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We present a prototype of an inductive database. Our system enables the user to query not only the data stored in the database but also generalizations (e.g. rules or trees) over these data through the use of virtual mining views. The mining views are relational tables that virtually contain the complete output of data mining algorithms executed over a given dataset. The prototype implemented into PostgreSQL currently integrates frequent itemset, association rule and decision tree mining. We illustrate the interactive and iterative capabilities of our system with a description of a complete data mining scenario.

INTRODUCTION

Data mining is not a one-shot activity, but rather an iterative and interactive process. During the whole discovery process, typically, many different data mining tasks are performed, their results are combined, and possibly used as input for other data mining tasks. To support this knowledge discovery process, there is a need for integrating data mining with data storage and management. The concept of inductive databases (IDBs) has been proposed as a means of achieving such integration [START_REF] Imielinski | A database perspective on knowledge discovery[END_REF]. In [START_REF] Blockeel | Mining views: Database views for data mining[END_REF][START_REF] Blockeel | Mining views: Database views for data mining[END_REF][START_REF] Calders | Integrating pattern mining in relational databases[END_REF][START_REF] Fromont | Integrating decision tree learning into inductive databases[END_REF], we describe how such an inductive database can be designed in practice, by using virtual mining views.

In an IDB, one can not only query the data stored in the database, but also the patterns that are implicitly present in these data. One of the main advantages of our system is the flexibility of ad-hoc querying, that is, the user can specify new types of constraints and query the patterns and models in combination with the data itself and so forth. In this paper, we illustrate this feature with a data mining scenario in which we first learn a classifier over a given dataset and, afterwards, we look for correct association rules, which describes the misclassified examples w.r.t this classifier. Notice that the functionality of an inductive database goes far beyond that of data mining suites such as, Weka [START_REF] Witten | Data Mining: Practical machine learning tools and techniques[END_REF] and Yale [START_REF] Mierswa | Yale: Rapid prototyping for complex data mining tasks[END_REF]. These systems have the advantage of imposing one uniform data format for a group of algorithms. On the other hand, they do not allow ad-hoc queries.

The rest of the paper is organized as follows. Section 2 addresses the idea behind the development of our prototype. Section 3 presents the virtual mining views framework. In Section 4, we describe how the system is implemented. Finally, Section 5 describes a complete database scenario, which illustrates the interactive and iterative capabilities of our system.

DESCRIPTION OF THE SYSTEM

The system presented in this paper builds upon our preliminary work in [START_REF] Blockeel | Mining views: Database views for data mining[END_REF][START_REF] Calders | Integrating pattern mining in relational databases[END_REF][START_REF] Fromont | Integrating decision tree learning into inductive databases[END_REF]. In contrast to the numerous proposals for data mining query languages, we propose to integrate data mining into database systems without extending the query language. Instead, we extend the database schema with new tables containing, for instance, association rules, decision trees, or other descriptive or predictive models. As far as the user is concerned, these tables contain all possible patterns, trees, and models that can be learned over the data. Of course, such tables would in most cases be huge. Therefore, they are in fact implemented as views, called virtual mining views.

Whenever a query is formulated, selecting for instance association rules from these tables, a run of a data mining algorithm is triggered (e.g., Apriori [START_REF] Agrawal | Fast algorithms for mining association rules[END_REF]) to compute the result of the query, in exactly the same way that normal views in databases are only computed at query time, and only to the extent necessary for answering the query.

When the user formulates his or her mining query, the parser is invoked by the DBMS, creating an equivalent relational algebra expression. At this point, the expression is processed by the Mining Extension, which extracts from the query the constraints that can be pushed into the data mining algorithms. The output of these algorithms is then materialized in the virtual mining views. After the material-ization, the work-flow of the DBMS continues as usual and, as a result, the query is executed as if all patterns and models were stored in the database. Observe that this system can possibly cover every mining technique whose output can be completely stored in relational tables.

This approach also integrates constraint-based mining in a natural way. Within a query, one can impose conditions on the kind of patterns or models that one wants to find. In many cases, these constraints can be pushed into the mining process. In [START_REF] Calders | Integrating pattern mining in relational databases[END_REF], Calders et al. present an algorithm that extracts from a query a set of constraints relevant for association rules to be pushed into the mining algorithm. In this way, not all possible patterns or models need to be generated, but only those required to evaluate the query correctly as if all possible patterns or models were stored. We have extended this constraint extraction algorithm to extract constraints from queries over decision trees. The reader can refer to [START_REF] Blockeel | Mining views: Database views for data mining[END_REF] for more details on the algorithm.

THE VIRTUAL MINING VIEWS

The virtual mining views framework consists of a set of relational tables that virtually contain the complete output of data mining algorithms executed over a given dataset. Every time a dataset D is created in the system, all virtual mining views associated with D are automatically created. Figure 1 illustrates the virtual mining views for the dataset Playtennis [START_REF] Mitchell | Machine Learning[END_REF]. They are the following:

• Concepts: Virtually contains all conjunctive concepts with conditions of the form "Attribute=value" that exist in the domain of the dataset. We represent them as tuples, using ′ ? ′ as the wildcard value and assume it does not exist in the domain of any attribute. The attribute cid identifies every concept.

• Sets: As itemsets in a relational database are conjunctions of the form "Attribute=value", they can be represented as concepts. Thus, Sets represents all itemsets that can be mined over the dataset along with their characteristics, such as support (supp) and size (sz).

• Rules: Represents all association rules that can be mined over the dataset. The attribute rid is the rule identifier, cida and cidc are identifiers of the concepts repesenting, respectively, the antecedent and consequent of the rule, cid is their union, and conf is the confidence of the corresponding rule.

• T rees Attr: Represents all decison trees that can be learned for one specific target attribute Attr. A unique identifier treeid is associated to every decison tree and each of the decision trees is described as a set of concepts. Each concept represents one path from the root to a leaf of the tree.

• T reescharac Attr: Represents the characteristics of all decision trees that can be learned for the target attribute Attr. For every decision tree, there is a tuple with the decision tree identifier treeid, acc its accuracy and sz its size (in number of nodes).

In Section 5, we give some concrete examples of common data mining tasks and well-known constraints (such as minimum confidence and minimum accuracy) that can be expressed quite naturally with SQL queries over the mining views. For more examples, we refer the reader to [START_REF] Blockeel | Mining views: Database views for data mining[END_REF][START_REF] Blockeel | Mining views: Database views for data mining[END_REF]. 

IMPLEMENTATION

The system was developed into PostgreSQL1 (written in C ). We adapted the web-based administration tool PhpP-gAdmin2 , in order to have a friendly interface to the system.

When the user writes a query, PostgreSQL generates a data structure representing its corresponding relational algebra expression. After this data structure is generated, our Mining Extension is called. Here, we process the relational algebra structure, extract the constraints, trigger the data mining algorithms and materialize the results in the virtual mining views. Just after the materialization, the work-flow of the DBMS continues and the query is executed as if the patterns or models were there all the time.

The system is currently linked to algorithms for frequent itemset mining, association rule discovery and exhaustive decision tree learning [START_REF] Fromont | Integrating decision tree learning into inductive databases[END_REF]. The constraints represented as attributes of the mining views (size, accuracy, support, confidence) can be extracted and efficiently exploited by the integrated data mining algorithms.

Experiments published in [START_REF] Blockeel | Mining views: Database views for data mining[END_REF] showed that the execution times of the queries are rather low which support our claim that the virtual mining views provide an elegant way to incorporate data mining capacities to database systems without changing the query language. 

AN ILLUSTRATIVE SCENARIO

In this section, we describe an extended scenario that explores the interactive and iterative capabilities of our system. The scenario consists of mining decision trees over the mushroom dataset [START_REF] Asuncion | UCI machine learning repository[END_REF] and also association rules over intermediate query results. We assume that table mushroom is already stored in our system. It contains 8,124 tuples and 23 categorical attributes. The attribute class discriminates mushrooms from being poisonous or edible, while the other attributes describe features of the mushrooms, such as the color of the cap and odor.

Step 1: Pre-processing.

To illustrate how it is possible to preprocess data using our system, we create a new table called simple mushroom selecting only a subset of the attributes of the original table mushroom.

Figure 2 shows the corresponding pre-procecessing query, followed by a query that adds an identifier to every example in the new table (it is worth noticing that the chosen attributes are known to be important for classification). The mining views automatically created for table simple mushroom can be visualized in the screenshot in Figure 3.

Step 2: Mining over decision trees.

In this step, we look for decision trees over table simple mushroom, targetting the attribute class and with maximum accuracy among those trees of size ≤ 5.

The query is shown in Figure 4. The subquery selects the maximum accuracy achieved by the trees with size ≤ 5 and accuracy ≥ 90% (the latter constraint is added in order to prune the search space of possible trees). The main query creates a table containing the trees with the characteristics mentioned above, having the pre-selected maximum accuracy. We use views Concepts and T reescharac in order to retrieve the concepts of the trees along with their characteristics. In the end, 3 trees are stored in table best tree. All of them have an accuracy of 95% and 5 nodes.

Step 3: Post-processing 1.

Having learned the trees with maximum accuracy in the previous step, we now want to explore the predictive capacity of these trees. Since all trees have the same accuracy, we choose the most balanced one, presented in Figure 5. This tree has treeid equal to 6. Step 4: Post-processing 2.

Next, we want to store in the database the examples in simple mushroom that are misclassified w.r.t. the selected tree. To classify a new example using that tree, one simply looks up the concept that covers the new example. More generally, if we have a test set S, all predictions of the examples in S are obtained by equi-joining S with the semantic representation of the tree given in the view Concepts. We join S to Concepts using a variant of the equi-join that requires that either the values are equal or there is a wildcard value ' ?'.

Figure 6 shows the corresponding query. To suit our purposes, the equi-join is made between tables simple mushroom and best tree, from which the tree with treeid = 6 is selected. The misclassified examples are those for which the prediction is different from the real class (stated in the last line of the query).

Step 5: Post-processing 3. classified examples obtained in the former step. To this end, first we create table mushroom status in which every example in table simple mushroom is labeled as well classified (status = 1) or misclassified (status = 0). The query is shown in Figure 7. Second, we mine table mushroom status for correct (100% confidence) class association rules (the class is the attribute status), having one attribute-value pair in the antecedent, i.e. the most general rules. The query is shown in Figure 8 quent "status=0". Clearly, these rules reveal odor="musty", gill color="green", cap color={"green","purple"}, and spore print color={"green","purple"} as discriminative features to explain the misclassifications.

This ends the data mining scenario. In conclusion, we have developed a prototype of an inductive database based on virtual mining views. The advantages of our system are threefold: Firstly, the data are mined where they are located: in the database. Secondly, the user can specify in a declarative way (SQL queries) the patterns or models in which he or she is interested. Finally, thanks to the flexibility of ad-hoc querying of our system, the output of some queries can be used as input for subsequent queries.
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 1 Figure 1: The Virtual Mining Views Framework.
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 2 Figure 2: Pre-processing.
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 3 Figure 3: Mining views for table simple mushroom.

  create table best tree as select t.treeid, c.*, d.acc, d.sz from simple mushroom trees class t, simple mushroom treescharac class d, simple mushroom concepts c where t.cid = c.cid and t.treeid = d.treeid and d.sz <=5 and d.acc >= 90 and d.acc = ( select max(acc) from simple mushroom treescharac class where sz<=5 and acc >= 90) order by t.treeid, c.cid
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 4 Figure 4: Query selecting trees with maximum accuracy.
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 5 Figure 5: Decision tree (¬ foul = {spicy, pungent, none, musty, fishy, creosote, anise, almond})
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 6 Figure 6: Query selecting the misclassified mushrooms.
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 7 Figure 7: Query labeling the examples w.r.t. the selected decision tree.
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 8 Figure 8: Query over association rules.
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 9 Figure9shows a screenshot with the rules output by the query in Figure8. As we are interested in describing the misclassified examples, we focus on the rules having conse-
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 9 Figure 9: Association rules describing the well classified and misclassified mushrooms.

  table simple mushroom as select cap color, odor, gill size, gill color, spore print color, class from mushroom; alter table simple mushroom add column id serial;

  In this final step, we are interested in describing the mis-

	create table misclassified mushroom
	as select test.*
	from simple mushroom test, best tree tree
	where (test.cap color= tree.cap color
	or tree.cap color = ' ?')
	and (test.odor = tree.odor
	or tree.odor = ' ?')
	and (test.gill size = tree.gill size
	or tree.gill size = ' ?')
	and (test.gill color = tree.gill color
	or tree.gill color = ' ?')
	and (test.spore print color
	= tree.spore print color
	or tree.spore print color = ' ?')
	and tree.treeid = 6
	and test.class <> tree.class

  .

	select S.supp, S.sz, R.conf,
	C1.spore print color, C1.cap color,
	C1.gill size, C1.gill color, C1.odor,
	'=>' as "=>", C2.status
	from mushroom status sets S,
	mushroom status sets S1,
	mushroom status rules R,
	mushroom status concepts C1,
	mushroom status concepts C2
	where R.cid = S.cid
	and R.cidc = S1.cid
	and C1.cid = R.cida
	and C2.cid = R.cidc
	and S.supp >= 15
	and R.conf >= 100
	and S.sz = 2 //total size of the rules
	and S1.sz = 1 //size of the consequent
	and C2.status <> ' ?'
	order by C2.status

http://www.postgresql.org/

http://phppgadmin.sourceforge.net/
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