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Abstract

The purpose of this paper is to interpret polynomial invariants of strongly invertible
links in terms of Khovanov homology theory. To a divide, that is a proper generic immersion
of a finite number of copies of the unit interval and circles in a 2-disc, one can associate a
strongly invertible link in the 3-sphere. This can be generalized to signed divides : divides
with 4+ or — sign assignment to each crossing point. Conversely, to any link L that is
strongly invertible for an involution j, one can associate a signed divide. Two strongly
invertible links that are isotopic through an isotopy respecting the involution are called
strongly equivalent. Such isotopies give rise to moves on divides. In a previous paper of
the author [2], one can find an exhaustive list of moves that preserves strong equivalence,
together with a polynomial invariant for these moves, giving therefore an invariant for
strong equivalence of the associated strongly invertible links. We prove in this paper that
this polynomial can be seen as the graded Euler characteristic of a graded complex of
vector spaces. Homology of such complexes is invariant for the moves on divides and so is
invariant through strong equivalence of strongly invertible links.
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Introduction.

A divide I' is the image of a proper generic immersion of a finite number of intervals and
circles into the unit 2-disc D? of R?. With a divide I", N.A’Campo [1] associates a link £(I")
in the unit 3-sphere of the tangent space T'D?:

L(I) ={(p,v)eTD? : pe T, ve I, |p|* +|v|* = 1}.



This link has natural orientation and is strongly invertible with respect to the involution
J(p;v) = (p, —v).

In CouturePerron [3] is given a generalization of divides. Let (x,y) be coordinates in D?
such that the restriction to I' of the projection 7 : (x,y) — z is a Morse function. A Morse
signed divide (MS—divide) relative to 7; stands for such a divide with + or — sign assignment
to each double point of I'. Furthermore, if there exists a €]0,1[ such that all maxima (resp.
minima) of 71| project on a (resp. —a) and all double points in | — a;a[, the MS-divide is

called ordered (OMS-divide).

We also define a link associated with a MS—divide (see [3]), which is strongly invertible with
respect to the involution j(p,v) = (p, —v). If all signs are positive, this link is no more than
the link of the divide without signs. The interest of OMS—divides rather than MS—divides is
to obtain an immediate braid presentation of the link from the divide.

Strongly invertible links are closely related with OMS—divides. Let L be an oriented link in
S3 and j be an involution of (S?, L) with non empty fixed point set, which preserves the
orientation of S? and reverses the orientation of L. Then (L, ) is called a strongly invertible
link. As we said above, the link of a divide is strongly invertible for the implicit strong inversion
j(p,v) = (p,—v). Two strongly invertible links (L, j) and (L', ;") are strongly equivalent if
there exists an isotopy ¢y, t € [0,1] of S sending L to L’ such that o1 0j = j’ 0 1.

Isotopies through MS—divides give rise to strong equivalence of associated links. Also, one
can find in Couture [2] an (exhaustive) list of elementary moves on MS—divides that preserve
strong equivalence classes of the associated links. As a particular case, given a MS—divide, we
can always construct another one, using these moves, which is an OMS—divide. Besides, we
can transpose the moves on MS—divides directly to moves on OMS—divides. Two OMS—divides
obtained one from the other by those moves on OMS—divides are called M—equivalent (see the
list of moves in Section 1.3). Then as an essential result of [2], we have:

Theorem (cf. [2]). 1. Ewvery strongly invertible link is strongly equivalent to the link of an
OMS—divide.

2. The links of two OMS—divides are strongly equivalent if and only if the OMS—divides are
M —equivalent.

As the Jones polynomial is invariant under Reidemeister moves on links diagrams, there exits
a Laurent polynomial for an OMS—-divide with integral coefficients (see Couture [2]), which is
invariant under M —equivalence and so invariant under strong equivalence of strongly invertible
links. Modulo 2, this polynomial coincide with Jones polynomial of the link. The purpose of
this paper is to interpret the polynomial of an OMS—divide as the graded Euler characteristics of
a graded complex of Zs—vector spaces (theorem 3.16). Besides, if we call Khovanov homology
of an OMS—divide the homology of this complex, then we have a stronger result:

Theorem. 3.17 Khovanov homology of OMS—divides is invariant under M —equivalence.

Corollary. 3.18 Khovanov homology is an invariant for strong equivalence of strongly invert-

ible links.

Eventually, Khovanov homology of OMS—divides is a refinement of the polynomial invariant
of OMS—divides.



1 Divides and OMS—divides.

1.1 Divides and links of divides.

A divide of the unit 2-disc D? of R?*(~ C) is the image I' of a proper generic immersion :

T

(1.1) v:(J,0]) - (D?,0D?), J= <|_| Ij) L (L!S])
=

j=1
where [; and S; are respectively copies of [0,1] and S! = {z € C: |z| = 1}, generic meaning

that the only singularities of 4 are ordinary double points and I' = ~(J) intersects 0.D?
transversally. Every ~(I;) (resp. v(S;)) is called interval (resp. circular) branch.

Let S(D?) = {(p,v) € TD? : |p|> + |v|> = 1} be the unit sphere of the tangent space
TD? ~ D? x C. With a divide, A’Campo [1] associates a link £(I") in S(D?):

(1.2) L(I) = {(p,v) e S(D*) :peT, veT,T}.

This link has a natural orientation induced by the two possible orientations of the branches of
I' and is strongly invertible for the involution j(p,v) = (p, —v) of S(D?) with axis Fix(j) =
0D? x {0} (see Section 1.3 below). Each interval branch of I" leads to a strongly invertible
component of £(I") and each circular branch of I" to two components of £(I") interchanged

by 7.

1.2 OMS-Divides.

Let I' be a divide. Suppose there exists (a,b) €]0,1[x]0, 1[, a® + b* < 1 such that:

1. I'c{x+iye D?:—b <y < b} and the restriction p|r is a Morse function;
2. all double points of I' are contained in | — a,a[x] — b,b[;

3. all maxima (resp. minima) of p|r, called vertical tangent points, project on a (resp. —a).

Then I' is called an ordered Morse divide. Double points and vertical tangent points will be
called singular points of I'. Now let ¢ be a function that associates + or — sign with each
double point of I". Then (I',¢) is called an ordered Morse signed divide (OMS—divide) (relative
to the projection p(x +iy) = ) (see [3]).

Let’s associate an oriented j—strongly invertible link £(I", ¢) with an OMS-divide (I",¢). This
link coincides with £(I') except in solid tori TD, n S(D?) ~ D, x S! over small discs D,
around negative double points p of (I',e) where we change the two j-symmetric crossings
from over to under. More precisely, in such a solid torus T'D,, n S (D?), the link is defined
according to Figure 1.1. If € = 4+ for all double points then £(I',¢) = L(I).

Besides, from a divide I" one can construct an OMS—-divide (I",€) by a succession of moves
and isotopies, such that L£(I",€) and L(I") are isotopic (see [3]) by an isotopy that respects
the involution j (see Section 1.3 below for a more precise definition).
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Figure 1.1: The link £(I',€) over a negative double point.

Remark 1.1. For simplicity, we will only consider an OMS-divide (I',€) in [—a,a] x [—b,b],
omitting its trivial part outside this rectangle. After rescaling, we also suppose that a =b=1.
Since we will often consider diagrams of local parts of OMS-divides (I, €), we distinguish end
points of I', i.e. points of I' in {—1,1} x [—1,1] without vertical tangent by a big point (see
Figure 1.2).

Figure 1.2: A representative OMS—divide for the strongly invertible knot 55.

Moreover, we will simply denote I' instead of (I',€) if no ambiguity occurs in the context.

1.3 Me-equivalence for OMS—divides.

Two OMS-divides I' and I'" are M —equivalent if we obtain one from the other by isotopy
through OMS—divides and a finite sequence of the moves described on Figure 1.3 or symmetric
situations with respect to horizontal and vertical directions (see [2]): Let j be an orientation

+ R —e TR —e R —

=S o XK XK B

]1 ]H _]I;I_ +]ﬁu [IV

Figure 1.3: Moves of M —equivalence.

preserving involution of S? with non empty fix point set (i.e. Fix(7) is trivial knot according
to the solution of Smith conjecture [4]). An oriented link L < S* is j-strongly invertible if
j sends L to itself with opposite orientation. The couple (L, 7) is called a strongly invertible
link. With the link of an OMS—divide, we implicitly associate natural orientation and involution
j(p,v) = (p, —v) as in Section 1.1: such a link is strongly invertible.

Two strongly invertible links (L, j) and (L/,j') are called strongly equivalent® if there exists

'A same link I may have two strong inversions j and j' such that (L,j) and (L, ;') are not strongly
equivalent.



and isotopy ¢y, t € [0,1] of S3 sending L to L' such that ;0 j = j' o ¢;. One can easily
prove that M—equivalent OMS—divides give rise to strongly equivalent strongly invertible
links. Conversely, let’s recall the following crucial theorem relating OMS—divides with strongly
invertible links.

Theorem 1.2. [2]

1. FEwery strongly invertible link is strongly equivalent to the link of an OMS—divide.

2. The links of two OMS—divides are strongly equivalent if and only if the OMS—divides are
M —equivalent.

2 The polynomial of an OMS—divide.

Let’s denote by ©g and ©; the local splittings of an OMS-divide (I, €) in a neighborhood of a
double point or vertical tangent point described in Figure 2.1 (0 “smoothes” the OMS—divide
whereas O; introduces horizontal cusps).

> -
AT AR
= > — > - <<
Figure 2.1: Local splittings.

Definition 2.1. 1. We extend the notion of OMS—-divide: a cuspidal divide I'" := (I",€) is a
signed diagram like an OMS—-divide except that it has a finite number of horizontal cusps
(as in the result of type ©1 splittings). For instance, a partially (or totally) transformed
OMS—divide through ©g and ©1 is a cuspidal divide.

2. Let (I'ye) be an OMS—-divide (or more generally of a cuspidal divide) with double and
vertical tangent points numbered by pi,...,p,. Let [k] be the word kiky...k, ki €
{0,1}. A state (5,0Op) of (I',€) is the combination of:

* a succession of local splittings Op;) = (Opy, ..., Ok,) at p1,...,pn-

e the cuspidal divide S = @[k](F,e) without double points nor vertical tangent points
obtained by transforming I' through ©p.

For simplification, we will often identify the cuspidal divide S with the state (S,Oy).
We denote by St(I',€) the set of all states of (I',¢).

One can define a j-strongly invertible link E(F ,e) associated with a cuspidal divide (I';¢)
exactly in the same way we have done for OMS—divide. However, such a link is generally
unoriented precisely because of the introduction of cusps. Each local splitting at a double
point of (I',¢€) corresponds to simultaneously smoothing two symmetric crossing points of
the corresponding representative closed braid diagram of L£(I',€) (see [3]) whereas each local
splitting at a vertical tangent point corresponds to smoothing a crossing point through the
axis of the inversion j (see Figure 2.2).



Figure 2.2: The links £(I",¢) and L£(O(I',¢€)), © = O1110010-

Let I' := (I',€) be an OMS-divide. Let n = ny + n_ + ng be the number of singular points
of I' where n,, n_ are respectively the numbers of positive and negative double points, and
no the number of vertical tangent points. Let’s call:

(2.1) w(l') = 2ny —2n_ + ng

the writhe of I' (i.e. the writhe of the representative closed braid diagram of L£(I,¢) (see [3])
with 2n, + 2n_ + ng crossings obtained from (I',€)).

For a state S € St(I',¢), let ¢l(S) be the number of closed connected components and op(S) be
the number of open connected components (i.e. with two end points). Let 7, (S), r_(S) and
ro(S) be the numbers of ©; local splittings (Figure 2.1) for positive double points, negative
double points and vertical tangent points respectively to obtain S from (I",€). Let’s set:

(2.2) i(S) =r(S) —r_(S) +r0(S) E(S) = w(I') + 2i(S) — ro(95).

Definition 2.2. (cf. [2]) The polynomial of an OMS—divide I' (and more generally of a
cuspidal divide) is the Laurent polynomial (of the variable \/t) defined by:

= _1\i(S) k(S) 1 cl(5) i op(S)—1
(2.3) Wi () SGStZ@,e)( 1)/ (V) (t+t> (\/z N \/5)

Proposition 2.3. (cf. [2]) The polynomial of an OMS—divide is invariant under M —equiva-
lence of OMS—-divides and so is an invariant for strong equivalence of strongly invertible links.

Definition 2.4. A state S with + or — assignment to each connected component is called
an enhanced state, and is denoted by S. The set of enhanced states of (I';€) is denoted by
St(I',€), and S is called the underlying state of S.

Let S be an enhanced state with underling state S. The numbers i(S) := i(S) and k(S) :=
k(S) in (2.2) do not depend of the signs of the components. The subset of enhanced states S
of (I',e) such that i(S) =i is denoted by St;(I,€).

~ ~

Let’s denote by 6.(S) (resp. dop(S)) the difference between the number of positive and

negative closed (resp. open) components of S. Then we define the degree ](§ ) of the enhanced
state .S, which depends of the signs of the components of S by:

~

(24) 3(S) = k(S) +26.(5) + 65 (5).



We can now reformulate the polynomial of an OMS—divide I':

(2.5) Wr(t) = % 2 (_1)z‘(§)(\/g)j(§)
SeSi(I)

Remark 2.5. j(S) always has the same parity as half the number of end points of I'. We
also have the inequalities:

~

(2.6) —n_ <i(S) < ny +ng 2ny —4n_ +ng < k(S) <4ny — 2n_ + 2nyg.

3 Categorification.

3.1 Complex associated with an OMS—divide.

2

In this section, we define a graded complex of Zs-vector spaces” associated with a divide. We

follow here Viro’s approach of Khovanov homology for links [5], based on the Kauffman state
model for the Jones polynomial: the polynomial of a divide also have been defined in [2] by
state model.

Let I :== (I',¢) be an OMS—divide (or a cuspidal divide). For i € Z, let [I']; = Zg{g-t/i(F)}
be the finite dimensional Zy—vector space generated by enhanced states S of I' such that

~

i(S) =i (if i < —n_ or i >ny +ng, [I']i = {0}). Degree j(S) defines a grading on [I'];
and we denote:

(3.1) 71 = (1), 170 = J,@E-‘)Z[[F]]i,j
where [ = Zo{S € St;(I') : §(S) = j}.
Now we define a differential on [I']] to obtain a (finite) complex of graded Zs—vector spaces.

Definition 3.1. Let §1,§2 € §Z(F,e). We say that Sy is adjacent to S, (51 s §2) if:

1. Sy and Sy coincide outside a neighborhood Dy, of a singular point p of (I',€);
2. One can pass from §1 to §2 by one of the following transformations T in Dy :

e T'=0;0 @al if p is a positive double point or a vertical tangent point of (I',€);
e T'=0go0 @1_1 if p is a negative double point;

3. Signs rules described in Figure 3.1, 3.2, 3.3 are fulfilled, signs of other components being
unchanged.
(In these figures, black color is used for open components and gray for closed components, a dotted
line means that the points are related in the state outside D,,. Lack of dotted line means that the

points are not related outside D, ).

If §2 is adjacent to 51 then:

(3.2) J(S1) =5(S),  i(S1) =i(S) — L.
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Figure 3.2: Case of a splitting at a negative double point p (e(p) = —).
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Figure 3.3: Case of a splitting at a vertical tangent point p.

The differential d = (di)ieZ on [I'], di: [I']i = [I']li+1 is now defined in the following way:
the matrix of d; has coefficients defined by the incidence numbers (§1 : 52), ,SNH € g@-([’),
SQ € Sti_,_l(['):

(3.3) (gl : §2) _ { 1 if S; vwo S

0 else.

From (3.2), d respects the degree j, ie. di = @ d;j: D[ i; > DL Nivry-
J J j

?Here we choose Zsg-vector spaces for simplification to avoid signs. We can easily generalize taking for
instance Z-modules or Q-vector spaces



Remark 3.2. We have dual roles for T;" and Ty , T," and T3, T?,Jr and Ty , T," and T5,
T 5+ and T, in Figure 3.1 and Figure 3.2. To go further about duality property, we could
have introduced “negative tangent points” to interpret dual arrows of Tg and T7 in Figure 3.3.
However, we didn’t choose this option, since such “negative tangent points” can be replaced by:

D) od
Also, we can see that T;r and T, i€ {1,2,3,4} give rise to analogous situations.

Proposition 3.3. ([I'],d) = ([I']i,di),., = (DI Ny, © di),.p, is a finite complex of
JEZ JEZL

graded Zo—vector spaces (each [I']; is finitely graded by degree j ).

Proof. 1t suffices to verify all such diagrams:
§1 NS> §2
(3.4) ¢ ¢
gé Nbed §3
corresponding to splitting two singular points are commutative. Since we have Zs—vector
spaces, commutative diagrams induce the relations d;1d; = 0. Notice that from the previous

remark, we can strongly reduce the number of cases to check (see also the proof of proposition
3.5). O

3.2 Alternative point of view.

Here we present an alternative (more algebraic) way to see the complex ([I'],d), in terms of
Frobenius algebra: probably can we link complexes of OMS—divides with 1+1-TQFT (or more
precisely with some 1+1-TQFT with symmetry property).

Let A := Zo{v_,v.} be the graded Zy—vector space generated by two elements v_ and v
such that deg(v_) = —1 and deg(v;) = 1. We define a commutative product 1 : AQA — A,
a unit 77 : Zo — A and a non degenerate symmetric bilinear pairing 1 : A® A — Zs by:

O+ ®@vy) = vy, s @vo) = p1l- @uvy) =v—, pl-Quv-) =0
(3.5) m(0) =0, m(l) =vy
by ®vy) =0, Bils ®v) =Pil-Quy) =1, Bilv-Qv-) =0.

The form f3; induces a duality isomorphism A «— A* and A is a commutative Frobenius
algebra with adjoint co-product 41 : A > A® A and co-unit €1 : A — Zy:

(3.6) di(vy) = vy Quo +v-_Quy El(vt) _ ?

0(vo) =v_Qu_ ei(vo) =

Let ¢ : AQA — A®A be the flip morphism: ¢1(a®a’) = a’®a, and A : A — A the identity
morphism. The morphisms pu1,01,71,c1 are homogeneous with respective degrees —1,—1,1,1



and verify the relations of associativity, commutativity, co-associativity, co-commutativity:

H1 0 Q1 = 1 ¢1 001 =01
(3.7) 1o (i ®A) =0 (A®p1) (01 ®A)od = (A®Hd) 0y
pro(m®A)=A (e1®A)od = (A®e1)od = A
and 01op; = (1 ®A)o (A®dy).

The vector space A® A has an induced structure of graded commutative Frobenius algebra
with product, co-product, unit and co-unit :

f=(m@um)o(A®¢®A4) 0P =mem

3.8

(3:8) P =(AR¢®A)o (6 ®d) D=1 ®e;.

Let B := Zo{w_,w,} be the graded Zs—vector space generated by two elements w_ and
wy, deg(w_) = —2, deg(wy) = 2. Let’s consider respectively the injection and surjection

1:B—>AR®A and 7: A® A — B defined by:

T(vr @vy) = wy
Ty ®uv_)=7(v_Quvy) =0

(v ®@u_) = w_

(39) Z(w+) = U+ ® U+

(w_) =v_Qu_
Then B canonically inherits from A®.A of a structure of graded commutative Frobenius algebra
with product, co-product, unit and co-unit pus,d2, 72,9 with respective degrees —2,—2,2,2
satisfying :

(3.10) pr=mopu®o(1®1) dp=(m@m odPor m=mon® e =201
The morphisms 2 and 7 are adjoint with degree —2. We denote by ¢9 : BB — B& B the
flip morphism ¢o(b®0V') = ®b, and B : B — B the identity morphism.

For each (non enhanced) state S of I, let’s number all open components with p € {1,...,0p(S)}
and all closed components with ¢ € {1,...,cl(S)}. Then for an enhanced state S with under-
lying state S,we define the tensor product:

cl(S)
X W, () € A®0r(5) & g&el(S)

~  op(S)
(3.11) t(S) = & vy, (»®
p=1 q=1

where +,,(p) and +.;(q) are the + or — signs of the p—th open and the ¢—th closed components
of S respectively. The degree of t(S) does not correspond to the degree j(S) of S:

(3.12) deg(t(3)) = 80p(3) +264(3) = J(3) - k(3) = J(3) — k(S).
So we introduce the following definition:

Definition 3.4. Translation of the degree of a graded vector space.

Let V = @ V; be a graded Zs-vector space. The translated graded Zo-vector space V{l} is
JEZ

defined by:  V{{}; = Vj_y.

Now we translate the degree of (S) by k(S) and we define:

(3.13) C(I) = (C;(IN) where Ci(I') = SES@M) (A®op<s) ® B®cz(s>) {(k(S)}.

i(S)=i

€L

10



Proposition 3.5. The map t : St(I') — C(I') defined by 3.11 extends to an isomorphism of
complezes: t:[[I'] — C(I').

Proof. 'The incidence relations Tl-i, 1 <4 < 5 of Figure 3.1, 3.2 induce morphisms of Zo—
vector spaces denoted by T;, which have degree —2:

T, =610 Ts=po(A®ui)o (A®1)
To=(A®m) o (A®d) 0 Ty = 0s.

T —
(3.14) 5= 42

and the incidence relations Ty, T7 of Figure 3.3 induce morphisms denoted by the same letters
T, 17, which have degree —1:

(315) T6 =TO 51 T7 = WU1.
More precisely, we have:
T,: AA — (A®A) T3: A®B — A Ts: BB —B
V4@ vy > 0 ® v-+u-® vy V4® wy > vy wi® wy > wy
V4 v} 1_® wy > v wW4+& w}
— Q) v_ = w_
V-® v4 V4 w_ w_® wi
=0
v_® v—- 0 v1_® w_} w_® w— — 0

Th: A—-> (A®B) Ty:B — (BR®B)

(316) vy > v ® wo wiy > wi® wotw_® wy
v > r_® w_ w— > w_® w_

T7 : A@.A - A

TGZ.A—>B v4® vy > vg
vy >0 v+ ® v

= v
v > w_ V_® v4

@ v —0

Using these morphisms, we transfer the differential on [I']] to a differential on C(I"). Notice
according to remark 3.2 that 7; is self-adjoint and that 75 and T3 (resp. Ty and T5) are
adjoint. Also Tx is
surjective. The relation dod = 0 (induced by commutative diagrams (3.4) in the proof of
proposition 3.3) is recovered using the following relations:

Moreover, T5 and T, are injective whereas T3 and 715 are surjective.

— symmetry properties:

Tiopy=¢10T1 =T Ty = ¢o0Ty
(A®T) o1 = (1 ®B)o(A®Ty)  T5=T50¢2
$10(ART3) = (A®T3) o (¢1 ®B) Ty =T70 ¢y

— commutativity properties corresponding to the splitting of two double points:

(T1 ®A)O(A®T1) = (A®T1)O(T1 ®A)
(A®T2)0T1 = (T1 ®B)O(A®T2)
Tlo(A®T3) = (A®T3)O(T1 ®B)

11

(T4®B)OT4 = (B®T4)OT4
Tso(Ts ®B) = T5 0 (B®1T5)
T4OT5 = (B®T5)O(T4®B)



TioT, = (A®RTs5)0(p1 ®B) o (ART,) =0
(Ty®B)oTs = (A®d2) o (Th@B)oTo = (AQTy) o T
T30 (T5®B)=T350(T5®B)o (A®¢s) =T50 (AR Ts)

TyoTs = (T3®@B)o (A®¢2) o (T2 ® B)
= (T3®B)o(A®Ty) = (AR Ts) o (1> ® B)

— commutativity properties corresponding to the splitting of a double point and a vertical
tangent point:

TioTs = (Ts @ B) o Ty T70(A®RTs) =T30 (T ® B)
T60T3=T5O(T6®B) TQOT7Z(T7®B)O(A®T2)
T20T7=(A®T6)OT1 T7OT1=0=T3O(A®T6)

— commutativity properties corresponding to the splitting of two vertical tangent points:
Tlo(A®T7)=(A®T7)O(T1®A) D

Remark 3.6. The units and co-units ni,1m2,€1,62 of A and B correspond respectively to
the creation of a positive open component, the creation of a positive closed component, the
destruction of a negative open component and the destruction of a negative closed component.
Besides, AQeqy and B®esy are left inverses of Ty and Ty whereas AQn2, BRno and AQm
are right inverses of T, Ty and T7. In Section 4, we will often refer to these morphisms
together with the following ones:

g1: A — Zy Zo: B — Zs

vy 1 wy 1

m: Zy — A Mo: Zy — B
1 = wv_ 1 = w_

v— — 0 w— — 0

which correspond respectively to the creation of a negative open component, the creation of a
negative closed component, the destruction of a positive open component and the destruction
of a positive closed component, and to the following composed morphisms:

T=mer: A—-> A oc=mey: B - A
vy = 0 wy 0

v— > vy w— > v

3.3 Review of basic facts about complexes.

Let C := (C,d) = (C;,d;)iez be a complex of Zs—vector spaces. We denote by H(C) its
homology:

(317) H(C) = (Hi)iGZ Hz = Ker dl/Im di—l-
A complex is acyclic if its homology is null.

Definition 3.7. Shift of the grading of a complex.
Let (C,d) = (Ci,d;)iez be a complex of Zs—vector spaces. We define the complex:

(C,d)[K] = (C[K],d[k]) by C[kli=Ci and d[k]; = di .

12



(If (C,d) = ( D, D diJ)ieZ is a complex of graded 7o —vector spaces, then we can translate twice
JEZ JEZL
the grading of the complexr and the degree of the vector spaces :

(C,d)[k]{¢} = (C,d){t}[Kk] is defined by C[k]{t}ij = Cimkj—e d[E[{l}i; = di—k,j—2 )-

A morphism of complexes of Zo—vector spaces f : (C°,d") — (C',d") is a sequence f = (f;)icz
of linear maps f; : C) — C} such that®: fd° =d! f (ie. Vi, d} fi = fiz1d).

Definition 3.8. For a morphism of compleves f : (C°,d°) — (C',d'), the cone of f is the
complex denoted by Cone(f) = (C;, D;)icz and defined by :

0
(3.18) G=dec, =@ C ) D= ( Y4 )
2 1—1

(Notice that (C°,d") and (Ct,d")[1] are sub-complezes of (C,D)).

A morphism of complexes f : (C°, d°) — (C',d") induces an isomorphism in homology if and
only if Cone(f) is acyclic. This is the case if f is a homotopy equivalence of complexes, i.e. there
exist a morphism of complexes ¢ : (C!,d') — (C°,d°) and sequences h® = (hY)iez, h' = (h})icz
of linear maps (homotopies) A : C2,; — C? and h} : C},; — C} such that:

(3.19) gf =id + h°d° +d°h®  and  fg =id +r'd" +d'hl.

(le. Vi gifi=id+h0d+d® hO | and figi=id+hld!+d! |l )

Remark 3.9. As a particular case, if h® = 0, the complex (C°,d") is called a strong deforma-
tion retract of (C',d"'), with inclusion map f, retraction g and homotopy map h'. Besides,
up to changing h' to a new homotopy h, we can always suppose that hh = 0, hf = 0 and
gh = 0. We will assume these properties are always satisfied in the definition of strong defor-
mation retraction.

Proposition 3.10. Let (C',d") be a strong deformation retract of (C',d') with retraction r,
inclusion j and homotopy map h such that hh =0, rh =0, hj = 0. Let f: (C°,d°) — (C',d")
be a morphism of complexes. Then Cone(rf) is a strong deformation retract of Cone(f) with

id 0 id 0 0 0
. _ . . _ -
retraction R ( 0 1 ), inclusion J ( hf o ) and homotopy ( 0 h ) such
that HH =0, RH =0 and HJ = 0.

Proof. Tmmediate. U

A double complex (C,d,d) is a sequence of complexes (C*,d*)ez of Zovector spaces and
morphisms of complexes (0F)gez:

. t“)k__i(clc’ dk) t“)_k)(ck—&-l7 dk+1) tﬁi(ck—&-Q’ dk+2) t“)k_+i .

3Since we are working with Z» field, commutativity and anti-commutativity coincide so that we have equiv-
alently d'f + fd° =0.

13



such that for all k € Z, 08710k = 0. A morphism of two double complezes is a sequence of
morphisms of complexes f = ( fk)kez:
ak 1

a k+1 5k+2

(Ck dk) (Ck—i-l dk+1) (Ck—i-z dk—i-z) oS ..

Jfk Jfk+1 Jfk+2

(Ck dk) (Ck+1 dk+1) okt (Ck+2 dk+2) ol

such that for all k € Z, fFt1oF = 0% fF. We also have notions of homotopy equivalence
and strong deformation retraction for double complex. A morphism of double complexes
f:(C,d,d) — (C,d,0) is a homotopy equivalence (of double complexes) if there exists a
morphism of double complexes ¢ : (C,d,d) — (C,d,d) and homotopy maps h = (h*)rez,
h = (h¥)rez(sequences of morphisms of complexes) h* : (CF*1 d**1) — (C*¥,d*) and A" :
(Ck+1 d@k+1) — (CF,d*) such that for all k:

g" fF =id+BF* + M ThMT and fRgF =id 4+ BFOF 4+ 0T
If h =0, (C,d,0) is called a strong deformation retract of the double complex (C,d,d) with

inclusion f and retraction g. Again, up to changing the homotopy h, we assume that it

satisfies: hh =0, hf =0 and gh = 0.

Now we extend the definition of cone to a finite sequence of morphisms of complexes. A double

complex (C,d,d) is 0-finite if (C*,d* ) is trivial except for a finite number of values of k.
Definition 3.11. Let (C°,d°) e ,d") be a 0—finite double complex. Let’s denote:

S
cl @63_1@--@0;‘_%1
(09 (u)

~

8? : C? N
u ,0,...,0)
Then the cone of (°,...,0" 1) is the complex defined by:
(320) Cone(ﬁo, ey an_l) = Cone(50’ Cone(al7 o 7an—1)).

Suppose that f = (f¥)o<p<n is a morphism from a ¢-finite double complexes (C,d,d) to a
0—finite (C,d,0):
50 70y 0° N 0 0 N
(c*,d")—---—(C",d") and (C°, d)—> —>(C ,d").
Let’s set F; = flo @ fil_1 @--- @ fr,,. Then f induces a morphism of complexes:
C(f) = (Fy)iez : Cone(2°,...,0" 1) — Cone(°,...,o" ).
If f* are isomorphisms, C(f) is also an isomorphism.

Proposition 3.12. If (C,d, 0) is a 0 finite double complex, (C,d,d) a d—finite double complex
and f:(C,d,0) — (C,d,d) a homotopy equivalence with inverse g, then:

C(f) : Cone(d°,...,0" 1) — Cone(°,...,0" 1)

is a homotopy equivalence of complexes with inverse C(g). So C(f) induces an isomorphism
i homology.

Furthermore if (C,d,d) is a strong deformation retract of (C,d,d) with inclusion map f and
retraction g then Cone(d°,...,0" 1) is a strong deformation retract of Cone(d°, ..., 0" 1) with
inclusion map C(f) and retraction C(g), and so C(f) induces an isomorphism in homology.

14



Proof. Let h = (h*)1<<n, and h = (h¥)g<pn be homotopies associated with f and g. Then
we have :

=@ R B i = g
N B S

Let H = (H;)iez be the sequence of linear maps defined by:

(iEO,iEl,...,.In) > (hg(xl),hllil(fEQ),...,h? n1+1( ) 0)

and H = (H;);ez defined analogously on (C,d, ) Then if D and D are the differentials of
we

0
Cone(d°,...,0" 1) and Cone(d°,...,0" 1), we hav
FG=id+HD+DH and GF =id+ HD + DH. O

3.4 Fundamental splitting lemmas.

Let (I',€) be an OMS-divide or a cuspidal divide. Let p be a double point or a vertical tangent
point of I'. Let I'Y and I'' be the cuspidal divides obtained from I' by applying ©g and O,
at p respectively. Then each enhanced state of I' can be identified with either an enhanced
state of I'Y or I'! i.e.:

1

(3.21) St(r)'=" SHIY) LS.

Consequently, [I'°] and [[I''] can be seen as sub-complexes of [I'] up to translations of the
grading 7 and the degree j. More precisely, we have :

Lemma 3.13. Let d be the differential of [I'].
1. If p is a positive double point then d induces the differentials d° and d* of [I'°]{2} and
[I']{4} and a morphism [I'°]{2} L[[Fl]]{él} such that [I']] = Cone(d*).

2. If p is a negative double point then d induces the differentials d° and d* of [I'°]{—2} and
[I'{=4} and a morphism [I'*]{— 4} [[FO]]{ 2} such that [I']] = Cone(d®)[—1].

3. If p is vertical tangent point, then d induces the differentials d° and d* of [I'°]{1} and
[I']{2} and a morphism [I'°]{1} i>[[F1]]{2} such that [I']] = Cone(d*).

Proof. Suppose that p is a positive double point of I'. Then I'° and I'" have one positive
double point less than I' so that the writhes of I, ' and I'" are related by:

w(l') = w(I') +2 = w(l) +2

Let S be an enhanced state of St; (I') with degree j = j(5). If § i _is obtained from I using
©p (resp. O1) at p, then S can be seen as an enhanced state of Si; (FO) with degree j — 2
(resp. of St;_1(I') with degree j— 4). Besides, if S € Sti(I') and Sy € St;1 (') are adjacent
enhanced states of degrees j then it involves three cases:
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e cither Sy € §Z,~(FO) and S € §zi+1(F0) are adjacent enhanced states of I'’ with degrees
j — 2, so the differential d® of [I'°]{2} coincide with the restriction of d to [I'°]{2};

e cither S € §Z,~_1(F1) and S € §2,~(F1) are adjacent enhanced states of I'' with degrees
j—4, so the differential d' of [I'']|{4}[1] coincide with the restriction of d to [I']{4}[1];

o or Sp€ g@([’o) with degree j — 2 and Sy e gﬂ-(Fl) with degree j — 4, then d induces a
map d* : [I°]{2} — [I'*]{4} which is a morphism of complexes since from the proof of
proposition 3.3 dd = 0 implies d*d® = d'd*.

Hence [[I']] = Cone(d*®). Similar arguments hold for the two other cases. O

More generally, consider k& = ky 4+ k_ + ky double vertical tangent points pi,...,pr such
that the k., first ones are positive double points, the next k_ ones negative double points
and the last ko ones vertical tangent points. For each words [a] = aias...ay,, a; € {0,1},
[b] = biba... by, b; € {0,1}, [¢] = cica...cy, ci € {0,1}, let [a][b][c] be the word obtained
by concatenation of [a],[b],[¢] and denote by (I'f@bllel elallbtlle]) the cuspidal divide obtained
from (I',€) by performing:

O, splitting at p; for 1 <7 < kg
©p, splitting at p; for by <7 <k + k-
O, splitting at p; for by + k- <i<k=ky +k_ + ko.

Let 1[4, 1) and 14 be the numbers of occurrences of 1 in [a], [b] and [c] and gr([a][b][c]) =
La] — 151? + 1[¢. By restriction, the differential d of [I'] coincide with the differential dlallblle]
of [[F[a b][c]]]. By iterating lemma 3.13, using same arguments, just following the incidence
relations, we have:

Lemma 3.14. For each ¢, —k_ < { < ki + ko, we can identify the complex:

gr([a][b][c])=¢

with a sub-complex of [I']], with differential D = @D dlllllel - The differential d

gr([a][b][c])=¢
induces a structure of double complex :

(c*=,D*-) ATk (CF=+1, ph-+1) AT AR R (Ch+tho | phsthoy

such that [I'] = Cone (A=F=, . AF++ho=1)[_f ]

In the sequel, such a double complex will be called a splitting diagram of [I'].

3.5 Khovanov homology of OMS—divides.

Definition 3.15. We call Khovanov homology H(I") of an OMS—divide (or a cuspidal divide)
I' = (I',€) the homology of the complex [I'] = ([I'];)

ieZ:

(322) H(F) = (HZ(F))lEZ H@(F) = ]@ZH%](F) H%](F) = Kerdi7j/1mdi,1,j.
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Proposition 3.16. If I' = (I';¢) is an OMS-divide, then the polynomial W and the graded
Euler characteristics of H(I') are related by:

(3.23) Wp(2) = # Nor(H(D) = —— 3 (=1)! dimg, H;(T")

where the graded dimension is: dimg, H;(I") = 2 t/ dim g, H; ;(T).

Proof. Immediate from formula (2.5). O

We can now formulate our main theorem:

Theorem 3.17. Khovanov homology of OMS-divides is invariant under M —equivalence.

Combined with theorem 1.2, we obtain:

Corollary 3.18. Khovanov homology of OMS-divides is an invariant for strong equivalence
of strongly invertible links.

Section 4 is devoted to the proof of this theorem. Notice that from proposition 3.16, this
theorem 3.17 is a refinement of proposition 2.3.

3.6 Examples.

(1) Figure 3.4 shows a divide for the link 37, and its splitting diagram.

The associated complex and homology entries are: i\j| 1|3 |5 |79
0 Zo | Zo
0 1
(A®A){3} H(A® A) {5} @ A{4} H(A® B){6) L Zs | Zo
2 Lo | Z2

(2) Figure 3.5 shows a divide for the link 4; and its splitting diagram. The associated complex
is:

(A®%){—2} 5 (A%3) @ (AZ2 @ A®2){—1} D (A% @ A®2) {1} @ AL (A ® B){2}

i\j|-5|-3| -1 |1] 3]s
—1 ZQ ZQ
and homology entries: 0 Zy | (Z2)° | Za

2 Zo | Z2

Divide for 3; Tl/1 [[:> C {5}\T(’.
ﬂ._,v“']]{:ﬂ\ @ |[':> < ]]{6}

T [[.:/\:} {4} T,
Figure 3.4:
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Divide for 44 —_ —5| <=

Tl/ - TX_@_ {1}%
T T

S¥)
[[:> C]]{—Z}T S et =<, {1}—“’[[._?_.]]{2}
S¥)

N STl sz %

Figure 3.5:

4 Invariance under M—equivalence.

4.1 Invariance under type I moves.

Let I' and I' be OMS-divides which differ only by a type I move (see Figure 4.1).

Figure 4.1: Type I move.

Proposition 4.1. The complezes [I'] and [I'] have the same homology.

Let’s denote by I'$! (resp. fSt), s,t € {0,1} the cuspidal divides obtained by performing
O,,0; splittings respectively at the + double point and the vertical tangent point of I’ (resp.
of I ) in Figure 4.1, without changing any other singular point of these divides. From lemma
3.14, we have splitting diagrams given in Figure 4.2.

e[S e
[[FOOH{S}:[[—M]]{s} ®
s el
-
—\ e,

[[F“]]{s}:[[Zf ]]{6}

}’ [0 ]{ay= {4} <&

[Pl e1=|—=Fes) ® [7]461= (6)
[[ ]] N [P <o A [[37‘]]

Figure 4.2: Splitting diagram for type I move.

Notice that [I'%] = [I'%]. In other words we have:

Oe ~ ~Oo ~
Lemma 4.2. Let’s denote A° = <Z°O)’ Al = (dtd'), A? = (g.(]) and A' =

(5’1 dte ) Then [I'] = Cone (A%, A') and [I'] = Cone (&0,&1) :
[F7(3} 25 [rO]{4} @ [ {5} 25 [ {6}

(4.1) I . .
T3} 25 [T {4} @ [T {5} = [F'1] {6}

18



Let’s consider the “creation and destruction” morphisms (see remark 3.6):
b TGRS vl TGN vl (VR vl T N il [ s
[ R v TH R Ay [CH R VA TGN VA TGH S T [

defined by Figure 4.3.

b b, = —2b, b ~ 0 if =+
o> m "> X m —
{ b<1 > T < > 5/9- Gl
i T > a
1 a /)71 — c 0 f :—‘f_
L >< =2 25 b< DL L e
B D ifc=—
a,b,c € {—,+} ——

Figure 4.3:

Lemma 4.3. The two sequences:

0 — [IM{6} "S[I01{5} —H [T {4} — 0

(4.2) =11 m_r10 &1 01
0 — [I'H]{6} —[1°1{5} —[I""]{4} — O

are exact and d**, 71 ,d'® and 7, are respectively sections of n1, €1, 71 and &1 :

(4.3) C~ll'771 =id, e1i; = id, 771611° + e =id + 771@'%1&
. d*m =id, &m =id, md"* +me =id + fhid"*me

Moreover:

(4.4) ed® =d*  and  Zd*0 =d".

Proof. The morphisms d'* and d'* correspond to T% (see 3.15). Then the result is an imme-
diate consequence of remark 3.6 (see also Figure 3.1 and Figure 3.3). 0

Proof of proposition 4.1. Consider the diagram:

[} 25 [ {4} © 15} A:l’ [r+1{6}

. lid o FHF‘N ; N lo
(713} = [ 1{4} @ [°1H5} — [ 16}

where: H=<0) ]TI=(~0>
m m
0 &1 > 0 51 )
F == ~ N1 ~ N F == ~ P o]~ .
(771 + hdm 771d°1€1> (771 +md* g md*'z
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From lemma 4.2 and 4.3, we have:
FA*=A° A'F=0 FF=id+HA' A'H=id
FA=A" A'F=0 FF=id+HA' A'H=id.

Hense vertical arrows define a homotopy equivalence. From proposition 3.12, [I']] = Cone(A°, A)
and [I'] = Cone(A° A') have the same homology. O

4.2 Invariance under type II move.

Let I' and Iy be OMS—divides which differ only by a type II move (see Figure 4.4).

r= XX L= =X

Figure 4.4: Type II move.

Proposition 4.4. The complezes [I']] and [Io] have the same homology.

Let I'', s,t € {0,1} be the cuspidal divides obtained by performing Oy and ©; splittings
respectively at the + and the — double points of I" in Figure 4.4 without changing any other
singular point. From lemma 3.14 we have a splitting diagram given by Figure 4.5. We remark
that [I"°°] = [[I] and we have the following lemma:

e [[FOO]] :[[\/\N/\]] FLL
[[F‘”]]{—2}=[[><><]]{—2}< o e o<

™ [ :[[><><]] 4
Figure 4.5: Splitting diagram for type II move.
Lemma 4.5. [I'] = Cone(A° AY)[-1] where:

d’*

12 25 eIty A iy a0 - (G

) A= @),

Let’s consider the “destruction and creation” morphisms of complexes (see remark 3.6) defined
by Figure 4.6.

e o [T — [MU]{-2} mo: [PPH2Y — (Y]
3@ L— 0 XK — YD
3L —20K abe{— +}

Figure 4.6:

Lemma 4.6. The sequence: 0 — [IO]{2} B[] [ {-2} — 0 is ezact and d**
is a section of ny, d*' a section of e5:

(4.5) ead'! =id, A" =id,  der+nd" =id+nd"d" e,
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Proof. The morphism d*! corresponds to Ty or Ty and the morphism d'* to T3 or Ty in (3.14).
The lemma is a direct consequence of remark 3.6 (see also Figure 3.1 and Figure 3.2). O

Proof of proposition 4.4. Consider the diagram:

[[FOO]]i 7ol s (77:;1'0) R=(id d%e)
R |J

[P1-2) = 1O = 1K) o (g o) ()

HO H! M2

From the previous two lemmas, [I] is a strong deformation retract of [I'] = Cone(AY, AY)[—1]
with retraction R, inclusion .J, and homotopy (H°, H'):

RAY =0, A'J =0, H'A? =id, RJ =id, JR =id + A°’H° + H'A', A'H' =id.

Hence from proposition 3.12 they have the same homology. U

4.3 Invariance under type III move.

In this section, we only consider the case of move III.. The case of III _ can be checked in a
similar way: we have dual situations as is said in remark 3.2 and in the proof of proposition

3.5.
Let Iy and I's; be OMS—divides which differ only by a type III; move (see Figure 4.7).

2+; L L
F1: W + FZZ %

Figure 4.7: Type III; move.

Proposition 4.7. The complezes [I'1]| and [I2] have the same homology.

Let I't% s,t,u € {0,1} be the cuspidal divides obtained by performing ©s, ©; and O,
splittings at the double points shown on the figure of I} (see Figure 4.7). From lemma 3.14,
we have the following splitting diagram of [I'}] (see Figure 4.8):

y/ﬂpfooﬂ{g}é[[QC]]{S}\—;.’ [ri°] {10}69 [[?/C\]]{w} e
. AN
o ot — [rpo) s[5 L e, [ 10y [R50 [ Tz =[5y
dOOO /
N ® /\ b e
(e =[ 381 = —ser [re o L5 oo
Figure 4.8: Splitting diagram for type III, move.

Let’s denote C° = [[FOOO]]{G} C3 = [IM{12}, ¢! = C' @ C! and C2 = C2 @ C?
where: = [I°8y @ [ {0148} €' = [I]{8}
= [1°1{10} @ [ {10} C* = [{M]{10}.
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Lemma 4.8. [I'] = Cone(A°, A', A?) where: C° A%t ALz 2508 gng:
doOO dloO dolO 0
AO — dOOO Al — leo 0 doOl AQ — (dllo dlol doll) )
dOOo 0 dOlo dOol

Now we can use the same arguments as in Section 4.2. The morphism d”*! (corresponding to
T, and T}) is injective and d*!! (corresponding to T3 and 7%) is surjective. Let &3 : 2 C
be the “destruction” morphism of complexes and 1, : C3 — C2 be the “creation” morphism of
complexes (see Figure 4.9).

0 if d = ¥ =<y
) { SRR ¢ VR S 00g
d a ifd=—
:ob< l a,b,C,dG {77+}
Figure 4.9:

Lemma 4.9. The sequence: 0 —> C> 2> 2,02 22,1 — 0 is exact and d*'', d°! are respec-
tively sections of o and €5
(4.6) Ay =id,  e2d™! =id, d”'ey +mpd®!! =id +pd* ! d™ e

Proof. We have a similar situation as in lemma 4.6: d°*! corresponds to 75 or T and d*!!
corresponds to 73 or T3 in (3.14). The lemma is a direct consequence of remark 3.6 (see also
Figure 3.1). O

Lemma 4.10. Let § = d*%teyd®® : [IP1O]{8} — [1{°1]{10}.
The following sequence is a double-complex:

~ =R «00
(c°, do) (51, d)— Al 25(C% d?) where A = (ZO“))

dloO d-lO
= (dl(]o 5 > .
Proof. Since A'A® =0, we obtain from lemma 4.9:
~1 %0 dloOdoOO dolOdOoO 0
ATAY = leodoOO + 6d000 = leodoOO + d.01€2d01.d0.0
and: leodoOO + d.01€2d01.d0.0 — doOldOOo + d.01€2d0.1d00. =0. 0

Lemma 4.11. Let C = Cone(&o, Al) Then the complex Cisa strong deformation retract of
[11] and so they have the same homology.

Proof. Consider the diagram:

o A, a A, @
lid R1HJ1 R2HJ2
A ~. 1 - 2
0 & (el 2 el £
H! H?



id 0 . 00 0
Ji=1lo0 id R1=(1§ 1?1 8) H =[0 0 0
0 e9dt® 0 0 &
id 0 ) 0
J2=1| o id gr— (40 0 H2=| 0
11e lel 0 ld d.01€2
12d N2d 72

From lemma 4.9, we easily verify the relations:
JIAD = A0 J2AT = ALY A272 =0, R'A° =A% R2A! = A'R!, R'J'=id
R*J? =id, J'R'=id+ H'A', J*R® =id+ H?A*+ A'H', 0 =id + A*H”.
So downward arrows define an inclusion map, upward ones a retraction and Hy, Ho homotopy

maps of double complexes. We can apply proposition 3.12: C is a deformation retract of 1]
so they have the same homology. O

Proof of proposition 4.7. Up to isotopy, the drawn part of I’ on Figure 4.8 is symmetric
with respect to horizontal direction. Also the drawn part of I''% is symmetric to the one
of I'M0 as well as the drawn part of I'!110 is symmetric to the one of I'1%'. The morphisms
d*% and d%0 (resp. d'°* and d*!°) clearly play symmetric roles. Besides, the morphisms
§ o [O748Y — [I19{10} and d@'*° : [I'L°{8} — [I1°]{10} also play symmetric roles.
Since the drawn parts of I} and I in Figure 4.7 also are symmetric with respect to horizontal
direction, we deduce that twice the complexes [I1]] and [[I:2] have the same homology as the
complex C. O

4.4 Invariance under type IV moves.

Let Iy and I's be OMS—divides which differ only by a type IV move (see Figure 4.10).

+
F1:§+§ Iy = %+
+

Figure 4.10: Type IV move.

Proposition 4.12. The complezes [I'1]| and [I2] have the same homology.

Before proving this proposition, we first introduce the following intermediate result.

Lemma 4.13. Let I' and I be two cuspidal divides which differ only in the following way:

r-=9 r= —

Figure 4.11:

(or symmetric situation with respect to horizontal direction). Then [IT{6}[1] is a strong
deformation retract of [I'].
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(W [[Floo]]{ﬁ}:[[g]]{ﬁ} ﬁ’ [[F11o]]{7}: [[g]]{7}

. ® @ ® »
HFOOO]]{4}:HV__,C\:‘]]14} d [F()l()ﬂ{s}:H§H{5} [ro] (3= [[g]]{ﬂ d [[pul]]{S}:[[g]]B}

d01)~
d(m g d.k @ %

[[FOM]]{S}:[[:%:]]{E)} — [ror]g63= [[Do]]{ﬁ}

Figure 4.12: Splitting diagram of [[I'].

dllo

Proof. With the same arguments as in the previous sections, using lemma 3.14 we have a
splitting diagram of [I'] (Figure 4.12):
Let’s denote:
o = [[FOOO]]{4} 51 _ [[FOOI]]{5} 52 _ [[FOII]]{G} o3 = [[Flll]]{S}
C' =[Ny @ 1715} C* =[O NT @ 11 {7}

Then [I'] = Cone(AY, A, A%) where: NG @C! ESN ®C? LN

d.OO . dloO dolO 0 N
AO — dOoO _ AO Al — leo 0 dOOl — Al Ul
dOOo dOOo 0 dOlo dOol L dO.
and AZ = (gls glet gol) = (&2 d.n) _

Consider the creation / destruction morphisms of complexes (see Figure 4.13):
[0 {6} 5 X014y [FMO){7y 5 X015y [07(8) 5 [15° 1 {5)
[TO0(5) 5 [X0{4y [Ty [0°1s) 1716} [ {5}

[T} B (20015} [1°M{5) = [1'1{6)

Sl e L G

0 if c =+ < Ui <
S = BRI X

a if c=—

—= SZ SZ o o <

~ o [0 if c =+ —
B - N < ~
=5 ife=— S‘»—- —_, Q’:,i 0 if b= —
T = ifb=+
a,byc € {—,+} -
Figure 4.13:

Let’s define o' = (id + 7d*®)o : [T{5} — [I°°°]{4} and:

ﬁ:(oﬁﬁ = (r o).

2 12

ag} 770 ~ ~
Then we have a short exact sequence 0 —> 2L L0 0 such that Al and A°
are sections of H! and HY:

(4.7) A'H' =id, H°A® =id, A°HC 4+ H'A' =id+ H'A'AHO.
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Moreover, for the compositions [I']{6} - C! P and L2 LG L, 2 we have:
(4.8) d*'py =0  LH'U = d""*nd*® = 0.

Let’s define homotopies H0:51®51—>C0, H':C?®C? > C'@C and H?2:C3 > C2@(?
by:

i 0
HO — <H0 0) Hl _ 0 H2 _ 0
00 O 2
and consider the injection J and retraction R:
[7°7{6}
R[l]
AD A~ ~ Al o, A2
CO? Cleoct :@G_)CQ :Cg
HO ol H2
o001
R=(0 0 &)(id+A°H") 0 0,
= 00e = 00e s = J=(@d+H'A"Y) [ 0 | = [ndOny
= (21d% 7 £d"0" &) " N

(see Figure 4.14 for retraction R). From (4.7) and (4.8), we easily verify the relations:

== if (a,b,¢) = (+,+,—)

: = 00e = if (a,c) = (—,—)
_ o0e ‘ o . 5,d%0% 7 — 1 (a, )
§<§»51— == if (a,b,c) = Ef}:f% : -:;ﬁ { 0 else
0 else L <> 2% [T f (a,0) = (+,-)
< Ed { = if (a,b,0) = (+,+,-) | = 0 else
—~ T :
— b= 0 else L <& TZ>if e =+
) e > 0 else
G Z1 D if c= + !
a > 0 else a,b,cE {_7+}

Figure 4.14: The retraction R.

RA°=0, A'J=0, H°J =0, RH'=0, H°H'=0, H'H?>=0
RJ =id, JR =id+ A"H? + H'A!, id + A'H! + H?A? =0, id + A2H? = 0.

Then [I'T{6}[1] is a strong deformation retract of [I'] = Cone(A°, A1, A?) from proposition
3.12. U

Proof of proposition 4.12. Let I} (resp. I3), s € {0,1} be the cuspidal divides obtained by
performing ©; splittings at the left hand + double point of Iy (resp. I%) in Figure 4.10.

Let’s also denote, according to lemma 4.13, the cuspidal divides f% (resp. f%) obtained by
“retracting” I'l (resp. I}) (see Figure 4.15). Notice that [I'V] = [I¥] and [I'}] = [I'i].
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(TN~ N
=

Figure 4.15:

From lemma 3.14, the differential dy on [I'1] (resp. d2 on [[I2]) gives us the following cone:

[11] = Cone (P12} SLrI4})  (vesp. [15] = Cone ([191(2} 3[13144}) ).

From lemma 4.13, there exist strong deformation retractions :

(5] 25 (e [62] = (i)

J J2

So from proposition 3.10, Cone(R1d}) (resp. Cone(Rad3) ) is a strong deformation retract of
[1:] (resp. [I%2]). Hence it suffices to show that Ryd; = Rod3. Let’s consider the splitting
diagram of [I7] = [I¥] as Cone(D°, D', D?) (see Figure 4.16).

[B3]== [[g]]{a%}\—’[[& Jeor=[z3] e

® ® =: ®
=)= [[g]]{ﬁ}<0 [(X]=[=]m Q [ o=z L[ ]on=[R]o0
& e X e ®
==l —[= Jeo=[R]=

Figure 4.16:

Now R;d} and Rad5 corresponds to the diagram of Figure 4.17.
Edwo=x]ne=m = e o[=]mel=]m
ld‘ G d‘l dsl d‘l
{10}69 ’Q {9}69 >C3 {9} > {10}69 = {9}69 5SS {9}

\\ /V/

{10}

Figure 4.17:

By combining Figure 4.14 with Figure 3.1 we easily verify that Rid} = Rad5. O

4.5 Invariance under type V moves.

Let Iy and I'y (resp. I'—) be OMS—divides which differ only by a type V, (resp. type V_)
move (see Figure 4.18).
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(resp.

Figure 4.18: Type V moves.

— de
oy == S e = >
Figure 4.19: Splitting diagram for type V move.

Proposition 4.14. The complezes [Iv]], [I'+]] and [I'-] have the same homology.

Proof. From lemma 3.14, we can see [I';] as the cone of the surjective morphism:
Let’s consider the creation / destruction morphisms n; : [I1]{2} — [I'2]{1} (right inverse
of %), m : [I'] — [I°1{1} and & : [I'9]{1} — [I'] defined in Figure 4.20. Let j =

+
— — ] ‘ﬁ_:'g_l){o b=+ e
A = “ T
Figure 4.20:
(id + md®*)m and r = e1. Then from the following diagram:
j[[ﬁ]]r d2j =0, rj=id,
PO} % [0 jr—idsmds, don = id

m

we deduce using proposition 3.12 that [Io] is a strong deformation retract of [[['y] =
Cone(d?.). So they have the same homology.
On the other hand, from lemma 3.14, [I'_] = Cone(A", A1)[-1]:

a0

[7°1{—3} ST (-1} @ [P {2} SrO )3} A = (dl_.) Al = (d% 1)

d._O [FEO]{—l}: H ..J\.H{_l} d(i.

1017 31— _ D o= X
(1] {3} [[°_> C]]{ 5} S [[°—__)<>]]{_2}d/‘_1 (o] [[ ]]

Figure 4.21: Splitting diagram for type V_ move.

Let’s consider the morphisms [I°]{—1} S °T{-3}, [ 1{-2} 2>[°1{-3},
[rO B {—1} and [ B[r{—2} defined in Figure 4.22.
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0 if b=+ b 0 if b=+
_V"_f\.'—T—>{ . — o 2 o
@ J >C ifb=— —>C ifb=-
AL = % ks 08 abe ()
~
Figure 4.22:
Then from the diagram:
[ o]

A0 JlTR Al
[r21{=3} = [IPH-1telr2{-2t = [

HO H!

where J = (zl>, R=(0 &), H = (r (id+7d**)0) and H' = <Zl> we deduce that
2 2

[To] is a strong deformation retract of [I'_] = Cone(A°% A')[—1]. They have the same
homology. U

4.6 Invariance under type VI moves.

Let I" and I'y (resp. I'_) be OMS—divides which differ only by a type VI, (resp. type VI_)
move (see Figure 4.23).
(resp. I

Figure 4.23: Type VI moves.

Proposition 4.15. The complezes [Iv]], [I'+]] and [I'-] have the same homology.

We will break down the proof in two steps: the result is an immediate consequence of the
following two lemmas.

Lemma 4.16. Let I' and I be cuspidal divides defined by:

r=CcC. X0 = <. . >
Figure 4.24:

Then [I'] is a strong deformation retract of [I'].

Proof. Let’s apply lemma 3.14 to [I']]. We have a splitting diagram :
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1le

e lrelen=[OC)es g [ =[>0]

d i %1\ i o
[rlea=[ocfea 25 o fen- [0 e Golrolmcoa]ort rronge- [0 fe
ﬁ") < X o o0

dOoO

[re]=[72C] —wlrlo-m=>0]w

Figure 4.25: Splitting diagram of [I'].

Let’s denote :
¢ =[rT-2} ' = [MY-1} e ([ {-1} & [1°])
¢z =[r''']e <[[Fo1o]]{1} @ [[FOOl]]{l}) 3 = [I°M]{2)
dloO dllo dlol 0
AO — (d100> Al — (d.w 0 dOoO) A2 — (doll Ot dOol) .

doOO O dool dOOo

Then [I'] = Cone(A°%, A, A?)[—1] where C° A% 1 AL 02 A%, 03 Lets consider the creation
/ destruction morphisms:
[P0 -1 S0 -2y [P -S -y [r2y SIrt
[ 1" {-2} LA FEU R el I v B VA (S
[ -1y [ [

defined by:
a ¢ 0 if c=+ a ¢ 0 if c=+ a
O (IS SR ST, OB 50
b < > ife=— CoCife=—
(—v—‘a N e—
fec= — e a a +
.+ )V He=+ D a T < o> G
— —"— a
b - o ife=— -16 772,’j<> a ¢ g 0 if c=+
b % b <o a
G/,b,CE{*,+} lfcz_
Figure 4.26:

We define homotopies H? : Ct — C°, H': C?> - C' and H? : C? — C?:

o 0 0 12
H°=(0 (1+7d*®0 7) H' = [ 5od®nmd* % 10dm no | H> = | 0
md*o m 0
together with retraction and inclusion maps R:C! — [I'] and J: [I'] — C':

R=(5 0 0)(id+A°H") m m
J=(Gd+H'AY | 0 | = | 7d®*nd*On
— (51 gldloOTdoOOO. gldl.O’T) 0 7’]1d.10771
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such that we have the diagram:

AO Al A2
S S S
HO ot H?2

We easily verify that :

RA°=0, A'J=0, H°J =0, RH'=0, H°H'=0, H'H?>=0
RJ =id, JR =id+ A"H? + H'A!, id + A'H! + H?A? =0, id + A2H? = 0.

Then from proposition 3.12, [I'] is a strong deformation retract of [I']. O
Lemma 4.17. We have strong deformation retractions ry (resp. r— ) with injection ji (resp.

io):

Figure 4.27:

Proof. From lemma 3.14, [I',] = Cone(dy) and [I'_] = Cone(d_)[—1] where:

Figure 4.28:

For [I';], using proposition 3.12, we deduce the strong deformation retraction from the fol-
lowing diagram of Figure 4.29 since dyn2 = id, 7r.m2 =0, dijy =0, rij. =id and
J+re =1d 4+ mady .

Figure 4.29:

Similarly for [I'_] from the diagram of Figure 4.30:
since eod_ =id, r—d_ =0, e9j_ =0, r—_j_ =id and j_r_ =id + d_es. O

30



ife=+

fife=—

ife=—
Pifc=+
Figure 4.30:
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