Appendix of the paper: "Numerical solution of Boussinesq systems of the Bona-Smith family"

D. C. Antonopoulos ${ }^{\text {a }}$, V. A. Dougalis ${ }^{\mathrm{a}, \mathrm{b}, 1}$ and D. E. Mitsotakis ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Mathematics, University of Athens, 15784 Zographou, Greece
${ }^{\mathrm{b}}$ Institute of Applied and Computational Mathematics, FO.R.T.H., P.O. Box 1527, 70013 Heraklion, Greece
${ }^{\text {c }}$ UMR de Mathématiques, Université de Paris-Sud, Bâtiment 425, P.O. Box, 91405 Orsay France

Abstract

In this Appendix we provide proofs of Lemma 2(ii) and (iii), and of the estimate (16) of the paper "Numerical solution of Boussinesq systems of the Bona-Smith family", using notation and results of that paper.

1. Prood of lemma 2(ii)

Let $v \in H^{2}$. Since $R_{h} v \in H^{2}$,

$$
\left\|\left(R_{h} v\right)^{\prime \prime}\right\|^{2}=\sum_{j=0}^{J} \int_{x_{j}}^{x_{j+1}}\left[\left(R_{h} v\right)^{\prime \prime}-\psi^{\prime \prime}\right]^{2} d x \leq C h^{-2} \sum_{j=0}^{J} \int_{x_{j}}^{x_{j+1}}\left[\left(R_{h} v\right)^{\prime}-\psi^{\prime}\right]^{2} d x
$$

where ψ is the interpolant of v in the space of piecewise linear, continuous functions $S_{h}(0,2)$, and where the second inequality follows from an inverse property on the polynomial space $\mathbb{P}_{r-2}\left(\left[x_{j}, x_{j+1}\right]\right)$ and the quasiuniformity of the mesh x_{j}. Therefore, by Lemma 1

$$
\left\|\left(R_{h} v\right)^{\prime \prime}\right\| \leq C h^{-1}\left\|\left(R_{h} v\right)^{\prime}-\psi^{\prime}\right\| \leq C h^{-1}\left(\left\|\left(R_{h} v\right)^{\prime}-v^{\prime}\right\|+\left\|\psi^{\prime}-v^{\prime}\right\|\right) \leq C\|v\|_{2}
$$

from which there follows that $\left\|R_{h} v\right\|_{2} \leq C\|v\|_{2}$ due to the H^{1}-stability of R_{h}. The proof for R_{h}^{0} is entirely analogous.

2. Proof of Lemma 2(iii)

Let $v \in W_{\infty}^{1} \cap H_{0}^{1}$ and let $V \in S_{h}^{0}$ be such that

$$
\begin{equation*}
\left(V^{\prime}, \chi^{\prime}\right)=\left(v^{\prime}, \chi^{\prime}\right) \quad \forall \chi \in S_{h}^{0} . \tag{A1}
\end{equation*}
$$

[^0]Then, it is not hard to see that $V^{\prime}=\widetilde{P}_{h} v^{\prime}$, where \widetilde{P}_{h} is the L^{2}-projection operator onto

$$
S_{h}(\mu-1, r-1)=\frac{d}{d x} S_{h}^{0}(\mu, r) \oplus\{1\} .
$$

Using now the the definition of $a_{D}(\cdot, \cdot)$ and (A1) we conclude that

$$
\begin{equation*}
a_{D}\left(R_{h}^{0} v-V, \chi\right)=(v-V, \chi) \quad \forall \chi \in S_{h}^{0} \tag{A2}
\end{equation*}
$$

Consider now the problem

$$
\begin{align*}
& \Theta-b \Theta^{\prime \prime}=v-V \quad \text { in } \bar{I} \\
& \Theta(-L)=\Theta(L)=0 . \tag{A3}
\end{align*}
$$

Since by (2)

$$
a_{D}\left(R_{h}^{0} \Theta, \chi\right)=a_{D}(\Theta, \chi)=(v-V, \chi)=a_{D}\left(R_{h}^{0} v-V, \chi\right) \quad \forall \chi \in S_{h}^{0}
$$

we obtain that $R_{h}^{0} \Theta=R_{h}^{0} v-V$. Therefore,

$$
\begin{aligned}
\left\|\left(R_{h}^{0} v\right)^{\prime}\right\|_{L^{\infty}} & \leq\left\|\left(R_{h}^{0} \Theta\right)^{\prime}\right\|_{L^{\infty}}+\left\|V^{\prime}\right\|_{L^{\infty}}=\left\|\left(R_{h}^{0} \Theta\right)^{\prime}\right\|_{L^{\infty}}+\left\|\widetilde{P}_{h} v^{\prime}\right\|_{L^{\infty}} \\
& \leq C\left(\left\|R_{h}^{0} \Theta\right\|_{2}+\left\|v^{\prime}\right\|_{L^{\infty}}\right)
\end{aligned}
$$

using the stability of the L^{2}-projection in L^{∞}, [1]. By Lemma 2(ii), the elliptic regularity of the solution Θ of (A3) and the Poincaré inequality, we see that $\left\|\left(R_{h}^{0} v\right)^{\prime}\right\|_{L^{\infty}} \leq C\|v\|_{W_{\infty}^{1}}$, and the second inequality of emma 2(iii) follows from the result (i) in the same Lemma.

To prove the analogous estimate for $v \in W_{\infty}^{1}$, we let now $V=\int_{-L}^{x}\left(\widetilde{P}_{h} v^{\prime}\right)$. Then, $V \in S_{h}(\mu, r)$ with $V^{\prime}=\widetilde{P}_{h} v^{\prime}$ and $V(-L)=0$. As before, we have

$$
a_{N}\left(R_{h} v-V, \chi\right)=(v-V, \chi) \quad \forall \chi \in S_{h}
$$

which gives, if Θ is a solution of the problem

$$
\begin{aligned}
& \Theta-b \Theta^{\prime \prime}=v-V \quad \text { in } \bar{I}, \\
& \Theta^{\prime}(-L)=\Theta^{\prime}(L)=0
\end{aligned}
$$

the identity $R_{h} v=R_{h} \Theta+V$. We conclude that $\left\|R_{h} v\right\|_{W_{\infty}^{1}} \leq C\|v\|_{W_{\infty}^{1}}$, arguing as in the first part of the proof.

3. Proof of (16)

From (7) of Proposition 5 it follows that

$$
\begin{equation*}
\max _{0 \leq t \leq T}\left(\left\|\eta_{h}\right\|_{2}+\left\|u_{h}\right\|_{1}\right) \leq C \tag{A4}
\end{equation*}
$$

From (6), the definitions of f and g, and Lemma 4(i) we obtain, using (A4), for $0 \leq t \leq T$

$$
\begin{align*}
\left\|\eta_{h t}\right\|_{2} & =\left\|f\left(\eta_{h}, u_{h}\right)\right\|_{2} \leq\left\|\hat{f}\left(u_{h}\right)\right\|_{2}+\left\|\hat{f}\left(\eta_{h} u_{h}\right)\right\|_{2} \leq C\left(\left\|u_{h}\right\|_{1}+\left\|\eta_{h} u_{h}\right\|_{1}\right) \\
& \leq C\left(\left\|u_{h}\right\|_{1}+\left\|\eta_{h}\right\|_{1}\left\|u_{h}\right\|_{1}\right) \leq C \tag{A5}
\end{align*}
$$

and

$$
\begin{align*}
\left\|u_{h t}\right\|_{1} & =\left\|g\left(\eta_{h}, u_{h}\right)\right\|_{1} \leq|c|\left\|\hat{f}\left(\eta_{h_{x}} x\right)\right\|_{1}+\left\|\hat{f}\left(\eta_{h}\right)\right\|_{1}+\frac{1}{2}\left\|\hat{f}\left(u_{h}^{2}\right)\right\|_{1} \\
& \leq C\left(\left\|\eta_{h x x}\right\|+\left\|\eta_{h}\right\|+\left\|u_{h}^{2}\right\|\right) \\
& \leq C\left(\left\|\eta_{h}\right\|_{2}+\left\|u_{h}\right\|_{1}\left\|u_{h}\right\|\right) \leq C . \tag{A6}
\end{align*}
$$

Differentiating in (6) with respect to t we see that

$$
\begin{aligned}
& \eta_{h_{t t}}=\hat{f}\left(u_{h t}\right)+\hat{f}\left(\eta_{h t} u_{h}\right)+\hat{f}\left(\eta_{h} u_{h t}\right) \\
& u_{h t t}=c \hat{f}\left(\eta_{h_{x x t}}\right)+\hat{f}\left(\eta_{h t}\right)+\hat{f}\left(u_{h} u_{h t}\right)
\end{aligned}
$$

Therefore, using (A4)-(A6) we have as before, for $0 \leq t \leq T$

$$
\begin{aligned}
\left\|\eta_{h_{t t}}\right\|_{2} & \leq C\left(\left\|u_{h t}\right\|_{1}+\left\|\eta_{h t} u_{h}\right\|_{1}+\left\|\eta_{h} u_{h_{t}}\right\|_{1}\right) \\
& \leq C\left(\left\|u_{h t}\right\|_{1}+\left\|\eta_{h_{t}}\right\|_{1}\left\|u_{h}\right\|_{1}+\left\|\eta_{h}\right\|_{1}\left\|u_{h t}\right\|_{1}\right) \leq C,
\end{aligned}
$$

and

$$
\left\|u_{h_{t t}}\right\|_{2} \leq C\left(\left\|\eta_{h_{t}}\right\|_{2}+\left\|\eta_{h_{t}}\right\|+\left\|u_{h_{t}}\right\|_{1}\left\|u_{h}\right\|_{1}\right) \leq C .
$$

Continuing inductively we see that (16) holds.

Additional reference

[1] J. Douglas, T. Dupont, L. B. Wahlbin, Optimal L_{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comp. 29 (1975) 475-483.

[^0]: Email addresses: antonod@math.uoa.gr (D. C. Antonopoulos), doug@math.uoa.gr (V. A. Dougalis), dimitrios.mitsotakis@math.u-psud.fr (D. E. Mitsotakis).
 1 Corresponding author

