundations for
inductive databases”, and the EU project “Inductive Queries
for Mining Patterns and Models”.

6. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In VLDB, pages 487–499, 1994.

[2] A. Asuncion and D. Newman. UCI machine learning repository,
2007. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[3] H. Blockeel, T. Calders, E. Fromont, B. Goethals, and
A. Prado. Mining views: Database views for data mining. In
CMILE workshop at PKDD, 2007.

[4] H. Blockeel, T. Calders, E. Fromont, B. Goethals, and
A. Prado. Mining views: Database views for data mining. In
IEEE ICDE, 2008.

[5] T. Calders, B. Goethals, and A. Prado. Integrating pattern
mining in relational databases. In PKDD, 2006.

[6] E. Fromont, H. Blockeel, and J. Struyf. Integrating decision
tree learning into inductive databases. In KDID workshop at
ECML/PKDD, 2007.

[7] T. Imielinski and H. Mannila. A database perspective on
knowledge discovery. Communications of the ACM,
39(11):58–64, 1996.

[8] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler. Yale: Rapid prototyping for complex data mining
tasks. In KDD, pages 935–940, 2006.

[9] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[10] I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2005.

