Siegfried Nijssen
email: siegfried.nijssen@cs.kuleuven.be

Elisa Fromont
email: elisa.fromont@cs.kuleuven.be

Mining Optimal Decision Trees from Itemset Lattices

Keywords: Decision tree learning, Frequent itemset mining, Itemset lattices, Formal Concept Analysis, Constraint based mining

We present DL8, an exact algorithm for finding a decision tree that optimizes a ranking function under size, depth, accuracy and leaf constraints. Because the discovery of optimal trees has high theoretical complexity, until now no efforts have been made to compute such trees for real-world datasets. An exact algorithm is of both scientific and practical interest. From a scientific point of view, it can be used as a gold standard to evaluate the performance of heuristic decision tree learners and to gain new insight in these traditional learners. From the application point of view, it can be used to discover trees that cannot be found by heuristic decision tree learners. The key idea behind our algorithm is the relation between constraints on decision trees and constraints on itemsets. We propose to exploit lattices of itemsets, from which we can extract optimal decision trees in linear time. We give several strategies to efficiently build these lattices. Experiments show that under the same constraints, DL8 has better test results than C4.5 which confirm that exhaustive search does not always imply overfitting. The results also show that DL8 is a useful and interesting tool to learn decision trees under constraints.

INTRODUCTION

Decision trees are among the most popular prediction models in machine learning and data mining, because there are efficient, relatively easily understandable learning algorithms and the models are easy to interpret. From this perspective, it is surprising that mining decision trees under constraints has not been given much attention. For the problems listed below, currently no broadly applicable algorithm exists even though steps in this direction were made in [START_REF] Fromont | Integrating decision tree learning into inductive databases[END_REF] for the last problem:

• given a dataset D, find the k most accurate trees on training data in which the majority class in each leaf covers at least n examples more than any of the minority classes;

• given a dataset D, find the most accurate tree on training data in which each leaf has a high statistical correlation with the target class according to a χ 2 test;

• given a dataset D, find the smallest decision tree in which each leaf contains at least n examples, and the expected accuracy is maximized on unseen examples;

• given a dataset D, find the smallest/shallowest decision tree which has an accuracy higher than minacc;

In the interactive process that knowledge discovery in databases is, the ability to pose queries that answer these questions can be very valuable. Most known algorithms for building decision trees, for instance C4.5, use a top-down induction paradigm, in which a good split is chosen heuristically. If such algorithms do not find a tree that satisfies the specified constraints, this does not mean that such a tree does not exist-it only means that the chosen heuristic is not good enough to find it. An exact algorithm could be desirable to answer queries without uncertainty. Furthermore, to assess the quality of heuristic learners, it is of interest to know for a sufficiently large number of datasets what their true optimum under given constraints is. This would allow us to gain deeper insight in the predictive behavior of decision trees. For instance, [START_REF] Murphy | Exploring the decision forest: an empirical investigation of Occam's razor in decision tree induction, volume IV: Making Learning Systems Practical[END_REF] reported that for small, mostly artificial datasets, small decision trees are not always preferable in terms of generalization ability, while [START_REF] Quinlan | Oversearching and layered search in empirical learning[END_REF] showed that when learning rules, exhaustive searching and overfitting are orthogonal. An efficient algorithm for learning decision trees under constraints allows us to investigate these observations for larger datasets and more complex models.

To the best of our knowledge, few attempts have been made to compute exact optimal trees in a setting which optimizes decision trees under a wide range of constraints; most people have not seriously considered the problem as it is known to be NP hard [START_REF] Hyafil | Constructing optimal binary decision trees is np-complete[END_REF], and therefore, an efficient algorithm can most likely not exist. The data mining community, however, has an interesting track record of dealing with exponential problems with reasonable computation times. In particular, for many years, the problem of frequent itemset mining, which is exponential in its nature, has attracted a lot of research [START_REF] Agrawal | Fast discovery of association rules[END_REF][START_REF] Zaki | New algorithms for fast discovery of association rules[END_REF][START_REF] Han | Mining frequent patterns without candidate generation[END_REF] and although this problem is not always efficiently solvable in theory, in practice many algorithms have been applied successfully.

In this paper, we propose DL8, an exact algorithm for building decision trees that does not rely on the traditional approach of heuristic top-down induction, and addresses the problem of finding exact optimal decision trees under constraints. Its key feature is that it exploits a relation between constraints on itemsets and decision trees. Even though our algorithm is not expected to work on all possible datasets, we will provide evidence that for a reasonable number of datasets, our approach is feasible and therefore a useful addition to the data mining toolbox.

This paper is organized as follows. In Section 2, we introduce the concepts of decision trees and itemsets. In Section 3, we describe precisely which optimal trees we consider. In Section 4, we motivate the use of such optimal trees. In section 5, we present our algorithm and its connection to frequent itemset mining. In Section 6, we evaluate the efficiency of our algorithm; we compare the accuracy and size of the trees computed by our system with the trees learned by C4.5. Section 7 gives related work. We conclude in Section 8.

ITEMSET LATTICES FOR DECISION TREE MINING

Let us first introduce some background information about frequent itemsets and decision trees.

Let I = {i1, i2, . . . , im} be a set of items and let D = {T1, T2, . . . , Tn} be a bag of transactions, where each transaction T k is an itemset such that T k ⊆ I. A transaction T k contains a set of items I ⊆ I iff I ⊆ T k . The transaction identifier set (TID-set) t(I) ⊆ {1, 2, . . . n} of an itemset I ⊆ I is the set of identifiers of all transactions that contain itemset I.

The frequency of an itemset I ⊆ I is defined to be the number of transactions that contain the itemset, i.e. freq(I) = |t(I)|; the support of an itemset is support(I) = freq/|D|. An itemset I is said to be frequent if its support is higher than a given threshold minsup; this is written as support(I) ≥ minsup (or, equivalently, freq(I) ≥ minfreq).

In this work, we are interested in finding frequent itemsets for databases that contain examples labeled with classes c ∈ C. If we compute the frequency freq c (I) of an itemset I for each class c separately, we can associate to each itemset the class label for which its frequency is highest. The resulting rule I → c(I), where c(I) = argmax c ∈C freq c (I) is called a class association rule.

A decision tree aims at classifying examples by sorting them down a tree. The leaves of a tree provide the classifications of examples [START_REF] Mitchell | Machine Learning[END_REF]. Each node of a tree specifies a test on one attribute of an example, and each branch of a node corresponds to one of the possible values of the attribute. We assume that all tests are boolean; nominal attributes are transformed into boolean attributes by mapping each possible value to a separate attribute. The input of a decision tree learner is then a binary matrix B, where Bij contains the value of attribute i of example j.

Our results are based on the following observation.

Observation 1. Let us transform a binary table B into transactional form D such that Tj = {i|Bij = 1}∪{¬i|Bij = 0}.
Then the examples that are sorted down every node of a decision tree for B are characterized by an itemset of items occurring in D.

For example, consider the decision tree in Figure 1. We can determine the leaf to which an example belongs by checking which of the itemsets {B}, {¬B, C} and {¬B, ¬C} it includes. We denote the set of these itemsets with leaves(T). Similarly, the itemsets that correspond to paths in the tree are denoted with paths(T). In this case, paths(T) = {∅, {B}, {¬B}, {¬B, C}, {¬B, ¬C}}. The leaves of a decision tree correspond to class association rules, as leaves have associated classes. In decision tree learning, it is common to specify a minimum number of examples that should be covered by each leaf. For association rules, this would correspond to giving a support threshold.

The accuracy of a decision tree is derived from the number of misclassified examples in the leaves: accuracy(T) =

|D|-e(T) |D|

, where e(T) = X A further illustration of the relation between itemsets and decision trees is given in Figure 2. In this figure, every node represents an itemset; an edge denotes a subset relation. Highlighted is one possible decision tree, which is nothing else than a set of itemsets. The branches of the decision tree correspond to subset relations.

From the theory of frequent itemset mining, it is known that itemsets form a lattice (these are typically depicted as in Figure 2). In this paper we present DL8, an algorithm for mining Decision trees from Lattices.

QUERIES FOR DECISION TREES

The problems that we address in this paper, can be seen as queries to a database. These queries consist of three parts. The first part specifies the constraints on the nodes of the decision trees. The set T1 is called the set of locally constrained decision trees and DecisionTrees is the set of all possible decision trees. The predicate p(I) expresses a constraint on paths. In our simplest setting, p(I) := (freq(I) ≥ minf req). The predicate p(I) must fulfill these properties:

• the evaluation of p(I) must be independent of the tree T of which I is part.

• p must be anti-monotonic. A predicate p(I) on itemsets I ⊆ I is called anti-monotonic iff p(I) ∧ (I ⊆ I) ⇒ p(I). We can distinguish two types of local constraints: coveragebased constraints, such as frequency, of which the fulfillment is entirely dependent on t(I) and pattern-based constraints, such as the size of itemsets, of which the fulfillment depends on the properties of the (items in the) itemset itself. In the following, we consider only coverage-based constraints; extensions to pattern-based constraints are possible, but beyond the scope of this paper.

¬B {AC } C {A ¬ C } ¬C A {¬ A B } ¬A {BC } C {¬ C } ¬C A {¬ AC } ¬A B {¬ BC } ¬B B {¬ A ¬ B } ¬B C {¬ A¬ C } ¬C A ¬A C {¬ B ¬ C } ¬C A ¬A B ¬B {A BC } C {A B ¬ C } ¬C {A¬ BC } C {A¬ B¬ C } ¬C {¬ A BC } C {¬ A B ¬ C } ¬C {¬ A ¬ BC } C {¬ A ¬ B ¬ C } ¬C B ¬B B ¬B B ¬B B ¬B A ¬A A ¬A A ¬A A ¬A
The second (optional) part expresses constraints that refer to the tree as a whole.

2. T2 := {T |T ∈ T1, q(T)} Set T2 is called the set of globally constrained decision trees. Formula q(T) is a conjunction of constraints of the form f (T) ≤ θ, where f (T) can be • e(T), to constrain the error of a tree on a training dataset;

• ex(T), to constrain the expected error on unseen examples, according to some predefined estimate;

• size(T), to constrain the number of nodes in a tree;

• depth(T), to constrain the length of the longest rootleaf path in a tree.

In the mandatory third step, we express a preference for a tree in the set T2. The tuples r(T) = [r1(T), r2(T), . . . , rn(T)] are compared lexicographically and define a ranked set of globally constrained decision trees; ri ∈ {e, ex, size, depth}. Our current algorithm requires that at least e and size or ex and size be used in the ranking; If depth (respectively size) is used in the ranking before e or ex, then q must contain an atom depth(T) ≤ maxdepth (respectively size(T) ≤ maxsize).

output argminT

We do not constrain the order of size(T), e(T) and depth(T) in r. We are minimizing the ranking function r(T), thus, our algorithm is an optimization algorithm. The trees that we search for are optimal in terms of the problem setting that is defined in the query.

To illustrate our querying mechanism we will now give several examples. In other words, we have p(T) := (freq(I) ≥ minfreq), q(T) := true and r(T) := [e(T), size(T)]. This query investigates all decision trees in which each leaf covers at least minfreq examples of the training data. Among these trees, we find the smallest most accurate one. To retrieve Accurate Trees of Bounded Size, Query 1 can be transformed such that q(T) := size(T) ≤ maxsize.

One possible scenario in which DL8 can be used, is the following. Assume that we have already applied a heuristic decision tree learner, such as C4.5, and we have some idea about decision tree error (maxerror) and size (maxsize). Then we can run the following query: Query 2. Accurate Trees of Bounded Size and Accuracy.

T1 := {T | T ∈ DecisionTrees, ∀I ∈ paths(T), freq(I) ≥ minfreq} T2 := {T | T ∈ T1, size(T) ≤ maxsize, e(T) ≤ maxerror} output argminT ∈T 2 [size(T), e(T)].
This query finds the smallest tree that achieves at least the same accuracy as the tree learned by C4.5.

The previous queries aim at finding compact models that maximize training set accuracy. Such trees might however overfit training data. Another application of DL8 is to obtain trees with high expected accuracy. Several algorithms for estimating test set accuracy have been presented in the literature. One such estimate is at the basis of the reduced error pruning algorithm of C4.5. Essentially, C4.5 computes an additional penalty term x(freq 1 (I), . . . freq n (I)) for each leaf I of the decision tree, from which we can derive a new estimated number of errors

ex(T) = X I∈leaves(T)
e(I) + x(freq 1 (I), . . . freq n (I)).

We can now also be interested in answering the following query.

Query 3. Small Accurate Pruned Trees.

T := {T | T ∈ DecisionTrees, ∀I ∈ paths(T), freq(I) ≥ minfreq} output argminT ∈T [ex(T), size(T)].
This query would find the most accurate tree after pruning such as done by C4.5. Effectively, the penalty terms make sure that trees with less leaves are sometimes preferable even if they are less accurate.

MOTIVATING EXAMPLES

To motivate our work, it is useful to briefly consider two examples that illustrate what kind of trees cannot be found if the well-known information gain (ratio) heuristic of C4.5 is used to answer Query 1 of Section 3.

A B C Class # 1 1 0 1 40× 1 1 1 1 40× 1 0 1 1 5× 0 0 0 0 10× 0 0 1 1 5× Figure 3: Database 1 A B C Class # 1 1 1 1 30× 1 1 0 0 20× 0 1 0 0 8× 0 1 1 0 12× 0 0 0 1 12× 0 0 1 0 18× Figure 4: Database 2
As a first example, consider the database in Figure 3, in which we have 2 target classes. Assume that we are interested in answering Query 1 with minfreq = 10. An optimal tree exists (see Figure 1), but a heuristic learner will not find it, as it prefers attribute A in the root: A has information gain 0.33 (resp. ratio 0.54), while B only has information gain 0.26 (resp. ratio 0.37).

As a second example, consider the database in Figure 4, which is a variation of the XOR problem. Then the correct answer to Query 1 with minfreq = 1 is given in Figure 5(a), but the use of information gain (ratio) would yield the tree in Figure 5(b), as the information gain (resp. ratio) of A is 0.098 (resp. 0.098), while the information gain of C is 0.029 (resp. 0.030).

We learn from these examples that the proportions of examples can 'fool' heuristic decision trees into an suboptimal shape as already noticed by [START_REF] Page | Skewing: An efficient alternative to lookahead for decision tree induction[END_REF]. Optimal learners are less sensitive to such behavior.

THE DL8 ALGORITHM

We will now present the DL8 algorithm for answering decision tree queries. Pseudo-code of the algorithm is given in Algorithm 1.

Parameters of DL8 are the local constraint p, the ranking function r, and the global constraints; each global constraint is passed in a separate parameter; global constraints that are not specified, are assumed to be set to ∞. The most important part of DL8 is its recursive search procedure. Given an input itemset I, DL8-Recursive computes one or more decision trees for the transactions t(I) that contain the itemset I. More than one decision tree is returned only if a depth or size constraint is specified. Let r(T) = [r1(T), . . . , rn(T)] be the ranking function, and let k be the index of the obligatory error function in this ranking. If r1, . . . , r k-1 ∈ {depth, size} then, for every allowed value of depth d and size s, DL8-Recursive outputs the best tree

C B A 0 1 0 1 1 0 0 1 0 1 A C C 0 0 1 B 1 0 1 0 0 1 0 1 1 0
(a) Smallest (b) Learned using heuristics In DL8-Recursive, we use several functions: l(c), which returns a tree consisting of a single leaf with class label c; n(i, T1, T2), which returns a tree that contains test i in the root, and has T1 and T2 as left-hand and right-hand branches; et(T), which computes the error of tree T when only the transactions in TID-set t are considered; and finally, we use a predicate pure(I); predicate pure blocks the recursion if all examples t(I) belong to the same class.

The algorithm is most easily understood if maxdepth = ∞, maxsize = ∞, maxerror = ∞ and r(T) = [e(T)]; in this case, DL8-Recursive combines only two trees for each i ∈ I, and returns the single most accurate tree in line 35.

The correctness of the DL8 algorithm is essentially based on the fact that the left-hand branch and the right-hand branch of a node in a decision tree can be optimized independently. In more detail, the correctness follows from the following observations. (line 2-9) the valid ranges of sizes and depths are computed here if a size or depth constraint was specified;

(line 12) for each depth and size satisfying the constraints DL8-Recursive finds the most accurate tree possible. Some of the accuracies might be too low for the given constraint, and are removed from consideration.

(line 20) a candidate decision tree for classifying the examples t(I) consists of a single leaf.

(line 21) if all examples in a set of transactions belong to the same class, continuing the recursion is not necessary; after all, any larger tree will not be more accurate than a leaf, and we require that size is used in the ranking. More sophisticated pruning is possible in some special cases. In the Appendix, an improved predicate pure is given, which allows us to stop even if not all examples belong to the same class.

(line 24) in this line the anti-monotonic property of the predicate p(I) is used: an itemset that does not satisfy the predicate p(I) cannot be part of a tree, nor can any of its supersets; therefore the search is not continued if p(I ∪ {i}) = false or p(I ∪ {¬i}) = false.

(line 23-34) these lines make sure that each tree that should be part of the output T , is indeed returned. We can prove this by induction. Assume that for the set of transactions t(I), tree T should be part of T as it is the most accurate tree that is smaller than s and shallower than d for some s ∈ S and d ∈ D; assume T is not a leaf, and contains test i in the root.

Then T must have a left-hand branch T1 and a righthand branch T2. Tree T1 must be the most accurate tree that can be constructed for t(I ∪ {i}) with size at most size(T1) and depth at most depth(T1); similarly, T2 must be the most accurate tree that can be constructed for t(I ∪ {¬i}) under depth and size constraints. We can inductively assume that trees with these constraints are found by DL8-Recursive(I ∪ {i}) and DL8-Recursive(I∪{¬i}) as size(T1), size(T2) ≤ maxsize and depth(T1), depth(T2) ≤ maxdepth. Consequently T (or a tree with equal statistics) must be among the trees found by combining results from the two recursive procedure calls in line 28.

A key feature of DL8-Recursive is that in line 35 it stores every result that it computes. Consequently, DL8 avoids that optimal decision trees for any itemset are computed more than once; furthermore, we do not need to store the resulting decision trees entirely; it is sufficient to store their root and statistics (error, possibly size and depth), as lefthand and right-hand subtrees can be recovered from the stored results for the left-hand and right-hand itemsets if necessary.

Note that in our algorithm, we output the best tree according to the ranking. The kbest trees could also be straightforwardly output.

To efficiently index the itemsets I, a trie [START_REF] Fredkin | Trie memory[END_REF] data structure can be used. As with most data mining algorithms, the most time consuming operations are those that access the data. In the following, we will provide four related strategies to obtain the frequency counts that are necessary to check the constraints and compute accuracies: the simple single-step approach, the frequent itemset mining (FIM) approach, the constrained FIM approach, and the closure based single-step approach.

The Simple Single-Step Approach

The most straightforward approach, referred to as DL8-Simple, computes the itemset frequencies while DL8 is executing. In this case, once DL8-Recursive is called for an itemset I, we obtain the frequencies of I in a scan over the data, and store the result to avoid later recomputations.

The FIM Approach

An alternative approach is based on the observation that every itemset that occurs in a tree, must satisfy the local constraint p. If p is a minimum frequency constraint, we can use a frequent itemset miner to obtain the frequencies in a preprocessing step. DL8 then operates on the resulting set of itemsets, annotating every itemset with optimal decision trees.

Many frequent itemset miners have been studied in the literature; all of these can be used with small modifications to output the frequent itemsets in a convenient form and determine frequencies in multiple classes [START_REF] Agrawal | Fast discovery of association rules[END_REF][START_REF] Zaki | New algorithms for fast discovery of association rules[END_REF][START_REF] Han | Mining frequent patterns without candidate generation[END_REF][START_REF] Uno | Lcm ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets[END_REF].

We implemented an extension of Apriori that first computes and stores in a trie all frequent itemsets, and then runs DL8 on the trie. This approach is referred to as Apriori-Freq+DL8. Compared to other itemset miners, we expect that the additional runtime to store all itemsets in Apriori Algorithm 1 DL8(p, p b , maxsize,maxdepth,maxerror, r) for all T1 ∈ T1, T2 ∈ T2 do 28:

1: 2: if maxsize = ∞ then 3: S ← {1,
C ← C ∪ {n(i, T1, T2)} 29:

end if 30:

T ← ∅ 31:

for all d ∈ D, s ∈ S do 32:

L ← {T ∈ C|depth(T) ≤ d ∧ size(T) ≤ s} 33:
T ← T ∪ {argminT ∈L[rk = e t(I) (T), . . . , rn(T)]} 34:

end for 35:

store T as the result for I and return T 36: end procedure is the lowest, as Apriori already builds a trie of candidate itemsets itself.

If we assume that the output of the frequent itemset miner consists of a graph structure such as Figure 2, then DL8 operates in time linear in the number of edges of this graph.

The Constrained FIM Approach

Unfortunately, the frequent itemset mining approach may compute frequencies of itemsets that can never be part of a decision tree. For instance, assume that {A} is a frequent itemset, but {¬A} is not; then no tree answering example Query 1 will contain a test for attribute A; itemset {A} is redundant. In this section, we show that an additional local, anti-monotonic constraint can be used in the frequent itemset mining process to make sure that no such redundant itemsets are enumerated. Proofs of the theorems given in this section can be found in [START_REF] Nijssen | Mining optimal decision trees from itemset lattices[END_REF].

If we consider the DL8-Simple algorithm, an itemset I = {i1, . . . , in} is stored only if there is an order [i k 1 , i k 2 , . . . , i kn] of the items in I (which corresponds to an order of recursive calls to DL8-Recursive) such that for none of the proper prefixes I = [i k 1 , i k 2 , . . . , i km] (m < n) of this order

• the ¬pure(I) predicate is false in line [START_REF] Newman | UCI repository of machine learning databases[END_REF];

• the conjunction p b (I ∪ {i k m+1 }) ∧ p b (I ∪ {¬i k m+1 }) is
false in line [START_REF] Page | Skewing: An efficient alternative to lookahead for decision tree induction[END_REF].

It is helpful to negate the pure predicate, as one can easily see that ¬pure is an anti-monotonic predicate (every superset of a pure itemset, must also be pure). From now on, we will refer to ¬pure as a leaf constraint, as it defines a property that is only allowed to hold in the leaves of a tree. We can now formalize the principle of itemset relevancy.

Definition 1. Let p1 be a local anti-monotonic tree constraint and p2 be an anti-monotonic leaf constraint. Then the relevancy of I, denoted by rel(I), is defined by

rel(I) = 8 > > > < > > > : p1(I) ∧ p2(I) if I = ∅ (Case 1) true if ∃i ∈ I s.t. rel(I -i) ∧ p2(I -i)∧ p1(I) ∧ p1(I -i ∪ ¬i) (Case 2) false otherwise (Case 3)
Theorem 1. Let L1 be the set of itemsets stored by DL8-Simple, and let L2 be the set of itemsets {I ⊆ I|rel(I) = true}. Then L1 = L2.

Relevancy is a property that can be pushed in a frequent itemset mining process.

Theorem 2. Itemset relevancy is an anti-monotonic property.

It is relatively easy to integrate the computation of relevancy in frequent itemset mining algorithms, as long as the order of itemset generation is such that all subsets of an itemset I are enumerated before I is enumerated itself. Assume that we have already computed all relevant itemsets that are a subset of an itemset I. Then we can determine for each i ∈ I if the itemset Ii is part of this set, and if so, we can derive the class frequencies of Ii ∪ ¬i using the formula freq k (Ii ∪ ¬i) = freq k (Ii)freq k (I). If for each i either Ii is not relevant, or the predicate p(Ii ∪ ¬i) fails, we can prune I.

Pruning of this kind can be integrated in both depth-first and breadth-first frequent itemset miners. Note that the pureness property can be refined to allow a more efficient pruning (see [START_REF] Nijssen | Mining optimal decision trees from itemset lattices[END_REF] for the definition of the Loose-Pureness property). In case depth is the first ranking function, levelwise algorithms such as Apriori have an important benefit: after each level of itemsets is generated, we could run DL8 to obtain the most accurate tree up to that depth. Apriori can stop at the lowest level at which a tree is found that fulfils the constraints. We implemented two versions of DL8 in which the relevancy constraints are pushed in the frequent itemset mining process: DL8-Apriori, which is based on Apriori [START_REF] Agrawal | Fast discovery of association rules[END_REF], and DL8-Eclat, which is based on Eclat [START_REF] Zaki | New algorithms for fast discovery of association rules[END_REF].

The Closure-Based Single-Step Approach

In the simple single-step approach, we stored the optimal decision trees for every itemset separately. However, if the local constraint is only coverage based, it is easy to see that for two itemsets I1 and I2, if t(I1) = t(I2), the result of DL8-Recursive(I1) and DL8-Recursive(I2) must be the same. To reduce the number of results that we have to store, we should avoid storing such duplicate sets of results.

The solution that we propose is to compute for every itemset its closure. Let i(t) be the function which computes

i(t) = ∩ k∈t T k Datasets #Ex #
I = i(t(I)). If t(I1) = t(I2)
it is easy to see that also i(t(I1)) = i(t(I2)). Thus, in the trie data structure that is used in the simple single-step approach, we could index the results on i(t(I)) instead of I itself.

We incorporate this observation as follows in Algorithm 1. In line 24, we do not only compute the frequency of an itemset, but also its closure I in the data. In line 18 we check if DL8-Recursive(I) was already computed earlier by searching for I in a trie data structure. In line 35, we associate the result to I instead of I itself.

Our single-step approach which relies on closed itemset indexing is called DL8-Closed. Obviously, DL8-Closed will never consider more itemsets than DL8-Simple, DL8-Apriori or DL8-Eclat; itemsets stored by DL8-Closed may however be longer as they contain all items in their closure.

Our implementation of DL8-Closed is based on optimization strategies that are common in depth-first frequent itemset miners, such as the use of projected databases, with modifications that make sure that the space complexity of our algorithm is θ(n + m), where n is the size of the trie that stores all closed itemsets, and m is the size of the binary matrix that contains the data. For more details see [START_REF] Nijssen | Mining optimal decision trees from itemset lattices[END_REF].

EXPERIMENTS

In this section we compare the different versions of DL8 in terms of efficiency; furthermore, we compare the quality of the constructed trees with those found by J48, the Java implementation of C4.5 [START_REF] Quinlan | C4.5: Programs for Machine Learning[END_REF] in Weka [START_REF] Witten | Data Mining: Practical machine learning tools and techniques[END_REF]. All experiments were performed on Intel Pentium 4 machines with in between 1GB and 2GB of main memory, running Linux. DL8 and the frequent itemset miners were implemented in C++.

The experiments were performed on UCI datasets [START_REF] Newman | UCI repository of machine learning databases[END_REF]. Numerical data were discretized before applying the learning algorithms using Weka's unsupervised discretization method with a number of bins equal to 4. We limited the number of bins in order to limit the number of created attributes. Figure 6 gives a brief description of the datasets that we used in terms of the number of examples and the number of attributes after binarization.

Efficiency

The applicability of DL8 is limited by two factors: the amount of itemsets that need to be stored, and the time that it takes to compute these itemsets. We first evalu- ate experimentally how these factors are influenced by constraints and properties of the data. Furthermore, we determine how the different approaches for computing the itemset lattices compare. A summary of the algorithms can be found in Figure 8. Besides DL8-Apriori, DL8-Eclat and DL8-Closed, we also include unmodified implementations of the frequent itemset miners Apriori [START_REF] Agrawal | Fast discovery of association rules[END_REF], Eclat [START_REF] Zaki | New algorithms for fast discovery of association rules[END_REF] and LCM [START_REF] Uno | Lcm ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets[END_REF] in the comparison. These implementations were obtained from the FIMI website [START_REF] Bayardo | Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations[END_REF]. The inclusion of unmodified algorithms allows us to determine how well relevancy pruning works, and allows us to determine the trade-off between relevancy pruning and trie construction.

DL8-Closed X X X DL8-Apriori X X DL8-Eclat X X Apriori-Freq Apriori-Freq+DL8 X Eclat-Freq LCM-Freq LCM-Closed X
Results for four datasets are listed in Figure 7. We aborted runs of algorithms that lasted for longer than 1500s. More results can be found in [START_REF] Nijssen | Mining optimal decision trees from itemset lattices[END_REF]. We only show datasets here in which frequent itemset miners manage to run within 1500s.

The results clearly show that in all cases the number of closed relevant itemsets is the smallest. The difference between the number of relevant itemsets and the number of frequent itemsets becomes smaller for lower minimum frequency values. The number of frequent itemsets is so large in most cases, that it is impossible to compute or store them within a reasonable amount of time or space. In those datasets where we can use low minimum frequencies (15 or smaller), the closed itemset miner LCM is usually the fastest; for low frequency values the number of closed itemsets is almost the same as the number of relevant closed itemsets. Bear in mind, however, that LCM does not output the itemsets in a form that can be used efficiently by DL8.

In all cases, DL8-Closed is faster than DL8-Apriori or DL8-Eclat. In those cases where we can store the entire output of Apriori in memory, we see that the additional runtime for storing these results is significant. On the other hand, if we perform relevancy pruning, the resulting algorithm is usually faster than the original itemset miner.

In the datasets shown here, the number of attributes is relatively small. For the datasets with larger number of attributes, such as ionosphere and splice, we found that only DL8-Closed managed to run for support thresholds lower than 25%, but still was unable to run for support thresholds lower than 10%.

Accuracy

In the experiments shown in Figure 9, we used a stratified 10-fold cross-validation to compute the training and test accuracies of DL8-Closed and J48. We used the minimum frequency as the local constraint. For each dataset, we lowered this frequency to the lowest value that still allowed the computation to be performed within the memory of our computers. For J48, results are provided for pruned trees and unpruned trees; for DL8 results are provided in which the e (unpruned) and ex (pruned) error functions are optimized (cf.Queries 1 and 3 of Section 3). First, both algorithms were applied with the same minimum frequency setting constraint. We used a corrected two-tailed t-test [START_REF] Nadeau | Inference for the generalization error[END_REF] with a significance threshold of 5% to compare the test accuracies of both systems. A test set accuracy result is in bold when it is significantly better than its counterpart result on the other system.

The experiments show that both with and without pruning the optimal trees computed by DL8 have a better training accuracy than the trees computed by J48 with the same frequency values. Furthermore, on the test data, in both cases DL8 is significantly better than J48 on 9 of the 20 datasets and only significantly worse on one dataset. When pruned trees are compared to unpruned ones, the sizes of the trees are on average 1.75 times smaller for J48 and 1.5 time smaller for DL8. After pruning, DL8's trees are still 1.5 times larger than J48's ones. A closer inspection of these trees reveils a similar phenomenon as in the data of Figure 3 Second, in the last six columns of Figure 9, we give results for J48 with its default minf req = 2 setting, both when using the discretized data, and when using the original, non-discretized data. The test accuracies of J48 with minf req = 2 are compared with the test accuracies of DL8 for the various minf req values, when using pruning. The results of the significance test are given in the "S" column: "+" means that J48 is significantly better, "-" that it is significantly worse and "0" that there is no significantly difference. This comparison shows that J48's test accuracy is significantly higher on 7 of the 20 datasets when using beforehand discretized data. J48 is better on 3 additional datasets if discretization is not performed beforehand, reveiling that a good discretization is sometimes beneficial. However, for almost all datasets the sizes of the trees are a lot smaller for DL8. This means that DL8 can be used to compute trees with better size-accuracy trade-offs.

Furthermore, one of the strengths of DL8 is that it allows to explicitly restrict the size or accuracy. We therefore studied the relation between decision tree accuracies and sizes in more detail. In Figure 10, we show results in which the average size of trees constructed by J48, is taken as a constraint on the size of trees mined by DL8. None of the results given by DL8 are significantly better nor significantly worse than those given by J48. DL8 can also compute, for every possible size of a decision tree, the smallest error on training data that can possibly be achieved. For two datasets, the results of such a query are given in Figure 11. In general, if we increase the size of a decision tree, its accuracy improves quickly at first. Only small improvements can be obtained by further increasing the size of the tree. If we lower the frequency threshold, we can obtain more accurate trees, but only if we allow a sufficient amount of nodes in the tree.

Figures such as Figure 11 are of practical interest, as they allow a user to trade-off the interpretability and the accuracy of a model.

The most surprising conclusion that may however be drawn from all our experiments, is that optimal trees perform remarkably well on most datasets. Our algorithm investigates a vast search space, and its results are still competitive in all cases. The experiments indicate that the constraints that we employed, either on size, or on minimum support, are sufficient to reduce model complexities and achieve good

RELATED WORK

The search for optimal decision trees dates back to the 70s, when several dynamic programming algorithms for building such trees were proposed [START_REF] Garey | Optimal binary identification procedures[END_REF][START_REF] Meisel | A partitioning algorithm with application in pattern classification and the optimization of decision tree[END_REF][START_REF] Payne | An algorithm for constructing optimal binary decision trees[END_REF][START_REF] Schumacher | The synthetic approach to decision table conversion[END_REF][START_REF] Lew | Optimal conversion of extended-entry decision tables with general cost criteria[END_REF]. This early work concentrated on finding small summarizations of input data, and did not study the prediction of unseen examples. Optimization criteria were based on the cost of attributes, and the size or the depth of a tree. Afterwards, attention mostly shifted to heuristic decision tree learners, which were found to obtain satisfactory results for many datasets in a fraction of the runtime; theoretical results were obtained that show to what extent heuristic decision trees can be considered optimal [START_REF] Kearns | On the boosting ability of top-down decision tree learning algorithms[END_REF][START_REF] Dietterich | Applying the waek learning framework to understand and improve c4.5[END_REF][START_REF] Nock | On domain-partitioning induction criteria: worst-case bounds for the worst-case based[END_REF]. Still, the idea of exhaustively finding optimal decision trees under certain constraints was also studied [START_REF] Auer | Theory and applications of agnostic pac-learning with small decision trees[END_REF][START_REF] Murphy | Exploring the decision forest: an empirical investigation of Occam's razor in decision tree induction, volume IV: Making Learning Systems Practical[END_REF], but only for much smaller datasets and smaller types of trees than studied in this paper. Recently [START_REF] Blanchard | Optimal dyadic decision trees[END_REF] presented a dynamic programming algorithm that is quite similar to DL8 and its early ancestors. A new optimization criterion was introduced for finding optimal dyadic decision trees, which use a fixed mechanism for discretization of data. This algorithm was only applied on smaller datasets than our algorithm, and did not investigate the link with data mining algorithms.

More recently, pruning strategies of decision trees have been studied [START_REF] Garofalakis | Building decision trees with constraints[END_REF]. DL8 can be conceived as the generalization of these pruning strategies to a larger type of data structure.

Related is also the work of Moore and Lee on the ADtree data structure [START_REF] Moore | Cached sufficient statistics for efficient machine learning with large datasets[END_REF]. An ADtree can be seen as an index that allows for a quick frequency computation. A key feature of an ADtree is that it does not store specializations of itemsets that are relatively infrequent; for these itemsets, subsets of the data itself are stored. In DL8 we need to store all itemsets that fulfill the given constraints, and associated information. This is not straightforwardly achieved using ADtrees.

Algorithmically, the tree-relevancy constraint is closely related to the condensed representation of δ-free itemsets [START_REF] Boulicaut | Free-sets: A condensed representation of boolean data for the approximation of frequency queries[END_REF]. Indeed, for δ = minsup×|D| and p(I) := (freq(I) ≥ minfreq), it can be shown that if an itemset is δ-free, it is also treerelevant. DL8-Closed employs ideas that have also been exploited in the formal concept analysis (FCA) community and in closed itemset miners [START_REF] Pasquier | Efficient mining of association rules using closed itemset lattices[END_REF].

A popular topic in data mining is currently the selection of itemsets from a large set of itemsets found by a frequent itemset mining algorithm (see for instance, [START_REF] Yan | Summarizing itemset patterns: a profile-based approach[END_REF]). DL8 can be seen as one such algorithm for selecting itemsets. It is however the first algorithm that outputs a well-known type of model, and provides accuracy guarantees for this model.

CONCLUSIONS

We presented DL8, an algorithm for finding decision trees that maximize an optimization criterion under constraints, and successfully applied this algorithm on a large number of datasets.

We showed that there is a clear link between DL8 and frequent itemset miners, which means that it is possible to apply many of the optimizations that have been proposed for itemset miners also when mining decision trees under constraints. The investigation that we presented here is only a starting point in this direction; it is an open question how fast decision tree miners could become if they were thoroughly integrated with algorithms such as LCM or FP-Growth. Our investigations showed that high runtimes are however not as much a problem as the amount of memory required for storing huge amounts of itemsets. A challenging question for future research is what kind of condensed representations could be developed to represent the information that is used by DL8 more compactly.

In experiments we compared the test set accuracies of trees mined by DL8 and C4.5. Under the same frequency thresholds, we found that the trees learned by DL8 are often significantly more accurate than trees learned by C4.5. When we compare the best settings of both algorithms, J48 performs significantly better in 45% of the datasets. Efficiency considerations prevented us from applying DL8 on the thresholds where C4.5 performs best, but preliminary results indicate that the best accuracies are not always obtained for the lowest possible frequency thresholds.

Still, our conclusion that trees mined under declarative constraints perform well both on training and test data, means that constraint-based tree miners deserve further study. Many open questions regarding the instability of decision trees, the influence of size constraints, heuristics, pruning strategies, and so on, may be answered by further studies of the results of DL8. Future challenges include extensions of DL8 to other types of data, constraints and optimization criteria. DL8's results could be compared to many other types of decision tree learners [START_REF] Page | Skewing: An efficient alternative to lookahead for decision tree induction[END_REF][START_REF] Provost | Tree induction for probability-based ranking[END_REF].

Given that DL8 can be seen as a relatively cheap type of post-processing on a set of itemsets, DL8 suits itself perfectly for interactive data mining on stored sets of patterns. This means that DL8 might be a key component of inductive databases [START_REF] Imielinski | A database perspective on knowledge discovery[END_REF] that contain both patterns and data.

Figure 1 :

 1 Figure 1: An example tree

) = freq(I)-freq c(I) (I).

1 .

 1 T1 := {T |T ∈ DecisionTrees, ∀I ∈ paths(T), p(I)}

Figure 2 :

 2 Figure 2: An itemset lattice for items {A, ¬A, B, ¬B, C, ¬C}; binary decision tree A(B(C(l,l),l),C(l,l)) is hidden in this lattice

 ∈T 2 [r1(T), r2(T), . . . , rn(T)]

Query 1 .

 1 Small Accurate Trees with Frequent leaves. T := {T | T ∈ DecisionTrees, ∀I ∈ paths(T), freq(I) ≥ minfreq} output argminT ∈T [e(T), size(T)].

Figure 5 : 2 T

 52 Figure 5: Two accurate trees for database 2

Figure 7 :

 7 Figure 7: Comparison of the different miners on 4 UCI datasets

Figure 8 :

 8 Figure 8: Properties of the algorithms used in the experiments

Figure 10 :

 10 Figure 10: Influence of the size constraint on the test accuracy of DL8 (unpruned)

Figure 11 :

 11 Figure 11: Sizes of decision trees predictive accuracies.

:

 C4.5's trees are smaller as it creates trees with small numbers of incorrectly classified examples in the leaves, which

						Unpruned					Pruned			Pruned J48, Minfreq = 2
		Minfreq	Train acc	Test acc	Size	Train acc	Test acc	Size	Test acc	S		Size
	Datasets	#	%	J48	DL8	J48	DL8	J48	DL8	J48	DL8	J48	DL8	J48	DL8	Discr.	No D.	Discr.	No D.	Discr.	No D.
	anneal	10 2	1.2 .2	.85 .89	.87 .89	.82 .82	.81 .82	43 107	57 88	.83 .86	.85 .87	.81 .82	.82 .82	22 44	31 46	.82	.88	0 0	+ +	44	54
	a-credit	45	6.8	.87	.88	.86	.87	6	11	.86	.88	.86	.88	4	11	.84	.86	-	0	36	40
	balance	15 2	2.4 .3	.81 .90	.85 .90	.76 .82	.79 .81	24 99	41 114	.81 .89	.85 .89	.79 .80	.80 .80	17 72	31 65	.80	.79	0 0	0 0	72	84
	breast-w	40 30	5.8 4.3	.93 .96	.97 .96	.93 .95	.95 .95	3 7	10 7	.93 .96	.97 .97	.93 .95	.95 .95	3 7	8 9	.96	.95	0 0	0 0	16	20
	chess	200	6.2	.91	.91	.91	.90	9	13	.91	.95	.90	.95	9	13	.99	1	+	+	54	54
	diabetes	15 2	1.9 .2	.79 .90	.83 .99	.75 .68	.72 .66	26 20	55 288	.79 .84	.82 .92	.74 .74	.74 .71	20 69	32 135	.74	.73	0 0	0 0	69	41
	g-credit	100	10	.73	.75	.70	.70	6	12	.73	.75	.70	.71	6	10	.71	.70	0	0	163	171
		30	1.1	.77	.84	.74	.77	4	12	.77	.84	.73	.78	4	12			0	0		
	heart-c	5	1.6	.88	.94	.77	.75	4	70	.87	.94	.76	.80	17	35	.78	.80	0	0	32	37
		2	.6	.94	1	.76	.74	68	74	.90	.97	.78	.77	32	50			0	0		
	ionosph	50 40	14.2 11.3	.83 .89	.86 .89	.79 .88	.84 .88	4 5	7 7	.83 .89	.86 .89	.79 .88	.84 .88	4 5	7 6	.86	.91	0 0	+ 0	35	27
	mushro	800	9.8	.92	.97	.92	.97	5	11	.92	.97	.92	.97	5	11	1	1	+	+	17	17
	pendigits	600	8.0	.58	.72	.58	.72	14	17	.58	.72	.58	.72	13	15	.95	.96	+	+	340	278
	p-tumor	15 2	4.4 .5	.44 .63	.49 .71	.38 .40	.37 .36	23 116	27 152	.44 .60	.49 .67	.39 .40	.37 .40	19 81	22 105	.40	.40	0 0	0 0	81	81
	segment	200	8.6	.72	.83	.73	.83	13	15	.73	.83	.73	.83	13	15	.95	.97	+	+	80	113
	soybean	60 50	9.5 7.9	.51 .55	.55 .59	.50 .52	.55 .59	13 15	15 17	.51 .55	.55 .59	.50 .51	.55 .58	11 14	15 17	.82	.82	+ +	+ +	88	88
	splice	700	21.9	.74	.74	.74	.73	5	5	.74	.74	.74	.73	5	5	.94	.94	+	+	127	127
	thyroid	80	2.4	.91	.92	.91	.91	1	13	.91	.91	.91	.91	1	3	.91	.99	0	+	34	21
	vehicle	50	5.9	.63	.71	.59	.67	17	22	.63	.71	.59	.67	15	22	.70	.72	0	+	139	135
	vote	20 15	4.5 3.4	.96 .96	.97 .97	.96 .95	.94 .94	3 3	15 18	.96 .96	.96 .97	.96 .96	.94 .95	3 3	8 9	.96	.96	0 0	0 0	13	13
	vowel	100 70	1.1 7.0	.36 .39	.39 .46	.34 .35	.33 .40	11 17	14 21	.36 .39	.39 .45	.34 .35	.33 .40	11 17	14 20	.78	.82	+ +	+ +	290	191
	yeast	100 2	6.7 .1	.53 .74	.55 .82	.50 .49	.53 .48	14 501	15 724	.53 .68	.55 .75	.51 .53	.53 .50	11 186	14 307	.53	.56	0 +	0 +	186	318
				Figure 9: Comparison of J48 and DL8, with and without pruning				
	cannot be split off without violating the constraints. In cases											
	where DL8's accuracy is significantly better, the pruned											
	trees of DL8 are only 3 to 9 nodes larger those of J48. These											
	results confirm earlier findings which show that smaller trees											
	are not always desirable.																	

Acknowledgements

Siegfried Nijssen was supported by the EU FET IST project "Inductive Querying", contract number FP6-516169. Élisa Fromont was supported through the GOA project 2003/8, "Inductive Knowledge bases", and the FWO project "Foundations for inductive databases". The authors thank Luc De Raedt and Hendrik Blockeel for many interesting discussions; Ferenc Bodon and Bart Goethals for putting online their implementations of respectively Apriori and Eclat, which we used to implement DL8, and Takeaki Uno for providing LCM. We also wish to thank Daan Fierens for preprocessing the data that we used in our experiments.