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1 Abstract

We construct self-similar functions and linear operators to deduce a self-similar variant of the Laplacian
operator and of the D’Alembertian wave operator. The exigence of self-similarity as a symmetry property
requires the introduction of non-local particle-particle interactions. We derive a self-similar linear wave oper-
ator describing the dynamics of a quasi-continuous linear chain of infinite length with a spatially self-similar
distribution of nonlocal inter-particle springs. The self-similarity of the nonlocal harmonic particle-particle
interactions results in a dispersion relation of the form of a Weierstrass-Mandelbrot function which exhibits
self-similar and fractal features. We also derive a continuum approximation which relates the self-similar
Laplacian to fractional integrals and yields in the low-frequency regime a power law frequency-dependence of
the oscillator density.

Keywords: Self-similarity, self-similar functions, affine transformations, Weierstrass-Mandelbrot function,
fractal functions, fractals, power laws, fractional integrals.

2 Introduction

The development of Fractal Geometry by Mandelbrot [1] launched a scientific revolution already in the seven-
ties of the last century whereas the mathematical roots originate much earlier in the 19th century [2]. However
it is only recently that problems of fractal and self-similar media have become a subject in analytical me-
chanics. This is true in statics and dynamics. One important reason for this seems to be the considerable
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mathematical difficulty even to define physical problems on fractals and this is even more so for the con-
struction of analytical solutions to these problems. Inspired by the exotic electromagnetic properties which
fractal gaskets reveal when used as “fractal antennae” [5, 8], it had also been found that fractal gaskets exhibit
exotic vibrational properties [3] which may open the door for new technological applications. An improved
understanding of these properties could raise an enormous new interdisciplinary field for basic research and
applications in a wide range of mechanical disciplines including fluid mechanics and the mechanics of granular
media and solids. However a “fractal mechanics” has yet to be developed. Some crucial steps have already
been performed (see papers [9, 3, 13, 12, 4, 10] and the references therein). In [9] the fractal counterpart of
the static harmonic calculus has been described by means of the Sierpinski Gasket by employing a Graph
theoretical approach to define the Laplacian on the Sierpinski Gasket. In paper [3] the vibrational spectrum
of a Sierpinski gasket was numerically modeled, however no rigorous approach was given. A significant contri-
bution by analyzing Fourier spectra of fractal Sierpinski signals has been given in [4]. Closed form solutions
for the dynamic Green’s function and the vibrational spectrum of a linear chain with spatially exponential
properties is given in a recent paper [11]. A similar fractal type of linear chain as analyzed in the present
paper has been considered very recently by Tarasov [13].

In the present paper we utilize elements of lattice dynamics of linear chains together with a methodology
to account for self-similarity which is newly developed in this paper. The demonstration is organized as
follows: § 3 is devoted to the construction of self-similar functions and operators. By using this approach we
construct a self-similar analogue to the Laplace operator to define a self-similar variant of the wave equation
for a self-similar linear dynamic system in § 4. We hope the present approach launches some interdisciplinary
work and collaborations also in fields concerned with fractal aspects of turbulence and fluid mechanics. It
seems there are analogue situations [14] where the present approach could be useful.

A similar linear chain as in the present paper was considered by Tarasov only very recently [13]. However
there is a crucial difference between the discrete Tarasov chain and the quasi-continuous chain being subject
of our paper: The Tarasov-chain is discrete, i.e. there is a well defined distance between next neighbour
particles. In the Tarasov-chain each particle interacts with particles of order N s where N > 1 is an integer
and s = 0, 1, 2, ... assumes all positive integers including s = 0 which corresponds to the next neighbour. The
Tarasov nonlocal harmonic interaction exhibits fractal, but not self-similar features.

In contrast we consider here a quasi-continuous chain with harmonic exact self-similar non-local inter-
particle interactions. In our chain any particle at space-point x interacts harmonically (spring constants
ξs, 0 < ξ < 1) with particles located at x ± hN s where N ∈ R (N > 1) can also be non-integer and
s = −∞, .., 0, .. + ∞ is running over all positive and negative integers including zero1. In contrast to the
Tarasov-chain, the elastic energy (density) introduced in our chain is an exact self-similar function.

3 Construction of self-similar functions and linear operators

In this paragraph we define the term “self-similarity” with respect to functions and operators. We call a scalar
function φ(h) exact self-similar with respect to variable h if the condition

φ(Nh) = Λφ(h) (1)

is satisfied where Λ and N are fixed scalar numbers and h > 0 a scalar variable. We call (1) the “affine
problem”2 where N and Λ represent given parameters and function φ(h) an unknown “solution” to these
parameters of (1) to be determined. As we will see below for a given N solutions φ(h) exist only in a certain
range of admissible Λ. From this definition of the problem follows that if φ(h) is a solution of (1) it is also a
solution of φ(N sh) = Λsφ(h) where s ∈ Z can assume all positive and negative integers including zero. We
emphasize that non-integer s are not admitted. The discrete set of pairs Λs, N s are for all s ∈ Z related by a
power law with the same power δ, i.e. Λ = N δ hence Λs = (N s)δ. We can hence define (1) also by replacing
Λ and N by any positive or negative integer power Λs and N s.

The affine problem (1) is the eigenvalue problem for a linear operator ÂN with a certain given fixed
parameter N and eigenfunctions φ(h) to be determined which correspond to an admissible range of eigenvalues

1Owing to this symmetry in s we confine to N > 1 without any loss of generality.
2where we restrict here to affine transformations h′ = Nh + c with c = 0.
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Λ = N δ (or equivalently to an admissible range of exponent δ = ln Λ/ln N). For a function f(x, h) we denote

by ÂN (h)f(x, h) =: f(x,Nh) when the affine transformation is only performed with respect to variable h.
We assume Λ, N ∈ R for physical reasons without too much loss of generality to be real and positive.

Moreover, the definition (1) does not necessarily need to be restricted to the scalar case. We also can define

self-similarity of a vector valued function ~φ(~h) ∈ R
n in the fully analogous manner, where N and Λ are

Hermitian positive definite n × n matrices. In this paper however we confine us to the scalar case. For our
convenience we define the “affine” operator ÂN as follows

ÂNf(h) =: f(Nh) (2)

It is easily verified that the affine operator ÂN is linear, that is it fulfills the relation

ÂN (c1f1(h) + c2f2(h)) = c1f1(Nh) + c2f2(Nh) (3)

and
Âs

Nf(h) = f(N sh), s = 0 ± 1,±2, .. ±∞ (4)

From this follows that we can define affine operator functions for any smooth function g(τ) that can be
expanded into a Taylor series as

g(τ) =
∞
∑

s=0

asτ
s (5)

We define an affine operator function in the form

g(ξÂN ) =
∞
∑

s=0

asξ
sÂs

N (6)

where ξ denotes a scalar parameter. The operator function which is defined by (6) acts on a function f(h) as
follows

g(ξÂN )f(h) =
∞
∑

s=0

asξ
sf(N sh) (7)

where relation (4) with expansion (6) has been used. The convergence of series (7) has to be verified for a

function f(h) to be admissible. An explicit representation of the affine operator ÂN can be obtained when we

write f(h) = f(eln h) = f̄(ln h). Hence application of ÂN on f(h) is nothing but a translation in the variable
v in f̄(v = ln h). We introduce

ÂNf(v) = f(v + ln N) , f(v) = f(ev) (8)

such that
ÂNf(h) = f(Nh) = f̄(ln N + ln h) = eln N d

dv f(ev)|v=ln h (9)

where we assume that f(h) is a sufficiently smooth function. The exponential operator eln N d

dv performs a
translation in the variable v by ln N and is defined by

eτ d

dv =
∞
∑

s=0

τ s

s!

ds

dvs
with eτ d

dv f̄(v)|v=v0 = f̄(v0 + τ) (10)

Hence the affine operator ÂN can be written explicitly in the form

ÂN (h) = e
ln N d

d(ln h) (11)

This relation is immediately verified in view of

ÂN (h)f(h) = e
lnN d

d(ln h) f(elnh) = f(elnh+lnN ) = f(Nh) (12)

With this machinery we are now able to construct self-similar functions and operators. This will be
performed in the next subsection in order to define the wave propagation problem for a self-similar quasi-
continuous linear chain (subsequent section 4).
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3.1 Construction of self-similar functions

A self-similar function solving problem (1) is formally given by the series

φ(h) =
∞
∑

s=−∞

Λ−sÂs
Nf(h) =

∞
∑

s=−∞

Λ−sf(N sh) (13)

for any function f(h) for which the series (13) is uniformly convergent for all h. We introduce the self-similar
operator

T̂N =
∞
∑

s=−∞

Λ−sÂs
N (14)

that fulfils formally the condition of self-similarity ÂN T̂N = ΛT̂n and hence (13) solves the affine problem (1).
In view of the symmetry with respect to inversion of the sign of s in (13) and (14) we can restrict ourselves
to N > 1 (N,Λ ∈ R) without any loss of generality3: Let us look for admissible functions f(t) for which (13)
is convergent. To this end we have to demand simultaneous convergence of the partial sums over positive and
negative s. Let us assume that (where we can confine ourselves to t > 0)

lim
t→0

f(t) = a0 tα (15)

For t → ∞ we have to demand that |f(t)| increases not stronger than a power of t, i.e.

lim
t→∞

f(t) = c∞ tβ (16)

with a0, c∞ denoting constants. Both exponents α, β ∈ R are allowed to take positive or negative values
which do not need to be integers. A brief consideration of partial sums yields the following requirements for
Λ = N δ, namely: Summation over s < 0 in (13) requires absolute convergence of a geometrical series leading
to the condition for its argument ΛN−α < 1. That is we have to demand δ < α. The partial sum over s > 0
requires absolute convergence of a geometrical series leading to the condition for its argument Λ−1Nβ < 1
which corresponds to δ > β. Both conditions are simultaneously met if

Nβ < Λ = N δ < Nα (17)

or equivalently

β < δ =
ln Λ

ln N
< α (18)

Relations (17) and (18) require additionally β < α, that is only functions f(t) with the behaviour (15) and
(16) with β < α are admissible in (13). These cases include bounded functions |f(t)| < M which correspond
to β = 0. For instance any periodic function refers to this category.

3.2 A self-similar analogue to the Laplace operator

In the sprit of (13) and (14) we construct an exactly self-similar function from the second difference according
to

φ(x, h) = T̂N (h) (u(x + h) + u(x − h) − 2u(x)) (19)

where T̂N (h) expresses that the affine operator ÂN (h) acts only on the dependence on h, that is ÂN (h)v(x, h) =
v(x,Nh). We have with ξ = Λ−1 the expression

φ(x, h) =
∞
∑

s=−∞

ξs {u(x + N sh) + u(x − N sh) − 2u(x)} (20)

3We also can exclude the trivial case N = 1.
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which is a self-similar function with respect to its dependence on h with ÂN (h)φ(x, h) = φ(x,Nh) = ξ−1φ(x, h)
but a regular function with respect to x. The function φ(x, h) exists if the series (20) is convergent. Let
us assume that u(x) is a smooth function with a convergent Taylor series for any h. Then we have with

u(x ± h) = e±h d

dx u(x) and u(x + h) + u(x − h) − 2u(x) =
(

eh d

dx + e−h d

dx − 2
)

u(x) which can be written as

u(x + h) + u(x − h) − 2u(x) = 4 sinh2
(

h

2

d

dx

)

u(x) = h2 d2

dx2
u(x) + orders h≥4 (21)

thus α = 2 in criteria (15) is met. If we demand u(x) being Fourier transformable we have as necessary
condition that

∫ ∞

−∞

|u(x)|dx < ∞ (22)

exists. This is true if |u(t)| tends to zero as t → ±∞ as |t|β where β < −1. We have then the condition that

β < δ = −
ln ξ

lnN
< α = 2 (23)

However we will see below that only δ > 0 is physically admissible, i.e. compatible with harmonic particle-
particle interactions which decrease with increasing particle-particle distance.

The 1D Laplacian ∆1 is defined by

∆1u(x) =
d2

dx2
u(x) = lim

τ→0

(u(x + τ) + u(x − τ) − 2u(x))

τ2
(24)

Let us now define a self-similar analogue to the 1D Laplacian. We emphasize that also other definitions could
be imagined. However, the definition to follow has a certain “physical” justification as we will see in § 4. In
analogy to (24) we put with ξ = N−δ

∆(δ,N,τ)u(x) =: const lim
τ→0

τ−λφ(x, τ) (25)

= const lim
τ→0

τ−λ
∞
∑

s=−∞

ξs (u(x + N sτ) + u(x − N sτ) − 2u(x)) (26)

where we have introduced a renormalisation-multiplier τ−λ with the power λ to be determined to guarantee
the limiting case being finite. The constant factor const indicates that there is a certain arbitrariness in this
definition and will be chosen conveniently. Let us consider the limit τ → 0 by the special sequence τn = N−nh
with n → ∞ and h being constant. Unlike in the 1D case (24), the result of this limiting process depends
crucially on the choice of the sequence τn. Then we have (by putting in (25) const = hλ)

∆(δ,N,h)u(x) = lim
n→∞

Nλnξn
∞
∑

s=−∞

ξs−n (

u(x + N s−nh) + u(x − N s−nh) − 2u(x)
)

(27)

which assumes by replacing s − n → s the form

∆(δ,N,h)u(x) = φ(x, h) lim
n→∞

N−(δ−λ)n (28)

which is only finite and nonzero if λ = δ. The “Laplacian” can then be defined simply by

∆(δ,N,h)u(x) =: lim
n→∞

N δnφ(x,N−nh) = φ(x, h) (29)

or by using (19) and (21) we can simply write4

4We have to replace d

dx
→

∂

∂x
if the Laplacian acts on a field u(x, t) as in Sec. 4.
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∆(δ,N,h) = 4T̂N (h) sinh2
(

h

2

∂

∂x

)

= 4
∞
∑

s=−∞

N−δs sinh2
(

N sh

2

∂

∂x

)

(30)

where T̂N (h) is the self-similar operator defined in (14). The self-similar analogue of Laplace operator defined
by (30) depends on the parameters δ,N, h. We furthermore observe the self-similarity of Laplacian (30),
namely

∆(δ,N,Nh) = N δ∆(δ,N,h) (31)

3.3 Continuum approximation - link to fractional integrals

For numerical evaluations it may be convenient to utilize a continuum approximation of the self-similar
Laplacian (30). To this end we put N = 1 + ǫ (with 0 < ǫ ≪ 1 thus ǫ ≈ lnN) where ǫ is assumed to be

“small” and sǫ = v such that dv ≈ ǫ and N s = (1 + ǫ)
v

ǫ ≈ ev . In this approximation N s ≈ ev becomes a
(quasi)-continuous variable when s runs through s ∈ Z. Then we can write (13) in the form

φ(h) =
∞
∑

s=−∞

N−sδf(N sh) ≈
1

ǫ

∫ ∞

−∞

e−δvf(hev)dv (32)

which can be further written with hev = τ (h > 0) and dτ
τ = dv and τ(v → −∞) = 0 and τ(v → ∞) = ∞ as

φ(h) ≈
hδ

ǫ

∫ ∞

0

f(τ)

τ1+δ
dτ (33)

In this continuous approximation the function φ(h) obeys the same scaling behaviour as (13), namely φ(hλ) =
λδφ(h) but in contrast to (13) λ can assume any continuous positive value. This is due to the fact that (33)
is holding for N = 1+ ǫ with sufficiently small ǫ > 0 since in this limiting case there exists for any continuous
value λ > 0 an m ∈ Z such that Nm ≈ λ. The existence requirement for integral (33) leads to the same
requirements for f(t) as in (13), namely inequality (18). Application of the approximate relation (33) to
Laplacian (30) yields

∆(δ,ǫ,h)u(x) ≈
hδ

ǫ

∫ ∞

0

(u(x − τ) + u(x + τ) − 2u(x))

τ1+δ
dτ (34)

where this integral exists for β < δ < 2 and β < −1 because the required existence of integral (22) and
relation (21). If δ is in the range β < δ < 1 we can split (34) into the two integrals

∆(δ,ǫ,h)u(x) ≈
hδ

ǫ

∫ ∞

0

(u(x + τ) − u(x))

τ1+δ
dτ +

hδ

ǫ

∫ ∞

0

(u(x − τ) − u(x))

τ1+δ
dτ (35)

By performing two partial integrations and by taking into account the vanishing boundary terms at τ = 0
and τ = ∞ for β < δ < 1 we can re-write (35) for δ 6= 0 in the form

∆(δ,ǫ,h)u(x) ≈
hδ

δ(δ − 1)ǫ

∫ ∞

x
(τ − x)1−δ d2u

dτ2
(τ) dτ +

hδ

δ(δ − 1)ǫ

∫ x

−∞

(x − τ)1−δ d2u

dτ2
(τ) dτ (36)

We observe here the remarkable fact that this integral is a convolution of the conventional 1D Laplacian
d2u
dx2 (x), namely

∆(δ,ǫ,h)u(x) ≈

∫ ∞

−∞

g(|x − τ |)
d2u

dτ2
(τ)dτ (37)

with the kernel

g(|x − τ |) =
hδ

δ(δ − 1)ǫ
|x − τ |1−δ (38)
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Further illuminating is the possibility to express (36) in terms of fractional integrals. To this end we put
D = 2 − δ > 0 which is positive in the admissible range of δ. For 0 < δ < 1 the quantity D can be identified
with the estimated fractal dimension of the fractal dispersion relation of the Laplacian [7] which is deduced
in the next section. The Riemann-Liouville fractional integral is defined by (e.g. [15])

D−D
a,x v(x) =

1

Γ(D)

∫ x

a
(x − τ)D−1v(τ)dτ (39)

where Γ(D) denotes the Γ-function which represents the generalization of the factorial function to non-integer
D > 0. The Γ-function is defined as

Γ(D) =

∫ ∞

0
τD−1e−τdτ , D > 0 (40)

For positive integers D > 0 the Γ-function reproduces the factorial-function Γ(D) = (D−1)! with D = 1, 2, ..∞.
The Laplacian (36) can then be expressed in the form

∆(δ=2−D,ǫ,h)u(x) ≈
h2−D

ǫ

Γ(D)

(D − 1)(D − 2)

(

D−D
−∞,x + (−1)DD−D

∞,x

)

∆1u(x) (41)

where ∆1u(x) = d2

dx2 u(x) denotes the conventional 1D-Laplacian. In the integral associated with second term

of (41) we have to choose because of x−τ < 0 the phase of −1 = e±iπ in (−1)D such that (x−τ)D−1(−1)D−1 =
|x − τ |D−1 ∈ R remains real, e.g. for instance by putting simultaneously x − τ = e−iπ|x − τ | and −1 = eiπ.

Although the present continuum approximation holds mathematically for β < δ < 1 where β < −1 and
δ 6= 0 it will be demonstrated in the next section that we have to demand for any physical system δ > 0 in
Laplacian (30). This is due to that fact that physical inter-particle-interactions have to decay with increasing
inter-particle-distance and to diverge when the inter-particle-distance tends to zero. Hence the requirement of
convergence of the above integrals together with the demand for the Laplacian to describe a physical system
with harmonically interacting particles restricts δ further within the interval

0 < δ < 1 (42)

In the next section it will be outlined that interval (42) is also the range where the dispersion relation of
the Laplacian reveals fractal features.

4 The physical model

We consider an infinitely long quasi-continuous linear chain of identical particles. Any space-point x corre-
sponds to a “material point” or particle. The mass density of particles is assumed to be spatially homogeneous
and equal to one for any space point x. Any particle is associated with one degree of freedom which is rep-
resented by the displacement field u(x, t) where x is its spatial (Lagrangian) coordinate and t indicates time.
In this sense we consider a quasi continuous spatial distribution of particles. Any particle at space-point x
is non-locally connected by harmonic springs of strength ξs to particles located at x ± N sh, where N > 1
and N ∈ R is not necessarily integer, h > 0, and s = 0,±1,±2, .. ±∞. The requirement of decreasing spring
constants with increasing particle-particle distance leads to the requirement that ξ = N−δ < 1 (N > 1) i.e.
only chains with δ > 0 are physically admissible. In order to get exact self-similarity we avoid the notion of
“next-neighbour particles” in our chain which would be equivalent to the introduction of an internal length
scale (the next neighbour distance). To admit particle interactions over arbitrarily close distances N sh → 0
(s → −∞, h = const) our chain has to be quasi-continuous. This is the principal difference to the discrete
chain considered recently by Tarasov [13] which is not self-similar.

The Hamiltonian which describes our chain can be written as

H =
1

2

∫ ∞

−∞

(

u̇2(x, t) + V(x, t, h)
)

dx (43)
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In the spirit of (13) the elastic energy density V(x, t, h) is assumed to be constructed self-similarly, namely5

V(x, t, h) =
1

2
T̂N (h)

[

(u(x, t) − u(x + h, t))2 + (u(x, t) − u(x − h, t))2
]

(44)

where T̂N (h) is the self-similar operator (14) with ξ = Λ−1 = N−δ to arrive at

V(x, t, h) =
1

2

∞
∑

s=−∞

ξs
[

(u(x, t) − u(x + hN s, t))2 + (u(x, t) − u(x − hN s, t))2
]

(45)

The elastic energy density V(x, t, h) fulfills the condition of self-similarity with respect to h, namely

ÂN (h)V(x, t, h) = V(x, t,Nh) = ξ−1V(x, t, h) (46)

The criteria of convergence of (45) yields α = 2 as for the Laplacian (20). To determine β we have to
demand that u(x, t) be Fourier transformable 6 thus we have to have an asymptotic behaviour of |u(x, t) −
u(x± τ, t)| as τβ where β < −1 as τ → ∞. From this follows |u(x, t)−u(x± τ, t)|2 behaves then as τ2β where
2β < −2. Hence, the elastic energy density (45) converges if

2β < δ < α = 2 (47)

where β < −1. In this relation exponent δ (ξ = N−δ) can take values greater or smaller than −2. However
the requirement of the convergence of the equation of motion (eq. (51 below) depends on the behaviour of
|u(x, t) − u(x ± τ, t)| for τ → ∞. From this follows that

β < δ < α = 2 (48)

where β < −1. Relation (48) determines the range of the admissible values of δ in order to achieve convergence.
However, we emphasize that physically only chains are admissible with δ > 0 in order to have decreasing
inter-particle spring-constants with increasing inter-particle distance. We will see below that the additional
requirement δ > 0 works out in a natural way as a consequence of the convergence requirement of the dispersion
relation.

If (48) is fulfilled the convergence of the equation of motion (below eqs. (50), (51)) is guaranteed since
relation (47) is also fulfilled (since β < −1).

The equation of motion is obtained by
∂2u

∂t2
= −

δH

δu
(49)

(where δ./δu stands for a functional derivative) to arrive at

∂2u

∂t2
= −

∞
∑

s=−∞

ξs (2u(x, t) − u(x + hN s, t) − u(x − hN s, t)) (50)

∂2u

∂t2
= ∆(δ,N,h)u(x, t) (51)

with the self-similar Laplacian ∆(δ,N,h) of equation (30). We can re-write (51) in the compact form of a wave
equation

2(δ,N,h)u(x, t) = 0 (52)

where 2(δ,N,h) is the self-similar analogue of the d’Alembertian wave operator having the form

2(δ,N,h) = ∆(δ,N,h) −
∂2

∂t2
(53)

5The additional factor 1/2 in the elastic energy avoids double counting.
6This assumption defines the (function) space of eigenmodes and corresponds to infinite body boundary conditions.
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The d’Alembertian (53) with the Laplacian (30) describes the wave propagation in the self-similar chain with
Hamiltonian (43). It appears to be useful and feasible to extended this approach to a general description of
wave propagation phenomena in fractal and self-similar material systems.

Now the goal is to determine the dispersion relation, which is constituted by the (negative) eigenvalues of
the (semi-)negative definite Laplacian (30). To this end we make use of the fact that the displacement field
u(x, t) is Fourier transformable (guaranteed by choosing β < −1 in (48)) and that the exponentials eikx are
eigenfunctions of the self-similar Laplacian (30). We hence write the Fourier integral

u(x, t) =
1

2π

∫ ∞

−∞

ũ(k, t)eikxdk (54)

to re-write (51) for the Fourier amplitudes ũ(k, t) in the form

∂2ũ

∂t2
(k, t) = −ω̄2(k) ũ(k, t) (55)

In this equation −ω̄2(k) is obtained by replacing ∂
∂x by ik in (30) to arrive at

ω̄2(k) = ω2(kh) = 4T̂N (h) sin2(
kh

2
) (56)

which yields by applying the self-similar operator T̂N (h) (eqs (13), (14))

ω2(kh) = 4
∞
∑

s=−∞

N−δs sin2(
khN s

2
) (57)

Equation (57) describes a Weierstrass-Mandelbrot function which is a continuous but nowhere differen-
tiable function [1] and fulfills the condition of self-similar symmetry, namely

ω2(Nkh) = N δ ω2(kh) (58)

A similar consideration as above shows that convergence of (57) restricts δ to the range

0 < δ < 2 (59)

which is a subset of both intervals (47) and (48). Hence only exponents δ in the interval (59) are admissible
in Hamiltonian (43) with the elastic energy density (45) in order to have a “well-posed” problem. Condition
(59) includes automatically “physical admissibility” which requires δ > 0 (ξ = N−δ < 1) in (45) in order to
have spring constants N−δs = (Ls/h)−δ which decrease monotonously and tend versus zero with increasing
inter-particle distances Ls → ∞ and diverge for inter-particle distances Ls → 0.

It was shown by Hardy [7] that for ξN > 1 and ξ = N−δ < 1 or equivalently for

0 < δ < 1 (60)

the Weierstrass-Mandelbrot function of the form (57) is not only self-similar but also a fractal curve of
(estimated) non-integer fractal (Hausdorff) dimension D = 2 − δ > 1. Figs. 1-3 show dispersion curves
ω2(kh) for different decreasing values of admissible 0 < δ < 1 and increasing fractal dimension. The increase
of the fractal dimension from Figs. 1-3 is indicated by the increasingly irregular harsh behaviour of the curves.

To evaluate (57) approximately it is convenient to replace the series by an integral utilizing a similar
substitution as in Sec. 3.3 (ǫ ≈ ln N). By doing so we smoothen the Weierstrass-Mandelbrot function (57).
It is important to notice that the resulting approximate dispersion relation is hence differentiable and has not
any more a fractal dimension D > 1 in the interval (60). For sufficiently “small” |k|h (h > 0), i.e. in the
long-wave regime we arrive at

ω2(kh) ≈
(h|k|)δ

ǫ
C (61)
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which is only finite if (|k|h)δ is in the order of magnitude of ǫ or smaller. This regime which includes the limit
k → 0 is hence characterized by a power law behaviour ω̄(k) ≈ Const |k|δ/2 of the dispersion relation. The
constant C introduced in (61) is given by the integral

C = 2

∫ ∞

0

(1 − cos τ)

τ1+δ
dτ (62)

This approximation holds for “small” ǫ ≈ ln N 6= 0 (0 < ǫ ≪ 1)7 which corresponds to the limiting case
that N s = ev is continuous. In this limiting case we obtain the oscillator density from [11]8

ρ(ω) = 2
1

2π

d|k|

dω
(63)

which is normalized such that ρ(ω)dω counts the number (per unit length) of normal oscillators having
frequencies within the interval [ω, ω + dω]. We obtain then

ρ(ω) =
2

πδh

(

ǫ

C

)
1
δ

ω
2
δ
−1 (64)

We emphasize that neither is the dependence on k of the Weierstrass-Mandelbrot function (57) represented
by a continuous |k|δ-dependence nor is this function differentiable with respect to k. Application of (63) is
hence only justified to be applied to the approximative representation (61) if 0 < ǫ ≪ 1 thus N = 1 + ǫ is
sufficiently close to 1 so that N s is a quasi-continuous function when s runs through s ∈ Z. Hence (63) is
not generally applicable to (57) for any arbitrary N > 1. We can consider (64) as the low-frequency regime
ω → 0 of the oscillator density holding only in the quasi-continuous case N = 1 + ǫ with 0 < ǫ ≪ 1.

5 Conclusions

We have depicted how self-similar functions and linear operators can be constructed in a simple manner by
utilizing a certain category of conventional “admissible” functions. This approach enables us to construct non-
local self-similar analogues to the Laplacian and d’Alembert wave operator. The linear self-similar equation
of motion describes the propagation of waves in a quasi-continuous linear chain with harmonic non-local
self-similar particle-interactions. The complexity which comes into play by the self-similarity of the non-
local interactions is completely captured by the dispersion relations which assume the forms of Weierstrass-
Mandelbrot functions (57) exhibiting exact self-similarity and for certain parameter combinations (relation
(60)) fractal features. In a continuum approximation the self-similar Laplacian is expressed in terms of
fractional integrals (eq. (41)) leading for small k (long-wave limit) to a power-law dispersion relation (eq.
(61)) and to a power-law oscillator density (eq. (64)) in the low-frequency regime.

The self-similar wave operator (53) with the Laplacian (30) can be generalized to describe wave propa-
gation in fractal and self-similar structures which are fractal subspaces embedded in Euclidean spaces of 1-3
dimensions. The development of such an approach could be a crucial step towards a better understanding of
the dynamics in materials with scale hierarchies of internal structures (“multiscale materials”) which may be
idealized as fractal and self-similar materials.

We hope to inspire further work and collaborations in this direction to develop appropriate approaches
useful for the modelling of static and dynamic problems in self-similar and fractal structures in a wider
interdisciplinary context.

6 Acknowledgements

Fruitful discussions with J.-M. Conoir, D. Queiros-Conde and A. Wunderlin are gratefully acknowledged.

7ǫ = 0 has to be excluded since it corresponds to N = 1.
8The additional prefactor ”2” takes into account the two branches of the dispersion relation (57) (one for k < 0 and one for

k > 0).
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Figure 2: δ = 0.5

0 0.5 1 1.5
0

5

10

15

20

25

30

kh

ω
2
(k

h
)

Figure 3: δ = 0.25

12


	Abstract
	Introduction
	Construction of self-similar functions and linear operators
	Construction of self-similar functions
	A self-similar analogue to the Laplace operator
	Continuum approximation - link to fractional integrals

	The physical model
	Conclusions
	Acknowledgements

