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Abstract

In this Appendix we provide proofs of Lemma 2(ii) and (iii), and of the estimate (16) of the paper “Numerical
solution of Boussinesq systems of the Bona-Smith family”, using notation and results of that paper.

1. Prood of lemma 2(ii)

Let v ∈ H2. Since Rhv ∈ H2,

‖(Rhv)
′′‖2 =

J∑

j=0

∫ xj+1

xj

[(Rhv)
′′ − ψ′′]

2
dx ≤ Ch−2

J∑

j=0

∫ xj+1

xj

[(Rhv)
′ − ψ′]

2
dx,

where ψ is the interpolant of v in the space of piecewise linear, continuous functions Sh(0, 2), and
where the second inequality follows from an inverse property on the polynomial space Pr−2([xj , xj+1])
and the quasiuniformity of the mesh xj . Therefore, by Lemma 1

‖(Rhv)
′′‖ ≤ Ch−1‖(Rhv)

′ − ψ′‖ ≤ Ch−1 (‖(Rhv)
′ − v′‖ + ‖ψ′ − v′‖) ≤ C‖v‖2,

from which there follows that ‖Rhv‖2 ≤ C‖v‖2 due to the H1-stability of Rh. The proof for R0
h is

entirely analogous. 2

2. Proof of Lemma 2(iii)

Let v ∈W 1
∞ ∩H1

0 and let V ∈ S0
h be such that

(V ′, χ′) = (v′, χ′) ∀χ ∈ S0
h. (A1)
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Then, it is not hard to see that V ′ = P̃hv
′, where P̃h is the L2-projection operator onto

Sh(µ− 1, r − 1) =
d

dx
S0

h(µ, r) ⊕ {1}.

Using now the the definition of aD(·, ·) and (A1) we conclude that

aD(R0
hv − V, χ) = (v − V, χ) ∀χ ∈ S0

h. (A2)

Consider now the problem

Θ − bΘ′′ = v − V in Ī ,

Θ(−L) = Θ(L) = 0.
(A3)

Since by (2)

aD(R0
hΘ, χ) = aD(Θ, χ) = (v − V, χ) = aD(R0

hv − V, χ) ∀χ ∈ S0
h,

we obtain that R0
hΘ = R0

hv − V . Therefore,

‖(R0
hv)

′‖L∞ ≤ ‖(R0
hΘ)′‖L∞ + ‖V ′‖L∞ = ‖(R0

hΘ)′‖L∞ + ‖P̃hv
′‖L∞

≤ C(‖R0
hΘ‖2 + ‖v′‖L∞),

using the stability of the L2-projection in L∞, [1]. By Lemma 2(ii), the elliptic regularity of the
solution Θ of (A3) and the Poincaré inequality, we see that ‖(R0

hv)
′‖L∞ ≤ C‖v‖W 1

∞

, and the second
inequality of emma 2(iii) follows from the result (i) in the same Lemma.

To prove the analogous estimate for v ∈ W 1
∞, we let now V =

∫ x

−L
(P̃hv

′). Then, V ∈ Sh(µ, r)

with V ′ = P̃hv
′ and V (−L) = 0. As before, we have

aN (Rhv − V, χ) = (v − V, χ) ∀χ ∈ Sh,

which gives, if Θ is a solution of the problem

Θ − bΘ′′ = v − V in Ī ,

Θ′(−L) = Θ′(L) = 0,

the identity Rhv = RhΘ + V . We conclude that ‖Rhv‖W 1
∞

≤ C‖v‖W 1
∞

, arguing as in the first part
of the proof. 2

3. Proof of (16)

From (7) of Proposition 5 it follows that

max
0≤t≤T

(‖ηh‖2 + ‖uh‖1) ≤ C. (A4)

From (6), the definitions of f and g, and Lemma 4(i) we obtain, using (A4), for 0 ≤ t ≤ T

‖ηht‖2 = ‖f(ηh, uh)‖2 ≤ ‖f̂(uh)‖2 + ‖f̂(ηhuh)‖2 ≤ C (‖uh‖1 + ‖ηhuh‖1)

≤ C (‖uh‖1 + ‖ηh‖1‖uh‖1) ≤ C, (A5)

and

2



‖uht‖1 = ‖g(ηh, uh)‖1 ≤ |c|‖f̂(ηhxx)‖1 + ‖f̂(ηh)‖1 +
1

2
‖f̂(u2

h)‖1

≤ C
(
‖ηhxx‖ + ‖ηh‖ + ‖u2

h‖
)

≤ C (‖ηh‖2 + ‖uh‖1‖uh‖) ≤ C. (A6)

Differentiating in (6) with respect to t we see that

ηhtt = f̂(uht) + f̂(ηhtuh) + f̂(ηhuht),

uhtt = cf̂(ηhxxt) + f̂(ηht) + f̂(uhuht).

Therefore, using (A4)–(A6) we have as before, for 0 ≤ t ≤ T

‖ηhtt‖2 ≤ C (‖uht‖1 + ‖ηhtuh‖1 + ‖ηhuht‖1)

≤ C (‖uht‖1 + ‖ηht‖1‖uh‖1 + ‖ηh‖1‖uht‖1) ≤ C,

and

‖uhtt‖2 ≤ C (‖ηht‖2 + ‖ηht‖ + ‖uht‖1‖uh‖1) ≤ C.

Continuing inductively we see that (16) holds. 2
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