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Abstract. In a certain number of situations, human cogeifnctioning is difficult to
represent with classical artificial intelligenceustures. Such a difficulty arises in the
polyneuropathy diagnosis which is based on theiapdistribution, along the nerve
fibres, of lesions, together with the synthesiseveral partial diagnoses. Faced with
this problem while building up an expert system (NROP), we developed a
heterogeneous knowledge representation assocetiimife automaton with first order
logic. A number of knowledge representation proldemised by the electromyography
test features are examined in this study and theresystem architecture allowing such
a knowledge modeling are laid out.
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1. Introduction

The various kinds of knowledge and reasoning useexpert systems (ES) have been carefully
analyzed and classified over several years [6,]1N&vertheless some types of knowledge remain
difficult to represent by means of classical stuoes (production rules, frames, semantic nets), etc.
commonly used in expert systems. We were faced thithkind of problem while building up an



expert system for the electrophysiological diagenasi neuropathies (NP). The first version of
knowledge about NP included in our system was de=ttin 1987 [20].

Several projects have already been completed infigh@ of artificial intelligence applied to
electromyography (EMG). The MUNIN system [2,3] isecof the major realizations. This project is
based on a neo-bayesian approach of the inferept@tess. The reasoning framework is
constituted with a probabilistic causal networkwhich each node has a concurrent conditional
probability table. The main task of the system ascalculate probabilities of terminal nodes
(illnesses) when some test result values are tedie network.

The PC-KANDID system was developed in Prolog byuglBang-Frederiksen's team [7,13]. The
system is founded on a logical rule based inferemithout uncertainty management, and on an
interactive cycle: planning - test - diagnosiscdlvers most EMG diagnoses. NEUREX [12], an
application of the Parsimonious Covering Theory,intended to be a general framework for
neurological localization and diagnosis. A firsttlme of an expert system designed for
electromyography: MYOSYS, in Prolog language, watlimed in our laboratory by D. Ziebelin
[19] in 1984. In contrast to the former systemsiclideal with wide fields, the ADELE system [4]
is an expert system devoted to the diagnosis afglesdisease: the carpal tunnel syndrome. The
MYOLOG system [8] realized in Prolog is intended fbe diagnosis of cervical radiculopathies
and branchial plexus neuropathies, from spontanands/oluntary muscular activities and clinical
data. A system resulting from a neural network andaugmented transition network has been
developed in Lisp by P.P. Jamieson [10]. Finallg, sihould mention the increasing use of artificial
neural nets to classify patients into predetermigredips of pathologies [15].

We do not intend to present a new EMG expert syst@®or goal is to expose an atrtificial
intelligence modeling problem in a particular fiellmedical knowledge and practice. The choice
of concepts described in this study is based omjpmneasoning features that lead to NP diagnosis:
this diagnosis is based, on one hand, on spasailition of lesions along the nerve fibres and, o
the other hand, on synthesis of the different latafjnoses (at the nerve segment level, then at the
whole nerve level).

Analysis of the lesions distribution along the remnnvolves a spatial reasoning that may be either
systematic or guided by heuristics. The highligiptof such heuristics, which is part of cognitive
psychology [1], seems obviously more complex thenuse of systematic reasoning. Nevertheless,
the latter, even if described in propositional togivould still be cumbersome with regards to the
considered reasoning features. Therefore, the ledyel modeling solution we propose is
heterogeneous: it is based on a finite automatgM[used jointly with three other knowledge
sources. First order logic is used in almost eyeayt of the system : inference engine, finite
automaton and production rules. The overall syssawritten in Prolog [5,16,18].



First we will briefly describe the main charactéas of an EMG examination. Then, we will lay
out the general structure of the EMG knowledgeileatb the diagnosis of neuropathies. A number
of knowledge representation problems raised bfEtfi& test characteristics will be tackled and the
choice of a heterogeneous knowledge representasioig a finite automaton, as a solution to these
problems, will be explained. Due to the number wdwledge sources, we will not describe them
extensively but we will focus in greater detailtbe description of the automaton and on the overall
expert system architecture which make its use plessi

2. EMG principles

EMG consists of different suitable electrophysiatadytechniques aimed at studying the peripheral
nerve system (PNS), muscles and neuromuscularigmndtleuropathies are diseases of the PNS
and especially of the nerves innervating the fawk lanb muscles. Lesions detected by the EMG
examination affect either axons of the fibresxgnal lesions or myelin sheathdemyelinating
lesiong; if both structures are concerned, we call theixed lesionsThe neuropathy diagnosis is
provided by the EMG examination of several nerveainly median and ulnar nerves for the upper
limbs, peroneal and tibial nerves for the lowerdsn

The diagnosis activity involves 2 main steps, vaitbpecific type of knowledge for each step. These
two steps are as follows:

» Step A successive tests are performed on each chosee.nEne choice of nerves is made
according to the patient's symptoms and signs. & tests are included into charts that have been
standardized in our laboratory. They are choserordoty to the clinical findings — i.e. the
diagnosis hypotheses —, and to the nerve undey.siute number of segments that we usually
explore is variable: generally between 1 and 2starsitive fibres, and between 2 and 5 for motor
fibres. For example, in the median nerve studyietlaee 2 stimulation points — palm and wrist —
for the sensory nerve conduction test, and 5 setgfienthe motor nerve conduction test.
Electrophysiological parameters to be analyzechersensory and muscle action potentials are:
a) sensory fibres: sensory action potential (SAR) sensory nerve conduction velocity (SCV) on
both segments; amplitude ratio of the SAP for #@ad segment.
b) motor fibres:

- for the first segment: amplitude and distal tate of the compound muscle action potential
(CMAP),

- for the next four segments: amplitude of the GRMAamplitude ratio of the successive CMAP,
and motor nerve conduction velocity (MCV).
Each such examined nerve is given a diagnosis, evbaxess will be described below.

« Step Bthe overall diagnosis is made up from the synshethe diagnoses for each nerlacél
synthesis) and for the various nervegdrall synthesis).



Fig. 1. Motor median nerve segmentation

3. Knowledge description and representation

3.1. knowledge levels

These two stages of the examination lead to treetfoillowing levels of knowledge (Fig. 2):
Level 1 : analysis of one nerve segment (step A,1),

Level 2 : analysis of a total nerve (step A,2): synthe$ithe segment analyses,

Level 3 : analysis of the whole nerves (step B): synthektbe nerve analyses.

Thus, both level 2 and level 3 correspond to tmhssis of the preceding level.

level 3: (_global diagnosig

level 2: (nerve 1 diagnos)s—— (_ nerve n diagngsis

_ [seg. 1 ][ seg. ] [ seg. 1 ]l seg. kl
level 1. analysis analysis analysi analysi

Fig. 2. Diagnosis analysis tree

3.2. Knowledge representation at different levels

Level 1 there are three types of segments dependinghe@worie hand, on the kind of fibre under
consideration (sensory or motor), on the other handhe position of the segment with regards to
the detection point. For a given type of segmerg, diagnosis is given by about ten production
rules. All electrophysiological variables, suchaasplitudes, velocities, amplitude ratios, etc., are
continuous. Their values are interpreted by anrpmé&tation module. This module creates the



corresponding semantic variables getting their emlin sets such as {normal, decreased, very
decreased} or {normal, increased, very increasétpse semantic variables are used as premises to
the segment diagnosis rules (Fig. 3).

if  amplitude at the wrist is  very decreased
amplitude at the wrist

and if ratio:amplitude atthe palfs  normal

and if  velocity at the wrist is  normal or decreased
then lesion of the segment is severeaxonal
if amplitude at the wrist is  normal

amplitude at the wrist
and if ratio:amplitude atthe palifs  normal or decreased

and if  velocity at the wrist is decreased

then lesion of the segment is mild demyelinating

Fig. 3. Sample of diagnosis rules applied to a msegment of the median nerve

Level 2 Each segment whose diagnosis is different froentirmal label ispathological (we do
not take into consideration, at this stage, thel kihlesion: axonal, demyelinating or mixed). The
knowledge leading to the diagnosis of the nervebased on the spatial distribution of the
pathological segments along the nerve (Fig. 4).

In level 2 there are three possible kinds of patfiels, determined according to the following rules:

- focal neuropathy: only one segment is affected
- multiple focal neuropathy:several non-contiguous segments are affected
- diffuse neuropathy: several contiguous segments are affected
L0t 00 0 focal neuropathy
0 1 0 1 0 :
L . . . . 1 multiple focal neuropathy
L, 0, T 0 diffuse neuropathy

(0: normal ; 1: lesion)

Fig. 4. Examples of spatidistribution of lesions



Level 3 As in level 2, knowledge leading to the diagnasisall the nerves is based on a spatial
distribution of the nerve lesions as well as on rtkenber of lesions, with moreover a notion of
symmetry (Fig. 5) (symmetrical nerves are caledologous.

right left

1 1 1 1 1 ' median 1 1 1 1 ]

\ 1 1 1 1 ) ulnar \ 1 1 1 1 )
L 1 1 1 peroneal 1 1 ]
- L tibial A

Fig. 5. Diagram of spatial distribution of the seagits

The possible overall diagnoses are the followingfofal mono-neuropathy, multiple focal
neuropathy, diffuse mono-neuropathy, symmetricallypeuropathy, asymmetrical poly-
neuropathy, uncertain diagnosis, normal examingtidie processing rules of association between
the affected nerves and the diagnosis are as fellow

- focal mono-neuropathy: one effected segmeni) (@sonly one nerve
- multiple focal mono-neuropathy: several non-gpmius a.s.
(distributed or not on the whole nerves)
- diffuse mono-neuropathy: at least two contiguaiss on the same nerve
- symmetrical poly-neuropathy: at least two cambigs a.s. on homologous nerves
- asymmetrical poly-neuropathy: at least two qumus a.s. on non-homologous nerves
- normal examination: no a.s.
- uncertain diagnosis: any other case

4. Problems of knowledge representation at level 2

Each of the three knowledge levels that have jetnbdescribed needs its own model of
representation. Level 1 corresponds to a simpkesifleation knowledge that directly associates, for
any segment, the electrophysiological values todiagnosis. This knowledge does not pose any
problem of representation.

Level 2 is where a representation problem stantdedd, as previously stated, the diagnosis of the
whole nerve needs a particular element of reasorting relative location of lesions The
practitioner's appreciation of this locatistems from an empirical knowledge. The distributidn
the segments affected by a lesion could be repieddry a categorical variable, calleglative
location of the lesionghe value of which is in the set : {unique isothlesion, non-contiguous



isolated lesions, contiguous lesions}. The assedialiagnosis is obtained by application of rules
described in point 3.

The most commonplace solution would consist in tangasuch a variable and proposing the
following choice to the user (by means of a dialwgareen and whenever the reasoning needs it):
a) no segment affected, b) a unique segment affecleseveral isolated segments affected, d)
several contiguous segments affected. Obviousky,cttnsequence of this solution would be to
considerably diminish the degree iotelligenceof the system, since it is possible to deduce the
answer from the state of the factual base.

A second solution would consist in representinghal possible figures in production rules such as:
if seq is V1 and seg is V2 and ... and segis Vn then nerveg is Wk; with Vi  { normal,
pathological } and W { normal examination, focal neuropathy, multiplec&l neuropathy,

diffuse neuropathy }.

Nevertheless, this solution has two major drawbacks

- First: the number of possibilities for one nerve witsagments is'2 Since, first, n is comprised
between 1 and 5 and, second, there are at leastug@es of rachidian nerves likely to be analyzed,
we obtain an explosion of potential combinationgrein first order logic.

- Second from a scientific or medical point of view thegeduction rules have no interest since
they are simple basic operation rules.

5. Finite automaton

Taking into account these knowledge representgtioblems, we made the choice of inserting
the knowledge base and in the inference enginextreneely simple and safe mechanism with
regards to its principle as well as its recursiepresentation in first order logic: tHanite
automaton This solution allows an almost immediate assamabetween the list of segment
statements and the nerve diagnosis.

5.1. Definition

A finite automaton consists of a finite set of egaind a set of transitions which make it possdle
move from one state to another when a symbol, faopnedetermined set of input symbols, is fed
into the automaton. The finite automaton is formdkfined by a 5-tuplet (&, 9, go, F) in which

Q is the finite set of stateg, is a finite input alphabet,ggbelongs to Q and designates the
automaton initial state, ¥ Q is the set of final states, adds the transition function associating
each couple (g,a) of QX with an element p' of (&(g,a) = q'".

With regards to our application, the finite sestdtes is Q = { start, n,f a,f b,m f a, m f B, d
The symbols n, f a, m_f a and d represent nornmaalf multiple focal and diffuse states



respectively. These states are represented by taagegles in the transition diagram (Fig. 6). The
symbols f b and m_f b (small triangles in the diagy correspond to states which repeat a
principal state and yet direct the analysis towardsw principal state.

The set of final statesis: F={n,f a,f b, m fmaf b, d}.

As indicated in 3.2, the normal segments are syindablby O and the affected ones by 1, hence:
>={0,1}.

For example, the following input chain : [0,1,0]1 €alledchain of segment stataflects the state
of a nerve whose second and fourth segments areeaffébe three others being normal. Therefore
the definition of an automaton for the analysisaferve is : (Q},, 9, start, F).

The symbolic functioning is the following: the chaf segment states is read from left to right or
from right to left (the direction is not importangach reading of a new value from the input chain
introduces astatetransition from the previous state. For example, let n beatltematon state at a
given time of the analyzing process, and let 1hgenew input value, then the automaton moves to
the state f_a (i.8d(n,1) = f_a). The initial state, before the firaput, is thestart state. The final
state (after the last input) corresponds to thereneliagnosis. Since there are several transition
possibilities (exactly 2) for every state, the awi&bon is callechondeterministic.

0,1

start |

Fig. 6. Transition diagram of the finite automaton
n : normal state fafb: focal neuropathy

d : diffuse neuropathy m_f a, m_f b : multipledbneuropathy

The transitions defining the automaton and expregseelational form, as in Prolog language, are
shown in Figure 7. The automaton mechanism is aspeein the recursive predicate shown in
Figure 8.

transition ( start , 0, n).
transition (start, 1, f a).



transition (n, 0, n).
transition (n,1,f a ).
transition (f_a,0,f b).
transition (f_a,1,d).
transition (f_ b, 0,f b).
transition (f b, 1, m_f a).
transition (m_f a,0, m_f b))
transition (m_f a,1,d).
transition (m_f b, m f b,0)
transiton (m_f b,1, m f a)
transition (d, 0, d).
transition (d,1,d ).

Generical form : transition (<former state>,<cutrieiput>,<resulting state>)

Fig. 7. Automaton transition relations

automaton ([], Final_state, Final_state).

automaton ([_], d, d).

automaton ([T|Q], Previous_state, Final_state)):-
transition ( Previous_state, T, New_statq),
automaton (Q, New_state,Final_state),!.

Fig. 8. Finite automaton predicate

5.2. Utilization

The finite automaton described above simulatektivsviedge of level 2. One can consider that it
is in itself a small-scale system (inference engin&nowledge base) in which the motor is
constituted by the recursive predicaetomaton and the knowledge base is represented by the
transition set. Thus, the automaton insertion endékpert system takes place at the inference engine
level as well as at the knowledge base level.

The system architecture includes 4 cooperating keage sources successively used through the 4
phases of the diagnosis process (Fig. 9). A spadilence engine supervises the successive use of
the knowledge bases. These knowledge bases conmateimia a central working memory, as in the
case of @lackboard



selection of nerve
input values and
data interpretatioy

end of sessign

beginning

Phase 4
PRODUCTION

Phase

PRODUCTION .
RULES Working RULES
: . Memory .
diagnosis patient
of segment diagnosis

Phase 3
AUTOMATON

diagnosis
of nerves

Fig. 9. Location of the automaton in the diagnosgearch process

The 4 temporal phases of the process are the fioigpw

- phase 1: nerve selection by the physician, iapdtinterpretation of electrophysiological
parameters,

- phase 2: inference cycles on each segment (seghagmosis),

- phase 3: automaton activation on each nerve érsingnosis),

- phase 4: inference cycles on all nerves (pati&xgnosis),

Theworking memoryallows result sharing between the different infeeephases, i.e.:
- from phase 1 to phase 2: sharing of the elecyrgiplogical parameters,

- from phase 2 to phase 3: sharing of the diagnokssgments,

- from phase 3 to phase 4: sharing of the diagnofesrves.

6. Conclusion

We showed that there are some scientific knowldokes for which classical structures such as
production rules, frames or semantic nets are untdlde. EMG is a typical example of such fields:
the physician performs a spatial reasoning fromdik&ibution and number of abnormal segments.
Such a reasoning is without doubt the result ofed#int procedures depending on the physician
(competence, experience, etc.). We leave it to ibegrpsychology to study human functioning in
establishing such a diagnosis. Thir® model we describes not a prioria human function model.
The synthesis diagnosis is set up by a finite aatomwhich repeats a sequential, spatial and
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numeric reasoning. This reasoning is rather sintdathat of a beginner's or a very well organized
but nervous person's.

The automaton stands among three other knowledgeesy whose functioning is supervised by an
appropriate inference engine. The insertion of gutmaton in the core of the expert system has
notably influenced the architecture of the wholstem. First order logic is used in the construction
of the automaton as well as in the representatidm@wledge of levels 1 and 3.

This solution allows a significant decrease of thenber of production rules and of the system
response time. The current version of the systees dwt use any probability or uncertainty
weighting. A new version using an approximate reaspis under study.

This heterogeneous knowledge representation isabpeal in the NEUROP expert system, written
in Prolog and currently under evaluation in the ENl@ooratory of the teaching hospital of
Grenoble.

7. Discussion

The paradigm of expert systems includes the idakimowledge accumulated in a knowledge base
should reflect the expert's knowledge as exactlpa@ssible. Classical knowledge representation
structures such as production rules, frames or sgtnaets must allow an easgading of this
knowledge for maintenance and updating purposes.l&gitimate point of view has contributed to
the wide development of knowledge based systemsveMer, such an opinion is limited to
knowledge that easily lends itself to a symboligresentation (such a feature does not in any way
preclude the intrinsic knowledge complexity).

It is not so when the conceptual model cannot lsédyetianslated into classical structures such as
production rules, frames, semantic nets or mixedetsocombining two or three of these structures.
Even though it is not closely copied from thesealisutificial intelligence structures, the autonrato
model is yet connected to the ES paradigm at teastigh its declarative form in first order logic.
Moreover, as indicated in point 5, this model cobkl considered as a small-scale production
system. Particularly, there is a strong analogyeen the transition relation set as shown in fig. 7
and a small knowledge base. Especially, this tt@msiset could be easily altered by addition,
modification or withdrawal of transitions, accorgito a possible knowledge improvement. This
will in fact be the case in the next version of theomaton, when specialists include knowledge
related toconduction blockgnull amplitude of a sensory or compound muscte@agotential ) in

the expert system.

Nevertheless the similitude to the ES paradigm nesnéimited. Indeed, there is no reason for

affirming that the model constituted by the finsietomaton reflects an expert's way of reasoning (it
is difficult to imagine that an expert reasons &shanically as the automaton does).

However, one major question raised from the adaptioa procedural knowledge representation in
an expert system is: is it necessary to represdttt, an absolute accuracy, the expert's way of
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reasoning? Is this accuracy not achieved in sorsescat the cost of a considerable complication of
the knowledge base?

The weakness that one could reproach the automaddel with is that it does not use any heuristic
knowledge — a major attribute of human intelligereethe way to achieve the synthesis diagnosis
of a nerve is an absolutely systematic and exhaustasoning. However, this weakness is
compensated by the relatively low number of neegngents (5 maximum) which minimizes the
advantage of heuristic rules.

It should also be observed that, to be understit@dautomaton we have devised needs very few
concepts about the theory of finite automata, aostitutes an elegant solution to the spatial
reasoning knowledge representation. As far as #ey concerned, the medical experts who
participated in the knowledge base building comsithe adoption of the notion of the finite
automaton as a practical substitute to a human lettg® model whose conception is beyond their
reach. This way, we can state that such a solut@mrstitutes to some extent a contribution of
artificial intelligence to the medical expertise aating.
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