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In this paper we consider the one-parameter family of Bona-Smith systems, which belongs to the class of Boussinesq systems modelling two-way propagation of long waves of small amplitude on the surface of water in a channel. We study numerically three initial-boundary-value problems for these systems, corresponding, respectively, to homogeneous Dirichlet, reflection, and periodic boundary conditions posed at the endpoints of a finite spatial interval. We approximate these problems using the standard Galerkin-finite element method for the spatial discretization and a fourth-order, explicit Runge-Kutta scheme for the time stepping, and analyze the convergence of the fully discrete schemes. We use these numerical methods as exploratory tools in a series of numerical experiments aimed at illuminating interactions of solitary-wave solutions of the Bona-Smith systems, such as head-on and overtaking collisions, and interactions of solitary waves with the boundaries.

Introduction

We consider the following family of Boussinesq type systems of water wave theory, introduced by Bona and Smith in [START_REF] Bona | A model for the two-way propagation of water waves in a channel[END_REF],

η t + u x + (ηu) x -bη xxt = 0, u t + η x + uu x + cη xxx -bu xxt = 0, (1) 
for x ∈ R, t > 0, where b > 0, c ≤ 0. (For modelling purposes, [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: I. Derivation and Linear Theory[END_REF], the constants b and c are of the form b = (3θ 2 -1)/6, c = (2 -3θ 2 )/3, where θ 2 ∈ [2/3, 1], cf. [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: I. Derivation and Linear Theory[END_REF].) The system is supplemented by initial conditions of the form η(x, 0) = η 0 (x), u(x, 0) = u 0 (x), [START_REF] Antonopoulos | Galerkin methods for the Bona-Smith version of the Boussinesq equations[END_REF] where η 0 , u 0 are given functions on R.

The systems [START_REF] Antonopoulos | The Boussinesq system of equations: Theory and numerical analysis[END_REF] are Boussinesq approximations of the two-dimensional Euler equations and model two-way propagation of long waves of small amplitude (when the Stokes number is of O(1)) of an incompressible, inviscid fluid in a uniform horizontal channel of finite depth with a free surface. The variables in [START_REF] Antonopoulos | The Boussinesq system of equations: Theory and numerical analysis[END_REF] are nondimensional and unscaled: x and t are proportional to position along the channel and time, respectively, while η(x, t) and u(x, t) are proportional to the deviation of the free surface above an undisturbed level, and to the horizontal velocity of the fluid at a height y = -1 + θ(1 + η(x, t)), respectively. In terms of these variables the bottom of the channel is at y = -1, while the free surface corresponds to θ = 1.

The well-posedness of the initial-value problem (1)-( 2) has been studied in [START_REF] Bona | A model for the two-way propagation of water waves in a channel[END_REF] and [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory[END_REF]. For b > 0, c < 0 the problem is globally well posed in appropriate pairs of Sobolev spaces or in spaces of bounded, continuously differentiable functions, provided inf x∈R η 0 (x) > -1 and under one additional mild restriction on the initial data. If b > 0, c = 0 (e.g. when θ 2 = 2/3), one obtains the BBM-BBM system whose Cauchy problem is well posed only locally in time.

In [START_REF] Antonopoulos | Initial-boundary-value problems for the Bona-Smith family of Boussinesq systems[END_REF] the present authors studied the well-posedness of three types of initial-boundary-value problems (ibvp's) for the Bona-Smith systems (1) on bounded spatial intervals [-L, L], in which [START_REF] Antonopoulos | The Boussinesq system of equations: Theory and numerical analysis[END_REF] and the initial conditions η(x, 0) = η 0 (x), u(x, 0) = u 0 (x), x ∈ [-L, L], are supplemented by three types of boundary conditions posed at x = ±L for t ≥ 0: (i) Nonhomogeneous Dirichlet boundary conditions, wherein η and u are given functions of t at x = ±L. (ii) Reflection boundary conditions, i.e. η x = 0, u = 0 at x = ±L for all t ≥ 0. (iii) Periodic boundary conditions on η and u at x = ±L. It was proved that in appropriate pairs of spaces, the ibvp with Dirichlet boundary conditions is locally well posed, while the ibvp's with reflection of periodic boundary conditions are globally well posed under restrictions on the initial data similar to those imposed in the case of the Cauchy problem. (A local well-posedness result for the ibvp with Dirichlet end conditions of the BBM-BBM system had been previously established by Bona and Chen in [START_REF] Bona | A Boussinesq system for two-way propagation of nonlinear dispersive waves[END_REF].)

Our first aim in this paper is to derive and analyze rigorously fully discrete numerical methods for approximating the solutions of these three ibvp's for the Bona-Smith systems. We shall use the standard Galerkin-finite element method with piecewise polynomial functions in x and the classical, fourth-order Runge-Kutta method for time-stepping. To describe the results, we introduce now function spaces that we will employ in the sequel. Let I = (-L, L). For a nonnegative integer k, we let C k = C k ( Ī) be the space of k times continuously differentiable real-valued functions on Ī equipped with the norm v C k := max 0≤j≤k max x∈ Ī |v (j) (x)|. (C k 0 will denote the functions in C k which vanish at x = ±L.) We also let H k = H k (I) be the usual (Hilbert) Sobolev spaces of realvalued functions on I having generalized derivatives of order up to k in L 2 = L 2 (I). The norm on H k will be given by v

k := k j=0 v (j) 2 1/2
, where • denotes the norm on L 2 ≡ H 0 . The L 2 inner product will be denoted by (•, •), while H 1 0 will denote the subspace of H 1 whose elements vanish at x = ±L. On occasion we shall also use the spaces L ∞ = L ∞ (I) and W 1 ∞ = W 1 ∞ (I) whose usual norms will be denoted by

• L ∞ , • W 1
∞ , respectively. Rigorous error estimates for Bona-Smith and BBM-BBM type systems were previously proved in [START_REF] Winther | A finite element method for a version of the Boussinesq equation[END_REF], [START_REF] Pelloni | Spectral methods for the numerical solution of nonlinear solution dispersive wave equations[END_REF], [START_REF] Bona | A Boussinesq system for two-way propagation of nonlinear dispersive waves[END_REF], [START_REF] Chatzipantelidis | Explicit multistep methods for nonstiff partial differential equations[END_REF]. Winther, in [START_REF] Winther | A finite element method for a version of the Boussinesq equation[END_REF], considered the homogeneous Dirichlet ibvp for the Bona-Smith system with θ 2 = 1, which he discretized in space using a nonstandard Galerkin-finite element method (a combination of an H 1 method and a standard one, with polynomials of different degree for the approximation of η and u); he proved optimal-order error estimates for the semidiscrete approximations of η and u in a variety of norms. Pelloni, in [START_REF] Pelloni | Spectral methods for the numerical solution of nonlinear solution dispersive wave equations[END_REF], considered the periodic ivp for the same system, which she discretized in space using the spectral Galerkin method proving convergence of the semidiscrete scheme. Numerical experiments with spectral methods (discretized in time with the classical fourth-order Runge-Kutta scheme) on various Boussinesq systems of the form (1) were also reported in [START_REF] Pelloni | Spectral methods for the numerical solution of nonlinear solution dispersive wave equations[END_REF]; cf. also [START_REF] Pelloni | Numerical modelling of two-way propagation of nonlinear dispersive waves[END_REF]. In [START_REF] Bona | A Boussinesq system for two-way propagation of nonlinear dispersive waves[END_REF], Bona and Chen considered the BBM-BBM system with nonhomogeneous Dirichlet boundary conditions that they discretized using a fully discrete finite difference scheme of fourth-order of accuracy in space and time based on the numerical integration of the integral representation of the spatial operator (I - 1 6 ∂ 2 x ) -1 and on a multistep predictorcorrector method in time. They proved optimal-order error estimates for their numerical method and used it in a thorough experimental investigation of various properties of solitary wave solutions of the BBM-BBM system, and their interactions. In [START_REF] Chatzipantelidis | Explicit multistep methods for nonstiff partial differential equations[END_REF], Chatzipantelidis discretized the BBM-BBM system in the case of homogeneous Dirichlet boundary conditions using the standard Galerkin method in space and high order explicit multistep schemes in time; he proved optimal-order L 2 error estimates for the resulting fully discrete schemes.

In Section 2 of the present paper we consider the three ibvp's (i)-(iii) for the whole family of the Bona-Smith systems. The ibvp's with homogeneous (for simplicity) Dirichlet and reflection boundary conditions are discretized in space by the standard Galerkin-finite element method, using, in general, finite-dimensional subspaces of C µ , for µ ≥ 1, that consist of piecewise polynomial functions of degree r -1, where r ≥ µ + 2. The approximations of both η and u are sought in the same subspace. Due to the presence of the odd-order derivative in the term η xxx for c = 0 and the non-periodic boundary conditions, the standard Galerkin semidiscretization is not expected to converge at the optimal rate in L 2 , cf. e.g. [START_REF] Dupont | Galerkin methods for first order hyperbolics: an example[END_REF]. In Section 2 we prove that the semidiscrete approximation of η converges at the optimal rates r -2, respectively r -1, in H 2 , respectively W 1 ∞ , norms, while the analogous approximation of u converges at the rates r -2, respectively r -1, in the H 1 , respectively L ∞ , norms. Numerical experiments in Paragraph 3.1 suggest that both approximations converge suboptimally, i.e. at the rate r -1, in L 2 . Despite this drawback, the standard Galerkin method always yields a symmetric, positive definite mass matrix and, therefore, a semidiscretization that is always well defined, at least locally in time, for any system of the form (1) with b ≥ 0. In addition, in the case of the periodic boundary conditions, it is proved, in Paragraph 2.5, that when subspaces of smooth splines are used on a uniform mesh, the resulting standard Galerkin semidiscretization is of optimal order (e.g. r in L 2 ) for all Bona-Smith systems, as in the case of linear p.d.e.'s, [START_REF] Thomée | Convergence estimates for Galerkin methods for variable coefficient initial value problems[END_REF], or the KdV equation, [START_REF] Baker | Convergence of Galerkin approximation for the Korteweg-deVries equation[END_REF].

Due, essentially, to the positive coefficients b of the -η xxt and -u xxt terms in both equations of the system (1), it is shown, in Paragraph 2.2, that the systems of ordinary differential equations (ode's) that represent the standard Galerkin semidiscretization of (1) are not stiff. As a consequence, an explicit time stepping method may be used for their discretization without imposing stringent stability conditions on the time step in terms of the spatial meshlength. In this paper we use the classical, explicit, four-stage, fourth-order accurate Runge-Kutta scheme, which is shown to be unconditionally stable and to lead to full discretizations that are indeed fourth-order accurate in time in various norms for all three ibvp's considered, and require only linear systems to be solved at each time step. (Of course, other Boussinesq systems lead to stiff systems. For example, the so-called KdV-KdV system, with coefficients obtained if we put b = 0, c = 1/6 and add a term of the form 1 6 η xxx in the first equation of (1), leads to very stiff Galerkin semidiscretizations that have to be integrated in time by e.g. B-stable, implicit Runge-Kutta schemes, cf. [START_REF] Bona | Numerical solution of KdV-KdV systems of Boussinesq equations I. The numerical scheme and generalized solitary waves[END_REF], to avoid severe stability restrictions on the time step. Such schemes, being implicit, lead to nonlinear algebraic systems that must be solved at each time step.)

Our second goal in this paper is to use the aforementioned fully discrete Galerkin method (with, mainly, C 2 cubic splines for the spatial discretization) in a series of numerical experiments aimed at illuminating phenomena of interactions between solitary-wave solutions of the Bona-Smith systems and interactions of solitary waves with the boundary of the computational domain.

The (classical) solitary waves are travelling wave solutions of the system (1) of the form η s (x, t) = η s (x + x 0c s t), u s (x, t) = u s (x + x 0c s t), where x 0 ∈ R and the speed c s is constant. The functions η s = η s (ξ), u s = u s (ξ), ξ ∈ R, will be assumed to be smooth, positive, even, and decaying monotonically to zero, along with their derivatives, as ξ → ±∞. Substituting the travelling wave expressions into (1), integrating once, and setting the integration constants equal to zero, we obtain the system of second-order nonlinear ode's

-c s η + u + ηu + bc s η ′′ = 0, -c s u + η + 1 2 u 2 + cη ′′ + bc s u ′′ = 0, (3) 
where we denote η s (ξ), u s (ξ) simply by η(ξ), u(ξ) and ′ = d dξ . (Note that if (η, u) is a solution of (3) for some c s > 0, then (η, -u) is also a solution propagating with speed -c s , i.e. to the left, as t increases. In the sequel we will assume that c s > 0.)

Existence of solutions of the ode system (3) was established by Toland, [START_REF] Toland | Solitary wave solutions for a model of the two-way propagation of water waves in a channel[END_REF], in the case θ 2 = 1 for any value of the speed c s > 1. Subsequently, Toland, [START_REF] Toland | Existence of symmetric homoclinic orbits for systems of euler-langrange equations[END_REF], proved existence of solutions of a more general system of second-order ode's; this theory was applied by Chen, [START_REF] Chen | Solitary-wave and multipulsed traveling-wave solutions of Boussinesq systems[END_REF], to establish existence of solitary waves for several Boussinesq systems, including the BBM-BBM system, and also in [START_REF] Dougalis | Solitary waves of the Bona-Smith system[END_REF], where the existence of solitary waves of the whole family of Bona-Smith systems was proved for all c s > 1. It is also possible to prove uniqueness of the classical solitary waves, in general for restricted ranges of the speed c s . See e.g. [START_REF] Toland | Uniqueness and a priori bounds for certain homoclinic orbits of a Boussinesq system modelling solitary water waver[END_REF] for the case θ 2 = 1 and [START_REF] Dougalis | Solitary waves of the Bona-Smith system[END_REF] for the extension of the theory to systems with θ 2 ∈ (0.816, 1]. For a review of solitary-wave solutions of more general Boussinesq systems we refer the reader to [START_REF] Mitsotakis | Theory and numerical analysis of nonlinear dispersive wave equations: Boussinesq systems in one and two dimensions[END_REF] and [START_REF] Dougalis | Theory and numerical analysis of Boussinesq systems: A review[END_REF].

The importance of solitary waves lies mainly in the distinguished role they apparently play in the evolution and long-time asymptotics of solutions of the Cauchy problem for (1) that develop from arbitrary initial data that decays suitably at infinity. In particular, such initial data is resolved as time increases into a series of solitary waves plus small-size, oscillatory dispersive tails. This property has been rigorously proved for integrable equations, such as the KdV equation, and has been observed numerically in many other examples of nonlinear dispersive equations, and in particular in the case of Boussinesq systems, cf. e.g. [START_REF] Bona | A Boussinesq system for two-way propagation of nonlinear dispersive waves[END_REF], [START_REF] Pelloni | Numerical modelling of two-way propagation of nonlinear dispersive waves[END_REF], [START_REF] Antonopoulos | The Boussinesq system of equations: Theory and numerical analysis[END_REF], [START_REF] Dougalis | A numerical study of the stability of solitary waves of the Bona-Smith system[END_REF]. It is related to the fact that the solitary waves of the systems appear to be stable under small perturbations. As explained e.g in [START_REF] Pego | Convective linear stability of solitary waves for the Boussinesq equations[END_REF], [START_REF] Dougalis | A numerical study of the stability of solitary waves of the Bona-Smith system[END_REF], the classical variational theory for studying the orbital stability of solitary waves fails in the case of Boussinesq (and other) systems. Still missing is also a rigorous proof of their asymptotic stability. In [START_REF] Pego | Convective linear stability of solitary waves for the Boussinesq equations[END_REF], Pego and Weinstein have analyzed the linearized 'convective' asymptotic stability of the solitary waves of some Boussinesq type fourth-order p.d.e.'s and of the 'classical' Boussinesq system. A detailed numerical study of various stability properties of the solitary waves of the Bona-Smith systems was carried out in [START_REF] Dougalis | A numerical study of the stability of solitary waves of the Bona-Smith system[END_REF] using the fully discrete Galerkin scheme analyzed here for solving the periodic initial-value problem. One of the outcomes of the numerical experiments of [START_REF] Dougalis | A numerical study of the stability of solitary waves of the Bona-Smith system[END_REF] is that the solitary waves of (1) appear to be asymptotically stable under a variety of perturbations.

In this paper, we first compare, in Paragraph 3.2, numerically computed amplitude (A s ) vs. speed (c s ) data for the solitary waves of the Bona-Smith systems with analogous available experimental and analytical data for the solitary waves of the Euler equations. Our conclusion is that the points representing the pairs (A s , c s ) for the Bona-Smith systems for various values of θ 2 remain close to Scott Russell's prediction c s = √ 1 + A s , that he made by fitting his experimental observations, [START_REF] Russell | Report on waves, 14th Meeting of the British Association for the Advancement of Science[END_REF]. In Paragraph 3.3 we study numerically interactions between solitary waves of the systems. The interactions are of two kinds, namely head-on and overtaking collisions. Head-on collisions were studied in detail in the context of the BBM-BBM system in [START_REF] Bona | A Boussinesq system for two-way propagation of nonlinear dispersive waves[END_REF]. Particular emphasis was placed in [START_REF] Bona | A Boussinesq system for two-way propagation of nonlinear dispersive waves[END_REF] in comparing the computed maximum amplitude during the collision, and the accompanying phase shift, with available analytical approximations of these quantities valid for the Euler equations, [START_REF] Su | On head-on collisions between two solitary waves[END_REF]; fairly good agreement was observed. Our computations with other systems of the Bona-Smith family yield, in general, qualitatively similar results. The main difference is that if θ 2 = 2/3, the maximum amplitude after the collision apparently decreases monotonically to a value smaller than its value before the collision, and this loss of amplitude appears to be permanent. In contrast to this, in the case of the BBM-BBM system the maximum amplitude returns to its pre-collision level after some transient variation.

In Paragraph 3.3.2 we study numerically overtaking collisions of solitary waves of the Bona-Smith systems that travel in the same direction with different speeds. Such interactions of course have been studied in detail for one-way models, by the inverse scattering transform in the case of integrable equations like the KdV, [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF], or numerically for nonintegrable equations, [START_REF] Bona | Solitary-wave interaction[END_REF]. They have recently been studied in detail by experimental and numerical means in the case of the full Euler equations by Craig et al. in [START_REF] Craig | Solitary water wave interactions[END_REF]. Our numerical computations yield qualitatively similar results with those of these references. We also study in some detail a small wavelet structure generated during the overtaking collision and moving to a direction opposite to that of the solitary waves.

Finally, in Paragraph 3.4, we study numerically some aspects of the interaction of solitary waves of the Bona-Smith systems with the boundary of the computational domain. Specifically, we consider 'collisions' of solitary waves with the endpoints of an interval, where either reflection or homogeneous Dirichlet boundary conditions have been posed. The case of a solitary wave impinging on a reflection boundary is of course equivalent to (one half of) a head-on collision of the solitary wave with its symmetric image. In this case, as was mentioned already, the solitary waves of the systems are reflected backwards with a tiny permanent loss of amplitude and are followed by a dispersive tail of very small amplitude. The interaction with a homogeneous Dirichlet boundary is more complicated and we describe it in some detail Most of the theoretical results of Section 2 were first proved in [START_REF] Antonopoulos | The Boussinesq system of equations: Theory and numerical analysis[END_REF]. Some were announced in preliminary form in [START_REF] Antonopoulos | Galerkin methods for the Bona-Smith version of the Boussinesq equations[END_REF], [START_REF] Antonopoulos | Numerical approximations of Boussinesq systems[END_REF], and [START_REF] Dougalis | A numerical study of the stability of solitary waves of the Bona-Smith system[END_REF]. The proofs of some results of the paper that are stated here without proof are available in electronic form upon request to the authors.

Numerical methods and error estimates

Preliminaries

Let -L = x 0 < x 1 < • • • < x J+1 = L denote a partition of the interval Ī = [-L, L],
which is quasiuniform, in the sense that for some positive constant c, min j (x j+1 -x j ) ≥ ch, h := max j (x j+1x j ). Given integers r ≥ 2 and 0 ≤ µ ≤ r -2, we shall consider the finite dimensional spline spaces

S h = S h (µ, r) = {φ ∈ C µ : φ| [xj ,xj+1] ∈ P r-1 , 0 ≤ j ≤ J}, and S 0 h = S h ∩ {φ ∈ C( Ī) : φ(-L) = φ(L) = 0}
, where P k denotes the space of polynomials of degree at most k. Hence S h is a subspace of H µ+1 and S 0 h of H µ+1 ∩ H 1 0 . It is well-known, cf. e.g. [START_REF] Deboor | Spline approximation by quasiinterpolants[END_REF], [START_REF] Schreiber | Finite element methods of high-order accuracy for singular two-point boundary value problems with nonsmooth solutions[END_REF], that S h and S 0 h have the following approximation properties: Lemma 1 Let m, k be integers such that 0 ≤ m ≤ µ + 1 and m < k ≤ r. Then, there exists a constant C, independent of h, such that

min χ∈S h (w -χ) (m) ≤ Ch k-m w (k) , if w ∈ H k , and 
min χ∈S h (w -χ) (m) L ∞ ≤ Ch k-m w (k) L ∞ , if w ∈ C k .
Both results hold in the case of S 0 h as well, when w ∈ H k ∩ H 1 0 and w ∈ C k 0 , respectively.

In the sequel we shall use two types of elliptic projections onto the spline spaces. We define the linear mapping R h :

H 1 → S h by a N (R h v, χ) = a N (v, χ), ∀χ ∈ S h , where a N : H 1 × H 1 → R is the bilinear form a N (v, w) := (v, w) + b(v ′ , w ′ ).
Denoting by a D the restriction of a N to H 1 0 × H 1 0 , we also define the elliptic projection R 0 h : H 1 0 → S 0 h by a D (R 0 h w, χ) = a D (w, χ), ∀χ ∈ S 0 h . Since a N and a D are coercive in their respective domains of definition, it follows that the mappings R h and R 0 h are well-defined. The following lemma summarizes some of their stability properties that will be used in the sequel. (By C we shall denote generic constants independent of h.) Lemma 2 (i) R h and R 0 h are stable in L ∞ , in the sense that there exist constants

C such that R h v L ∞ ≤ C v L ∞ , ∀v ∈ H 1 , R 0 h v L ∞ ≤ C v L ∞ , ∀v ∈ H 1 0 . (ii) If µ ≥ 1, then R h and R 0 h are stable in H 2 , in the sense that there exist constants C such that R h v 2 ≤ C v 2 ∀v ∈ H 2 , R 0 h v 2 ≤ C v 2 ∀v ∈ H 2 ∩ H 1 0 . (iii) If µ ≥ 1, then R h and R 0 h are stable in W 1
∞ , in the sense that there exist constants C such that

R h v W 1 ∞ ≤ C v W 1 ∞ ∀v ∈ W 1 ∞ , R 0 h v W 1 ∞ ≤ C v W 1 ∞ ∀v ∈ W 1 ∞ ∩ H 1 0 .
PROOF. The stability of R 0 h in L ∞ is proved in [START_REF] Thomée | Maximum-norm stability and error estimates in Galerkin methods for parabolic equations in one space variable[END_REF]. The proof of the stability of R h in L ∞ follows along similar lines. The proofs of (ii) and (iii) are standard and may be found in detail e.g. in [START_REF] Antonopoulos | The Boussinesq system of equations: Theory and numerical analysis[END_REF]. 2

From Lemmata 1 and 2 there follows in a standard way

Lemma 3 If µ ≥ 1, then (i) R 0 h v -v k ≤ Ch r-k v r , if v ∈ H r ∩ H 1 0 and k = 0, 1, 2. (ii) R 0 h v -v W k ∞ ≤ Ch r-k v W r ∞ , if v ∈ C r 0 and k = 0, 1. Analogous estimates to (i) and (ii) hold for R h if v ∈ H r and v ∈ C r , respectively.

Semidiscretization of the ibvp with homogeneous Dirichlet boundary conditions

We consider, for simplicity, the homogeneous Dirichlet ibvp for the Bona-Smith systems, that we rewrite here for the convenience of the reader. For b > 0, c < 0 we seek η and u such that

η t + u x + (ηu) x -bη xxt = 0, u t + η x + uu x + cη xxx -bu xxt = 0, x ∈ Ī, t ≥ 0, u(x, 0) = u 0 (x), η(x, 0) = η 0 (x), x ∈ Ī, η(±L, t) = u(±L, t) = 0, t ≥ 0. (D)
We let µ ≥ 1 and r ≥ µ + 2. Then, the standard Galerkin semidiscretization of (D) in S 0 h = S 0 h (µ, r) is defined as follows. Let [0, T ] be the maximal interval of existence and uniqueness of the solution of (D) in an appropriate function space to be specified below. We seek

η h , u h : [0, T ] → S 0 h satisfying for 0 ≤ t ≤ T a D (η ht , χ) + ((u h + η h u h ) x , χ) = 0, ∀χ ∈ S 0 h , a D (u ht , ψ) + (η hx , ψ) -c(η hxx , ψ ′ ) + (u h u hx , ψ) = 0, ∀ψ ∈ S 0 h , (4) 
with initial conditions

η h (0) = R 0 h η 0 , u h (0) = R 0 h u 0 . (5) 
(It is to be noted that other types of suitable approximations of η 0 and u 0 in S 0 h , e.g. L 2 projections, interpolants etc., may be used as initial conditions without affecting the error estimates. We have used the elliptic projections for simplicity.) We represent (4)-( 5) more compactly by defining the mappings f :

L 2 → S 0 h by a D ( f (w), χ) = (w, χ ′ ), ∀χ ∈ S 0 h , ĝ : H 2 → S 0 h by ĝ(v) = c f (v ′′ ) + f (v), F : H 1 × H 1 → S 0 h by F (v, w) = f (vw), f : H 1 × H 1 → S 0 h by f (v, w) = f (w) + F (v, w), g : H 2 × H 1 → S 0 h by g(v, w) = ĝ(v) + 1 2 F (w, w).
Then, we may write ( 4)-( 5) as

η ht = f (η h , u h ), u ht = g(η h , u h ), 0 ≤ t ≤ T, η h (0) = R 0 h η 0 , u h (0) = R 0 h u 0 . (6) 
Choosing a basis for S 0 h , we may see that ( 6) represents an initial-value problem for the system of o.d.e.'s satisfied by the coefficients of η h and u h with respect to this basis. Since f and g are continuous and locally Lipschitz (6) possesses a unique solution at least in an interval [0, t h ). In the error estimate of Proposition 5 we shall show in particular that this solution may be extended up to t = T . We first establish some key properties of the mapping f . Lemma 4 There exists a constant C independent of h such that

(i) f (v) 1 ≤ C v , v ∈ L 2 , (ii) f (v) 2 ≤ C v 1 , v ∈ H 1 , (iii) f (v) W 1 ∞ ≤ C v L ∞ , v ∈ L ∞ , (iv) f (v ′ ) L ∞ ≤ C v L ∞ , v ∈ H 1 .
PROOF. The inequality (i) follows immediately from the definition of f . To prove (ii) consider the bvp w

-bw ′′ = -v ′ for v ∈ H 1 , with w(±L) = 0. Then a D (w, χ) = a D (R 0 h w, χ) = (v, χ ′ ) for χ ∈ S 0 h , whence R 0 h w = f (v)
, and (ii) follows in view of (ii) of Lemma 2. In order to prove (iii) consider the bvp γ

-bγ ′′ = -w, γ(±L) = 0, where, given v ∈ L ∞ , w(x) := 1 b x -L vdξ -(x+L) 2bL L -L vdξ, x ∈ Ī. It follows that w ∈ W 1 ∞ ∩ H 1 0 and w W 1 ∞ ≤ C v L ∞ . In addition, it is straightforward to verify that for χ ∈ S 0 h , a D ( f (v) -R 0 h w, χ) = a D (R 0 h γ, χ). It follows that f (v) = R 0 h (w + γ)
, from which (iii) follows in view of the above and (iii) of Lemma 2. Finally, consider the bvp γbγ ′′ = -w, γ(±L) = 0, where, for v ∈ H 1 , w(x

) := 1 b (v(x) -v(-L)) -(x+L) 2bL (v(L) -v(-L)), x ∈ Ī, so that w ∈ H 1 0 and w L ∞ ≤ C v L ∞ .
As before, we may check that f (v ′ ) = R 0 h (w + γ), from which (iv) follows in view of (i) of Lemma 2. 2

We can now prove an error estimate in H 2 × H 1 for the semidiscrete approximation. In what follows, C(0, T ; X) denotes the continuous maps from [0, T ] onto the Banach space X. Proposition 5 Let T > 0 be such that the classical solution (η, u) of (D) lies in C(0, T ;

H r ∩ H 1 0 ) × C(0, T ; H r-1 ∩ H 1 0 ).
Then, if h is sufficiently small, the semidiscrete problem (6) has a unique solution (η h , u h ) on [0, T ], which satisfies, for some constant C independent of h,

η(t) -η h (t) 2 + u(t) -u h (t) 1 ≤ Ch r-2 , 0 ≤ t ≤ T. (7) 
PROOF. Let M > 0 be a constant large enough so that

max 0≤t≤T ( η(t) 2 + u(t) 1 ) ≤ M , (8) 
and

R 0 h η 0 2 + R 0 h u 0 1 ≤ 3 M /2 (cf. Lemma 2)
. Let 0 < t h ≤ T be the maximal time for which there holds

u h (t) 1 ≤ 2 M , 0 ≤ t ≤ t h . (9) 
Define

ρ := η -R 0 h η, θ := R 0 h η -η h , σ := u -R 0 h u, ξ := R 0 h u -u h .
Then, by ( 6) and (D) we have

θ t = f (ξ + σ) + F (η, σ + ξ) + F (ρ + θ, u h ), (10) 
ξ t = ĝ(θ + ρ) + 1 2 [F (u, σ + ξ) + F (σ + ξ, u h )]. (11) 
Therefore, using Lemma 3, (i) and (ii) of Lemma 4 and ( 9) we conclude that there exists a constant

C = C(η, u, M ) such that for 0 ≤ t ≤ t h θ t 2 ≤ C(h r-2 + θ 1 + ξ 1 ), ( 12 
)
ξ t 1 ≤ C(h r-2 + θ 2 + ξ 1 ). ( 13 
)
Using these estimates there follows for 0

≤ t ≤ t h θ(t) 2 + ξ(t) 1 ≤ θ(0) 2 + ξ(0) 1 + C[h r-2 + t 0 ( θ(τ ) 2 + ξ(τ ) 1 )dτ ],
which, by Gronwall's lemma, since θ(0) = ξ(0) = 0, yields for some constant C = C(η, u, M , T )

θ(t) 2 + ξ(t) 1 ≤ Ch r-2 , 0 ≤ t ≤ t h . (14) 
This implies by ( 8), since σ(t

) 1 ≤ Ch r-2 and u h = u -(σ + ξ), that u h (t) 1 ≤ Ch r-2 + M .
Hence, since r ≥ 3, for h sufficiently small we have that u h (t) 1 < 2 M for t ∈ [0, t h ] contradicting the definition of t h . Therefore, ( 9) and ( 14) hold up to t = T and the result follows from Lemma 3. 2

The following proposition is the main result of this section: Proposition 6 Suppose that for the classical solution of (D) there holds that

(η, u) ∈ C(0, T ; C r 0 ) ∩ C(0, T ; C r-1 0
) for some 0 < T < ∞. Then, for h sufficiently small, there exists a constant C independent of h, such that for

0 ≤ t ≤ T η(t) -η h (t) W 1 ∞ + u(t) -u h (t) L ∞ ≤ Ch r-1 . (15) 
PROOF. From ( 10) and ( 11), using Lemma 3(ii) and Lemma 4(iii) and (iv), we have

θ t W 1 ∞ ≤ C(h r + θ L ∞ + ξ L ∞ ), and ξ t L ∞ ≤ C(h r-1 + θ W 1 ∞ + ξ L ∞ ).
The result now follows by Gronwall's lemma. 2

Remark 7

The error estimates [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: I. Derivation and Linear Theory[END_REF] and [START_REF] Chen | Solitary-wave and multipulsed traveling-wave solutions of Boussinesq systems[END_REF] give optimal rates of convergence for ηη h in H 2 and W 1 ∞ and suboptimal rates for uu h in H 1 and L ∞ . In the numerical experiments of Section 3.1, where smooth cubic splines are used for the spatial discretization (i.e. µ = 2, r = 4), the optimal rates for ηη h are confirmed, while it is observed that the rate of convergence of uu h L ∞ is equal to three. Thus, it seems that the exponent r -1 in ( 15) is sharp. The observed rates of convergence in L 2 for both components of the error are equal to 3. This suboptimal rate is expected (see the remarks in the Introduction) for the standard Galerkin method in the presence of non-periodic boundary conditions due to the term η xxx in the Boussinesq system at hand. 2 Remark 8 In the case of the BBM-BBM systems (b > 0, c = 0) it is straightforward (cf. e.g. [START_REF] Chatzipantelidis | Explicit multistep methods for nonstiff partial differential equations[END_REF]) to show that optimal-order estimates hold for ηη h and uu h in L 2 (of O(h r )) and in H 1 (of O(h r-1 )), even for subspaces with µ = 0 and r ≥ 2. 2 Remark 9 Using e.g. the estimates (12), [START_REF] Chatzipantelidis | Explicit multistep methods for nonstiff partial differential equations[END_REF], the inequalities in the proof of Proposition 6, and the properties of the elliptic projection operators, one obtains similar estimates for the temporal derivatives of the errors ηη h and uu h . It is also not hard to show (using the fact that max 0≤t≤T ( η h 2 + u h 1 ) ≤ C, where C is independent of h, a byproduct of the proof of Proposition 5) that temporal derivatives of all orders of η h and u h are bounded on [0, T ] in the H 2 and H 1 norms, respectively, by constants independent of h. For example, repeated applications of (i) and (ii) of Lemma 4 to the formulas

η h t = f (η h , u h ), u ht = g(η h , u h ) yield η h t 2 + u ht 1 ≤ C on [0, T ].
Since e.g. η htt = f (u ht ) + F (η ht , u h ) + F (η h , u ht ) etc., similar estimates applied recursively yield bounds of the form

max 0≤t≤T ( ∂ j t η h 2 + ∂ j t u h 1 ) ≤ C j , j = 0, 1, 2, . . . , (16) 
where C j are constants independent of h. (A similar result holds in the W 1 ∞ × L ∞ norm.) As is well-known, [START_REF] Craig | Solitary water wave interactions[END_REF] implies that the o.d.e. system (6) is not stiff and, consequently, may be discretized in time by explicit time-stepping methods in an unconditionally stable manner. 2

Time-stepping with an explicit Runge-Kutta method

We shall discretize the o.d.e. ivp (6) using the classical, explicit, four-stage Runge-Kutta (RK) method of order four. We shall use a uniform time step k, assuming that for a positive integer N , k = T /N , and putting t n = nk, n = 0, 1, . . .. Given an o.d.e. system y ′ = Φ(t, y), one step of this RK scheme (with y n approximating y(t n )) is of the form y n,1 = y n , t n,1 = t n for i = 2, 3, 4:

y n,i = y n + k a i Φ(t n,i-1 , y n,i-1 ), t n,i = t n + τ i k y n+1 = y n + k 4 j=1 b j Φ(t n,j , y n,j ), where a 2 = a 3 = 1 2 , a 4 = 1, τ 2 = τ 3 = 1 2 , τ 4 = 1, b 1 = b 4 = 1 6 , b 2 = b 3 = 1 3 .
Applying this scheme to the ivp (4)- [START_REF] Baker | Convergence of Galerkin approximation for the Korteweg-deVries equation[END_REF], and denoting by H n , U n , respectively, the fully discrete approximation in S 0 h of η(•, t n ), u(•, t n ), respectively, we are led to the following time-stepping procedure: We seek functions in S 0 h denoted by

H n , U n , 0 ≤ n ≤ N , H n,i , U n,i , 0 ≤ n ≤ N -1, i = 1, 2, 3, 4, such that H 0 = R h η 0 , U 0 = R h u 0
for n = 0, 1, 2, . . . , N -1 :

H n,1 = H n , U n,1 = U n for i = 2, 3, 4 : a D (H n,i -H n , χ) = -ka i (U n,i-1 x + (H n,i-1 U n,i-1 ) x , χ), ∀χ ∈ S 0 h a D (U n,i -U n , ϕ) = -ka i ((H n,i-1 x + U n,i-1 U n,i-1 x , ϕ) -c(H n,i-1 xx , ϕ ′ )), ∀ϕ ∈ S 0 h a D (H n+1 -H n , χ) = -k 4 j=1 b j (U n,j x + (H n,j U n,j ) x , χ), ∀χ ∈ S 0 h a D (U n+1 -U n , ϕ) = -k 4 j=1 b j ((H n,j x + U n,j U n,j x , ϕ) -c(H n,j xx , ϕ ′ )), ∀ϕ ∈ S 0 h (17) 
Hence, given a basis {ϕ i } of S 0 h , the implementation of this scheme requires solving eight linear systems with the same, time-independent matrix a D (ϕ i , ϕ j ). We have the following, optimal-order in t, error estimate: Proposition 10 Let µ ≥ 1, r ≥ µ + 2 and (η, u) be the solution of (D), and suppose that (η, u) ∈ C(0, T ;

H r ∩ H 1 0 ) × C(0, T ; H r-1 ∩ H 1 0 ) for some 0 < T < ∞. Let H n , U n , 0 ≤ n ≤ N ,
be the solution of [START_REF] Deboor | Spline approximation by quasiinterpolants[END_REF]. Then, for h and k sufficiently small, there exists a constant C independent of h such that

max 0≤n≤N ( H n -η(t n ) 2 + U n -u(t n ) 1 ≤ C(k 4 + h r-2 ). ( 18 
)
PROOF. Let η h , u h be the semidiscrete approximations defined by ( 6) and put for n = 0, . . . , N -1,

V n,1 = η n h := η h (t n ) and W n,1 = u n h := u h (t n ).
Also, let V n,j , W n,j ∈ S 0 h for j = 2, 3, 4 be defined as V n,j := η n h + ka j f (V n,j-1 , W n,j-1 ), W n,j := u n h + ka j g(V n,j-1 , W n,j-1 ). Hence, the local temporal errors of the RK scheme δ n 1 , δ n 2 ∈ S 0 h are given by

δ n 1 := η n+1 h -η n h -k 4 j=1 b j f (V n,j , W n,j ), δ n 2 := u n+1 h -u n h -k 4 j=1 b j g(V n,j , W n,j ). ( 19 
)
We shall show that under our hypotheses max 0≤n≤N -1

( δ n 1 2 + δ n 2 1 ) ≤ Ck 5 . ( 20 
)
This will be done by explicitly computing the intermediate stages V n,j , W n,j and the function values f (V n,j , W n,j ), g(V n,j , W n,j ) in terms of the temporal derivatives of u h and η h at t = t n . First, using the definitions of f and g we obtain

V n,2 = η n h + k 2 η n h t , W n,2 = u n h + k 2 u n h t , f (V n,2 , W n,2 ) = η n h t + k 2 η n h tt + k 2 4 α n , g(V n,2 , W n,2 ) = u n ht + k 2 u n htt + k 2 8 β n , (21) 
where

α n = α(t n ), α(t) := F (η ht (t), u ht (t)), β n = β(t n ), β(t) := F (u ht (t), u ht (t)).
In addition, we find after long computations that

V n,3 = 2 j=0 k 2 j ∂ j t η n h + k 3 8 α n , W n,3 = 2 j=0 k 2 j ∂ j t u n h + k 3 16 β n , f (V n,3 , W n,3 ) = η n h t + k 2 η n h tt + k 2 4 η n h ttt -k 2 4 α n + k 3 8 [F (α n , u n h ) + 1 2 f (η n h , β n ) + α n t ] + k 4 16 γ n 1 , g(V n,3 , W n,3 ) = u n h t + k 2 u n h tt + k 2 4 u n h ttt -k 2 8 β n + k 3 8 [ĝ(α n ) + 1 2 F (u n h , β n ) + 1 2 β n t ] + k 4 32 γ n 2 , (22) 
where

γ n 1 := F (α n , u n h t + k 2 u n h tt + k 2 8 β n )+ 1 2 F (η n h t + k 2 η n h tt , β n )+ F (η n h tt , u n htt ), γ n 2 := F (u n h t + k 2 u n htt + k 2 16 β n , β n ) + F (u n h tt , u n h tt )
. Finally, we obtain

V n,4 = η n h +kη n h t + k 2 2 η n h tt + k 3 4 η n h ttt - k 3 4 α n + k 4 8 γn 1 , W n,4 = u n h +ku n ht + k 2 2 u n h tt + k 3 4 u n httt - k 3 8 β n + k 4 8 γn 2 ,
where

γn 1 := F (α n , u n h ) + 1 2 f (η n h , β n ) + α n t + k 2 γ n 1 , γn 2 := ĝ(α n ) + 1 2 F (u n h , β n ) + 1 2 β n t + k 4 γ n 2 . Hence, f (V n,4 , W n,4 ) = η n h t + kη n h tt + k 2 2 η n h ttt + k 3 4 η n h tttt -k 3 4 [α n t + F (α n , u n h ) + 1 2 f (η n h , β n )] + k 4 8 γ n 3 , g(V n,4 , W n,4 ) = u n h t + ku n htt + k 2 2 u n h ttt + k 3 4 u n htttt -k 3 4 [ĝ(α n ) + 1 2 β n t + 1 2 F (u n h , β n )] + k 4 8 γ n 4 , (23) 
where

γ n 3 := f (γ n 2 ) + F (γ n 1 , W n,4 -k 4 8 γn 2 ) + F (V n,4 , γn 2 ) + F (η n h t , 2u n httt -β n ) +F (η n h tt , 2u n htt + ku n h ttt -k 2 β n ) + F (η n h ttt -α n , 2u n h t + ku n h tt + k 2 2 u n httt -k 2 4 β n ), γ n 4 := ĝ(γ n 1 ) + F (2u n ht + ku n htt + k 2 4 u n h ttt -k 2 8 β n , u n h ttt -1 2 β n ) + F (u n h tt , u n h tt ) + F (W n,4 -k 4 16 γn 2 , γn 2 ).
Hence, as expected (and to our relief), the correct formal order of RK method emerges. Indeed, substituting ( 21)-( 23) into [START_REF] Dougalis | On some high-order accurate fully discrete Galerkin methods for the Korteweg-deVries equation[END_REF] gives

δ n 1 = η n+1 h - 4 j=0 k j j! ∂ j t η n h + k 5 Γ n 1 , δ n 2 = u n+1 h - 4 j=0 k j j! ∂ j t u n h + k 5 Γ n 2 , (24) 
where

Γ n 1 := - 1 48 (γ n 1 + γ n 3 ), Γ n 2 := - 1 48 ( 1 2 γ n 2 + γ n 4 ).
As a consequence of ( 16) and the properties of f and g, we see that there exists a constant C, independent of h, k and n, such that for 0

≤ n ≤ N -1, α n 2 + β n 1 ≤ C, γ n 1 2 + γ n 2 1 ≤ C, γn 1 2 + γn 2 1 ≤ C, γ n 3 2 + γ n 4 1 ≤ C, V n,i 2 + W n,i 1 ≤ C, 1 ≤ i ≤ 4.
Therefore, the desired order of accuracy estimate [START_REF] Dougalis | Solitary waves of the Bona-Smith system[END_REF] for the local error follows from ( 24) and ( 16).

We proceed now with the stability part of the proof. We put ε n,j := V n,j -H n,j , e n,j := W n,j -U n,j , j = 1, 2, 3, 4, and note that

ε n := ε n,1 = η n h -H n , e n := e n,1 = u n h -U n .
Using the definitions of f and g, we obtain, for 0 ≤ n ≤ N -1, j = 2, 3, 4,

ε n,j = ε n + ka j [f (V n,j , e n,j ) + F (ε n,j-1 , W n,j-1 ) -F (ε n,j-1 , e n,j-1 )],
e n,j = e n + ka j [ĝ(ε n,j-1 ) + F (W n,j-1 , e n,j-1 ) -1 2 F (e n,j-1 , e n,j-1 )].

Suppose now that max t∈[0,T ], 0≤i≤5

( ∂ i t η(t) 2 + ∂ i t u(t) 1 ) ≤ M , where M is large enough so that, cf. (16), max t∈[0,T ], 0≤i≤5 ( ∂ i t η h (t) 2 + ∂ i t u h (t) 1 ) ≤ 2 M . Let n * < N be the largest integer for which H n 2 + U n 1 ≤ 3 M , 0 ≤ n ≤ n * . Then, for 0 ≤ n ≤ n * , ε n 2 + e n 1 ≤ 5 M and
ε n,j 2 + e n,j 1 ≤ ε n 2 + e n 1 + Ck( ε n,j-1 2 + e n,j-1 1 ), j = 2, 3, 4, where C = C( M ). Since now

ε n+1 = ε n + k 4 j=1 b j [f (V n,j , W n,j ) -f (H n,j , U n,j )] + δ n 1 , e n+1 = e n + k 4 j=1 b j [g(V n,j , W n,j ) -g(H n,j , U n,j )] + δ n 2 ,
it follows (with A n := ε n 2 + e n 1 , A n,j := ε n,j 2 + e n,j 1 ) that A n+1 ≤ (1 + kC)A n + Ck 5 , A 0 = 0. Hence A n+1 ≤ Ck 4 , and for k sufficiently small we have ) for some 0 < T < ∞. Let H n , U n , 0 ≤ n ≤ N , be the solution of [START_REF] Deboor | Spline approximation by quasiinterpolants[END_REF]. Then for h and k sufficiently small, there exists a constant C independent of h and k such that

H n+1 2 + U n+1 1 ≤ A n + 2 M ≤ Ck 4 + 2 M < 3 M , contradicting the maximal property of n * . We conclude that H n 2 + U n 1 ≤ C for 0 ≤ n ≤ N , whence max 0≤n≤N ( ε n 2 + e n 1 ) = max 0≤n≤N ( η n h -H n 2 + u n h -U n 1 ) ≤ Ck
max 0≤n≤N ( H n -η(t n ) W 1 ∞ + U n -u(t n ) L ∞ ) ≤ C(k 4 + h r-1 ).
For the BBM-BBM system one may easily prove optimal-order O(k 4 + h r ) L 2 -estimates for both components of the error.

Discretization of the ibvp with reflection boundary conditions

We consider now the ibvp, that we will denote by (R) and which is obtained by (D) if we replace the Dirichlet boundary conditions by η x (±L, t) = 0, u(±L, t) = 0, t ≥ 0. Let again µ ≥ 1 and r ≥ µ + 2. The standard Galerkin semidiscretization of this ibvp in S h × S 0 h is defined as follows. We seek η h : [0, T ] → S h and u

h : [0, T ] → S 0 h satisfying for 0 ≤ t ≤ T a N (η ht , χ) + ((u h + η h u h ) x , χ) = 0, ∀χ ∈ S h , a D (u ht , χ) + (η hx , ψ) -c(η hxx , ψ ′ ) + (u h u hx , ψ) = 0, ∀ψ ∈ S 0 h , (25) 
with initial conditions

η h (0) = R h η 0 , u h (0) = R 0 h u 0 . (26) 
In addition to the mappings f , ĝ, F , g defined in Paragraph 2.2, we shall also need the mappings f :

L 2 → S h , defined by a N ( f (w), φ) = (w, φ ′ ), ∀φ ∈ S h , F : H 1 × H 1 → S h , defined by F (v, w) = f (vw), f R : H 1 × H 1 → S h , defined by f R (v, w) = f (w) + F (v, w)
. Then, we may write ( 25)-( 26) as

η ht = f R (η h , u h ), u ht = g(η h , u h ), 0 ≤ t ≤ T, η h (0) = R h η 0 , u h (0) = R 0 h u 0 . (27) 
Following the general scheme of the proofs in Lemma 4, it may be shown that f R satisfies analogous properties to (i), (ii) and (iii) of Lemma 7. Hence, it may be checked that the following analogs of Propositions 5 and 6 hold for [START_REF] Pelloni | Spectral methods for the numerical solution of nonlinear solution dispersive wave equations[END_REF] as well. The proofs are omitted. Proposition 12 Suppose that the classical solution (η, u) of (R) lies in C(0, T ; H r )×C(0, T ; H r-1 ∩ H 1 0 ). Then, if h is sufficiently small, the semidiscrete problem [START_REF] Pelloni | Spectral methods for the numerical solution of nonlinear solution dispersive wave equations[END_REF] has a unique solution (η h , u h ) on [0, T ], which satisfies, for some constant C independent of h,

η(t) -η h (t) 2 + u(t) -u h (t) 1 ≤ Ch r-2 , 0 ≤ t ≤ T.
Proposition 13 Suppose that the classical solution (η, u) of (R) lies in C(0, T ; C r )×C(0, T ; C r-1 0 ). Then, for h sufficiently small, there exists a constant C, independent of h, such that

η(t) -η h (t) W 1 ∞ + u(t) -u h (t) L ∞ ≤ Ch r-1 .
For the analogous to [START_REF] Deboor | Spline approximation by quasiinterpolants[END_REF] temporal discretization of ( 25)- [START_REF] Pego | Convective linear stability of solitary waves for the Boussinesq equations[END_REF], denoting again by H n , U n the fully discrete approximations of η(t n ), u(t n ), we may prove the analogs of Propositions 10 and 11, which we combine into the following Proposition 14 Suppose that the classical solution (η, u) of (R) has the regularity properties stated in Proposition 12 and 13, respectively. Then, for k and h sufficiently small, we have, respectively

max 0≤n≤N ( H n -η(t n ) 2 + U n -u(t n ) 1 ) ≤ C(k 4 + h r-2 ), max 0≤n≤N ( H n -η(t n ) W 1 ∞ + U n -u(t n ) L ∞ ) ≤ C(k 4 + h r-1
). In the case of the BBM-BBM system one may prove analogous estimates of optimal spatial order O(h r ) in L 2 .

Discretization of the periodic initial-value problem

We finally discretize the periodic initial-value problem (ipvp) (P) for (1) with periodic boundary conditions at x = ±L, where η 0 , u 0 are given 2L-periodic functions. For this purpose we shall use the space of smooth periodic splines on a uniform mesh on Ī = [-L, L] for the spatial discretization. It is well-known, [START_REF] Thomée | Convergence estimates for Galerkin methods for variable coefficient initial value problems[END_REF], that optimal-order L 2 error estimates are valid in this spline space for the semidiscretization of ipvp's of linear pde's with variable-coefficient, L 2 -semibounded spatial operators of any (odd or even) order. This error analysis has been extended in the case of the KdV equation and its variants, cf. e.g. [START_REF] Baker | Convergence of Galerkin approximation for the Korteweg-deVries equation[END_REF], [START_REF] Dougalis | On some high-order accurate fully discrete Galerkin methods for the Korteweg-deVries equation[END_REF], [START_REF] Bona | Conservative high-order numerical schemes for the generalized Korteweg-deVries equation[END_REF], and may also be used for Boussinesq systems. In what follows, we shall just establish notation and state some relevant error estimates, whose proofs may be found in [START_REF] Antonopoulos | The Boussinesq system of equations: Theory and numerical analysis[END_REF].

Let J be a positive integer and put h = 2L/J. Consider the uniform partition of Ī given by x j = -L + jh, j = 0, . . . , J. For integer r ≥ 3 we consider the associated J-dimensional space of smooth periodic splines on Ī

S h = {φ ∈ C r-2 p : φ| [xj ,xj+1] ∈ P r-1 , 0 ≤ j ≤ J -1}.
It is well-known that given w in the Sobolev space H s p (which consists of the 2L-periodic functions in H s ) there exists a χ ∈ S h such that s-1 j=0 h j wχ j ≤ Ch s w s , 1 ≤ s ≤ r, for some constant C independent of h and w. In addition, cf. [START_REF] Thomée | Convergence estimates for Galerkin methods for variable coefficient initial value problems[END_REF] and the references quoted therein, one may construct a basis {φ j } J j=1 of S h , so that, for w ∈ H r p the associated quasiinterpolant

Q h w = J j=1 w(x j )φ j (x) satisfies w -Q h w ≤ Ch r w (r) .
The semidiscrete approximation (η h , u h ) : [0, T ] → S h × S h of the solution (η, u) of (P) is defined by

a p (η ht , χ) + ((u h + η h u h ) x , χ) = 0, ∀χ ∈ S h , a p (u ht , φ) + (η hx + u h u hx , φ) -c(η hxx , φ ′ ) = 0, ∀φ ∈ S h , 0 ≤ t ≤ T η h (0) = Q h η 0 , u h (0) = Q h u 0 , (28) 
where a p (v, w) := (v, w) + b(v ′ , w ′ ) for v, w ∈ H 1 p . The first step in the proof of the L 2 -error estimates is to establish optimal-rate L 2 error bounds for a suitable local error of [START_REF] Pelloni | Numerical modelling of two-way propagation of nonlinear dispersive waves[END_REF]. This may be accomplished by using some properties of the quasiinterpolant proved in [START_REF] Thomée | Convergence estimates for Galerkin methods for variable coefficient initial value problems[END_REF], cf. [START_REF] Baker | Convergence of Galerkin approximation for the Korteweg-deVries equation[END_REF], [START_REF] Dougalis | On some high-order accurate fully discrete Galerkin methods for the Korteweg-deVries equation[END_REF], [START_REF] Antonopoulos | The Boussinesq system of equations: Theory and numerical analysis[END_REF]. Lemma 15 Suppose that the solution (η, u) of (P) is sufficiently smooth on [0, T ]. Let H := Q h η, U := Q h u, and ψ, ζ ∈ C(0, T ; S h ) be such that

a p (H t , χ) + ((U + HU ) x , χ) = (ψ, χ), ∀χ ∈ S h , a p (U t , φ) + (H x + U U x , φ) -c(H xx , φ ′ ) = (ζ, φ), ∀φ ∈ S h .
Then, for some constant C independent of h we have

max 0≤t≤T ( ψ(t) + ζ(t) ) ≤ Ch r .
With the aid of this lemma, and using a stability argument similar to the one in the proof of Proposition 5, one may prove the superaccuracy result that [START_REF] Antonopoulos | The Boussinesq system of equations: Theory and numerical analysis[END_REF], from which there follows Proposition 16 Let the solution (η, u) of (P) be sufficiently smooth in [0, T ]. Then, for h sufficiently small, the solution (η h , u h ) of ( 28) exists in [0, T ] and satisfies, for some constant C independent of h,

Q h η -η h 2 + Q h u -u h 1 ≤ Ch r , on [0, T ], cf.
max 0≤t≤T ( η(t) -η h (t) + u(t) -u h (t) ) ≤ Ch r .
Discretizing the o.d.e. system [START_REF] Pelloni | Numerical modelling of two-way propagation of nonlinear dispersive waves[END_REF] in time in the usual way by the classical, fourth-order explicit RK method of Paragraph 2.3 and denoting by H n h , U n h , 0 ≤ n ≤ N , the fully discrete approximations of η(t n ), u(t n ), we may prove now, cf. [START_REF] Antonopoulos | The Boussinesq system of equations: Theory and numerical analysis[END_REF], that max 0≤t≤T

( H n h -η(t n ) + U n h -u(t n ) ) ≤ C(k 4 + h r ).
Optimal-order in space and time L 2 -error estimates may be proved in the case of the periodic ivp for the BBM-BBM system, and for other Boussinesq systems. The proofs will appear elsewhere.

Numerical experiments

In what follows we present a series of numerical experiments aimed at checking the accuracy of the numerical scheme put forth in the previous section and illustrating the behavior of solutions of the Bona-Smith systems in some interesting examples. We used throughout cubic splines (i.e. the space S h with µ = 2, r = 4 in the notation of Paragraph 2.1) on a uniform mesh for the spatial discretization, while the time-stepping was effected by the classical, four-stage, fourth-order RK scheme. As initial conditions throughout were taken the appropriate elliptic projections of the initial data.

Numerical study of convergence rates

We begin by presenting an experimental study of the rates of the spatial convergence of the numerical scheme in various norms for the three types of boundary conditions considered. In each case the spatial interval was [0, 1]. We took h = 1/N and h = k and integrated up to T = 2.

In each case we integrated with a version of the code that was supplied with a right-hand side nonhomogeneous term, computed from the assumed exact solution, and we computed the L 2 , H 1 , H 2 , L ∞ and W 1 ∞ norms of the errors for several N and also the resulting convergence rates. (We checked that the O(k 4 ) temporal error was always sufficiently small compared to the spatial error.) The maximum values needed to compute the L ∞ and W 1 ∞ norms were taken over all quadrature points in [0, 1] used in the finite element quadratures. (We employed the 5-point Gauss rule in each spatial mesh interval.) (i) Dirichlet boundary conditions As exact solution we took the pair of functions η(x, t) = x(x -1)e 2t cos πx, u(x, t) = 2e xt sin πx that satisfy homogeneous Dirichlet boundary conditions at x = 0 and x = 1. The values of the errors and associated convergence rates are shown in Table 1 in the case of the system θ 2 = 9/11. The observed spatial rates of the η-errors were practically equal to 3, 3, 2, 3, and 3 in the L 2 , H 1 , H 2 , L ∞ and W 1 ∞ norms, respectively. This indicates that the optimal-order bounds obtained in Proposition 5 for the H 2 norm and in Proposition 6 for the W 1 ∞ norm of the η-error are sharp. It also suggests that the standard Galerkin method, in the case of Dirichlet boundary conditions, yields suboptimal rates of convergence for η in L 2 and L ∞ and optimal rates in H 1 and W 1 ∞ . The analogous rates for the u-errors were approximately equal to 3, 2.5, 1.5, 3, and 2, in the L 2 , H 1 , H 2 , L ∞ , and W 1 ∞ norms, respectively. This indicates that the order 2 for uu h 1 in the bound in [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: I. Derivation and Linear Theory[END_REF] is pessimistic by 1/2, while the order 3 for uu h L ∞ in ( 15) is again sharp. It also suggests that the standard Galerkin method, in the case of Dirichlet boundary conditions, yields suboptimal rates of convergence for u in all norms. In the case of the easier to integrate θ 2 = 2/3 (BBM-BBM) system, where only ∂ xxt derivatives are present, all rates are as expected, optimal (i.e. equal to 4, 3, 2, 4 and 3 for the errors in the L 2 , H 1 , H 2 , L ∞ , and W 1 ∞ , respectively for both η and u.) In this case the observed convergence rates for the η and u errors for all norms for the systems corresponding to θ 2 = 9/11 are practically the same with those of Table 1 and are not shown here. Identical remarks with those made in the case of Dirichlet boundary conditions on the optimality and non-optimality of the convergence rates apply, in view e.g. of the results of Propositions 12 and 13. All rates for the BBM-BBM system are again optimal.

(iii) Periodic boundary conditions As exact solution in this case we took the pair of functions η = e t sin[2π(x-2t)], u = 2e t/2 cos[2π(xt/2)]. The observed convergence rates for the system with θ 2 = 9/11 are shown in Table 2. All rates for both components of the error are of optimal order as expected. The analogous experiment with the BBM-BBM system gave the same rates. It is interesting to report that at the nodes x j = jh of the uniform spatial discretization we observed superconvergence at a O(h 4 ) rate of the W 1 ∞ norms of the errors of η and u. (Of course, superconvergence at the nodes is a well-known phenomenon for periodic initial-value problems for linear p.d.e.'s with constant coefficients, cf. e.g. [START_REF] Thomée | Convergence estimates for Galerkin methods for variable coefficient initial value problems[END_REF].) As pointed out in the Introduction, we will use the numerical method previously analyzed and tested experimentally as a tool to study numerically interactions of solitary-wave solutions of the Bona-Smith systems. Some such exact solutions are known in closed form. Following e.g. the procedure in [START_REF] Chen | Exact traveling-wave solutions to bi-directional wave equations[END_REF] we may find, for each θ 2 ∈ (7/9, 1) a single solitary-wave solution of the corresponding system, of the form η s (x, t) = η 0 sech 2 (λ(x + x 0c s t)), u s (x, t) = Bη s (x, t), [START_REF] Renouard | Experimental study of the generation, damping, and reflexion of a solitary wave[END_REF] where x 0 is arbitrary and

η 0 = 9 2 θ 2 -7/9 1-θ 2 , c s = 4(θ 2 -2/3) √ 2(1-θ 2 )(θ 2 -1/3) , λ = 1 2 3(θ 2 -7/9) (θ 2 -1/3)(θ 2 -2/3) , B = 2(1-θ 2 ) θ 2 -1/3 . (30) 
As this population of solutions is limited, it is important to be able to construct highly accurate approximations of solitary waves. This may be done by isolating solitary waves in long time simulations, after they separate from the rest of the solution evolving from suitable initial profiles, by 'cleaning' solitary waves by an iterative process, cf. e.g. [START_REF] Bona | A Boussinesq system for two-way propagation of nonlinear dispersive waves[END_REF], [START_REF] Dougalis | A numerical study of the stability of solitary waves of the Bona-Smith system[END_REF], by solving numerically suitable two-point boundary-value problems for the nonlinear system (3) that solitary waves satisfy, or by some combination of these techniques. A detailed study of the accuracy of the first two methods in the case of the Bona-Smith systems was done in [START_REF] Dougalis | A numerical study of the stability of solitary waves of the Bona-Smith system[END_REF] and will not be repeated here. We have checked that the numerical solitary waves used in the numerical experiments to be presented in the sequel are sufficiently accurate in that they have amplitudes that are constant to at least six digits, speeds that remain constant to at least five digits, and propagate shedding dispersive tails of at most O(10 -10 ) amplitude in the temporal range of experiments.

A natural question that may be asked is how the solitary waves of the Bona-Smith systems compare, theoretically and experimentally, with solitary waves of the Euler equations. As was done in [START_REF] Bona | A Boussinesq system for two-way propagation of nonlinear dispersive waves[END_REF], a partial answer may be furnished by comparing pairs (A s , c s ) of the maximum height A s of the η-solitary wave and its speed c s , obtained numerically, and with the expansion, cf. [START_REF] Fenton | A ninth-order solution for the solitary wave[END_REF], [START_REF] Su | On head-on collisions between two solitary waves[END_REF] 

c s = 1 + 1 2 A s - 3 20 (A s ) 2 + 3 56 (A s ) 3 + • • • (31) 
that provides an approximation of the speed-amplitude relation for solitary waves of the Euler equation for small A s , and with the experimental observations of Scott Russell, [START_REF] Russell | Report on waves, 14th Meeting of the British Association for the Advancement of Science[END_REF], fitted by the relation

c s = 1 + A s . (32) 
In Figure 1 we compare the graphs of (31) with two, three and four terms, and of [START_REF] Su | On head-on collisions between two solitary waves[END_REF], with numerically computed solitary-wave data for the Bona-Smith systems when θ 2 = 1, 9 11 , and 2 3 . The points corresponding to these systems remain close to Scott Russell's prediction for a quite large range of amplitudes (even in the non-physical regime) and stay below the line c s = 1 + As 2 of the speed-amplitude relationship of the solitary waves of the one-way models (KdV and BBM.)

Interaction of solitary waves

In this paragraph we present the results of some numerical experiments that we performed to study interactions of solitary waves of the Bona-Smith systems. The interactions were of two kinds: Head-on collisions of solitary waves of equal and unequal amplitudes, and overtaking interactions of solitary waves travelling in the same direction. In all cases, the initial solitary waves were constructed by solving numerically a two-point boundary-value problem of the nonlinear system of o.d.e.'s (3), cf. [START_REF] Bona | Numerical solution of KdV-KdV systems of Boussinesq equations I. The numerical scheme and generalized solitary waves[END_REF], [START_REF] Dougalis | Theory and numerical analysis of Boussinesq systems: A review[END_REF]. The initial η-pulses were nonnegative and centered sufficiently far from each other; their associated initial velocity profiles (u) were of opposite signs for a collision and nonnegative for one-way interactions. 

Head-on collisions

A systematic numerical study of head-on collisions of solitary waves of the BBM-BBM system (θ 2 = 2/3) was performed in [START_REF] Bona | A Boussinesq system for two-way propagation of nonlinear dispersive waves[END_REF] by Bona and Chen. Comparisons were also made in [START_REF] Bona | A Boussinesq system for two-way propagation of nonlinear dispersive waves[END_REF] of the numerically computed maximum value of the amplitude during the collision and of the accompanying phase shift with theoretical expansions of these quantities formally valid for the Euler equations, cf. e.g. [START_REF] Su | On head-on collisions between two solitary waves[END_REF], and fairly good agreement was observed. It is not our intention here to repeat this detailed study for other members of the Bona-Smith family of systems. Instead, we would like to point out some similarities and differences in the details of this type of interaction between the θ 2 = 2/3 systems and the BBM-BBM. For a recent study of head-on collisions of solitary waves of the Euler equations and review of the relevant literature we refer the reader to [START_REF] Craig | Solitary water wave interactions[END_REF].

All our head-on collision experiments were performed on [-150, 150] using h = 0.1 and k = 0.01 and periodic boundary conditions. We first consider the Bona-Smith system with θ 2 = 1. A solitary wave, which at t = 0 is centered at x = -50 and has initial amplitude A 1 = 0.866190 and speed c s,1 = 1.4, travels to the right and collides with a leftward-travelling solitary wave, centered initially at x = 50 and having initial amplitude A 2 = 0.412617 and speed c s,2 = 1.2. The waves start colliding at about t = 33, they interact, emerging largely unchanged, and continue travelling in their respective directions. The evolution of the η-profile of the solution for 0 ≤ t ≤ 100 is shown in Figure 2(a), while 2(b) depicts the profile of η(x, t) at t = 100. The collision is inelastic and nonlinear; small-amplitude oscillatory dispersive tails that follow the solitary waves are produced after the interaction. These dispersive tails are shown at t = 100 in Figure 2(c), a magnification of Figure 2(b), and were studied in some detail in [START_REF] Dougalis | A numerical study of the stability of solitary waves of the Bona-Smith system[END_REF]. Figure 2(d) shows the paths of the two waves on the x, t plane around the time of interaction. The solid lines are the actual paths while the dotted lines would represent the paths if there was no interaction. Both waves are slightly delayed after the interaction suffering small phase shifts opposed to their directions of motion. (For example, at t = 80 the large solitary wave has a phase shift of 0.3194 and the small one of 0.5102 spatial units.)

After the interaction the large solitary wave stabilizes at a slightly smaller amplitude A ′ 1 = 0.865921 and speed c ′ s,1 = 1.39988, while the small one emerges with A ′ 2 = 0.412543, c ′ s,2 = 1.19994. Figure 3 shows the maximum amplitude of the η component of the solution as a function of t, 0 ≤ t ≤ 100. The maximum height that the solution reaches during the collision is equal to 1.384417, which is about 8.3% larger than the sum of the heights of the two solitary waves before the collision. It is worthwhile to note that after the collision both solitary waves suffer a slight loss of amplitude which seems to be permanent. The temporal transition from the maximum value of the amplitude to the apparent long-time limit (which is of course the eventual amplitude of the emerging larger solitary wave) appears to be monotonic. Qualitatively similar results are obtained from the headon collision of solitary waves of the same height. We summarize the results of the head-on collision experiments for the θ 2 = 1 system in Table 3. A qualitatively similar picture emerges from analogous experiments of head-on collisions of solitary waves of Bona-Smith systems with 2/3 < θ 2 < 1.

Table 3 Head-on collision of solitary waves, θ 2 = 1, η profiles, -→: waves travelling to the right, ←-: waves travelling to the left. Shown are the amplitude (A) and speed (cs) of the colliding solitary waves before and well after the interaction, the magnitude of the phase shifts of the emerging waves at t = 80, and the maximum amplitude of the solution during the interaction.

Before

After Maximum In the case of the BBM-BBM system (θ 2 = 2/3) the results of our few head-on collision experiments are summarized in Table 4 and are in good agreement with the much richer collection of numerical results in [START_REF] Bona | A Boussinesq system for two-way propagation of nonlinear dispersive waves[END_REF]. When two solitary solitary waves of different heights, specifically of initial η-amplitudes A 1 = 0.918963, A 2 = 0.429752 and speeds c s,1 = 1.4, c s,2 = 1.2, were let to collide head-on, we observed that, well after the collision, the longer wave acquired the slightly smaller amplitude A ′ 1 = 0.918952, while the smaller one grew slightly to A ′ 2 = 0.429756. During two similar experiments for waves of the same height (initially equal to 0.918963 and 0.429752) we observed that, well after the collision, the waves returned to practically their initial amplitudes and speeds. This may be seen in the graph of the evolution of the total amplitude during the head-on collision of two waves of initial amplitude 0.918963 in Figure 4(d). Note that this transition in the temporal evolution of the maximum amplitude is no longer monotonic: We first observe a transient loss of amplitude and then a gradual increase to the original amplitude of the larger wave, in agreement with the analogous result of [START_REF] Bona | A Boussinesq system for two-way propagation of nonlinear dispersive waves[END_REF]. In contrast to this behaviour, it was previously seen that the analogous numerical experiments with Bona-Smith systems with θ 2 = 2/3 show a monotonic decrease to a permanent loss of amplitude. It is known, cf. e.g. [START_REF] Renouard | Experimental study of the generation, damping, and reflexion of a solitary wave[END_REF], that experimentally observed solitary waves reflected from a vertical wall exhibit a permanent loss of amplitude, but this could be due to a large extent to dissipative effects present in any experiment in real channels with real fluids. It is worth note that analogous numerical simulations of the Euler equations, cf. [START_REF] Craig | Solitary water wave interactions[END_REF] and the references quoted therein, indicate that the maximum amplitude returns slowly to its initial value.

-→ ←- -→ ←- amplitude A c s A c s A c s ph. shift A c s ph. shift 0.
Finally, note also the much smaller size of the dispersive tails in Figures 4(a) and (b) relative to the analogous sizes of dispersive tails of other Bona-Smith systems. Another difference is that the tails still interact at t = 100 and have not separated; for an explanation of this phenomenon cf. [START_REF] Dougalis | A numerical study of the stability of solitary waves of the Bona-Smith system[END_REF].

Overtaking collisions

We proceed now to describe the outcome of some numerical experiments simulating overtaking collisions of two solitary waves propagating in the same direction. In the case of one-way models, this type of interaction has been studied in detail analytically by the inverse scattering transform in the case of integrable equations like the KdV, cf. e.g. [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF], and numerically in the case of nonintegrable models, cf. e.g. [START_REF] Bona | Solitary-wave interaction[END_REF]. It has also been studied experimentally and numerically in the case of the full Euler equations; we refer the reader to [START_REF] Craig | Solitary water wave interactions[END_REF] for a recent detailed study and review of the literature. We consider first the Bona-Smith system with θ 2 = 9/11, which we integrate on [-400, 400] with periodic boundary conditions using h = 0.05 and k = 0.005. Two solitary waves of η-amplitudes equal to A 1 = 0.8912762 and A 2 = 0.4214631 are initially centered at x = -40 and x = 40, and given initial speeds equal to c 1 = 1.4 and c s = 1.2, respectively. As they travel to the right, the larger and faster wave overtakes the smaller and slower one, they interact from about t = 350 to t = 420, emerge basically unchanged, and continue moving to the right, cf. Figure 5. The interaction process is much slower than the head-on collision, as expected. The emerging large solitary wave has now a slightly larger amplitude A ′ 1 = 0.8912769, while the small one has a slightly smaller amplitude equal to A ′ 2 = 0.4214596. The speeds of the emerging waves are found to be equal to 1.4 and 1.2 again, i.e. to return to their initial values within the numerical accuracy of our computations. It is worthwhile to note that during this type of collision the maximum value of η during the interaction dips below the initial amplitude of the larger solitary wave but remains larger than the amplitude of the smaller wave (cf. Figure 6(a)), in contrast to what happens in head-on collisions, where the maximum value exceeds the sum of the heights of the two waves. The two waves undergo relatively large phase changes during the interaction, see Fig. 6(b), with the larger solitary wave gaining in phase and the smaller being delayed. For example, at t = 420 the phase shifts are equal to about 2.62 and 3.41 spatial units for the larger and smaller waves, respectively. These observations are in qualitative agreement with the well-known analogous facts about overtaking collisions in the case of the KdV, the BBM and the Euler equations, cf. e.g. [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF], [START_REF] Bona | Solitary-wave interaction[END_REF], [START_REF] Craig | Solitary water wave interactions[END_REF].

The overtaking collision depicted in the sequence of plots of Figure 5 is not elastic. Magnifying the η-axis reveals that the interaction produces small-amplitude dispersive oscillations; these magnified profiles are shown at four temporal instances in Figure 7. The profiles at t = 380, 400, 430 show the early stages of generation of these oscillations, while the profile at t = 600 shows their full development. They consist of two types of tiny waves: A dispersive tail, resembling the dispersive tails generated by head-on collisions, moves to the right and follows the solitary waves. Being slower than the smaller solitary wave, the tail is already observed at t = 600 to have detached itself from the latter. In addition, a small wavelet, resembling an inverted N , is generated and travels to the left. (By t = 600 it has wrapped itself around the endpoint by periodicity.) This picture is in good qualitative agreement with the outcome of numerical simulations of overtaking collisions of solitary waves of the Euler equations in [START_REF] Craig | Solitary water wave interactions[END_REF]. The small wavelet structure moving to the left was identified by Su and Zou in [START_REF] Su | Waves generated by collisions of solitary waves[END_REF] in the course of numerical simulations of overtaking collisions of solitary waves of a fourth-order Boussinesq-type equation approximating the Euler equations. However this equation incorporates a one-way assumption and does not properly model two-way surface wave propagation.

To study further the wavelet numerically, we isolate it from the rest of the solution by setting η equal to zero at t = 600 in the interval [-230.85, 25.25] containing the solitary waves and the dispersive tail (cf. Figure 7). We use the cleaned wavelet as new initial condition resetting t = 0, furnish it with its (cleaned) velocity profile, and let it travel to the left. Figure 8(a) shows the ensuing evolution of the wavelet, which gives the impression that it is moving at a constant speed without change of shape. This is not true however. Our computations show that the amplitude of the positive peak (+) is apparently slowly increasing, while the absolute amplitude of the negative peak (-) is slowly decreasing over a temporal interval [0, 600] of integration, cf. Figure 8(b). The paths x(t) of the two peaks are shown in Figure 8(c), and their absolute difference is plotted in (d).

It seems that the speeds of the peaks vary slowly with t, both being approximately equal to 1 in absolute value. Specifically, the absolute value of the speed of (+) decreases form 0.999129 at t = 20 to 0.998237 at t = 600, while that of (-) increases from 0.999143 at t = 20 to 0.999326.

We observed qualitatively similar evolutions in numerical experiments with overtaking collisions of solitary waves of other Bona-Smith systems. It might be worthwhile to note that for θ 2 close to 2/3 the left-travelling small wavelet became N -shaped, i.e. the positive excursion preceded the negative one.

Interaction of solitary waves with the boundary

In this section we present the results of some numerical experiments illustrating interactions of solitary waves of the Bona-Smith systems with the endpoints of an interval, where either reflection or homogeneous Dirichlet boundary conditions for η and u have been postulated. (All computations in this section were done with h = 0.1, k = 0.01.)

The ideal reflection of a solitary wave at a boundary point (where η x = 0, u = 0) is equivalent to the head-on collision of the solitary wave with its symmetric image about this point. This is illustrated in the sequence of plots of Figure 9. An exact solitary wave of the system corresponding to θ 2 = 9/11 of unit η-amplitude (computed by the formulas ( 29)- [START_REF] Russell | Report on waves, 14th Meeting of the British Association for the Advancement of Science[END_REF] and initially centered at x = 100) is approximated numerically as it travels to the right and hits, at about t = 35, the boundary x = 150, where reflection boundary conditions have been assumed to hold. The η-component of this wave is represented by the solid line in Figure 9. The solitary wave is observed to be reflected backwards and a trailing dispersive tail is generated. Another experiment is also shown superimposed in the same figure. The dotted line represents an identical η-solitary wave initially placed at x = 200 and given an opposite velocity. If there were no boundary the two waves would collide head-on at x = 150. This collision is also shown in Figure 9: The two waves collide, (the maximum amplitude of this interaction is achieved at t = 35) and continue travelling in their respective directions, having suffered a slight phase shift and amplitude and speed reduction as was seen in the previous section. (The waves are still denoted by a dotted line but the wave travelling to the left coincides to graph thickness with the reflected wave.)

We now turn to a series of experiments illustrating what happens when a solitary wave hits a boundary where homogeneous Dirichlet boundary conditions for η and u are assumed to hold. Figure 10 shows a η-solitary wave of the Bona-Smith system with θ 2 = 9/11 of amplitude A = 1 (computed again by the exact formulas, so that its speed is c s = 5 √ 3/6 ∼ = 1.44337) travelling to the right until it hits the boundary x = 150, where η = u = 0. Apparently, the wave is 'reflected' backwards and small-amplitude dispersive oscillations seem to be generated at the boundary and to spread leftwards with a front that travels slower than the main pulse. The main pulse is a solitary wave and stabilizes at the slightly larger amplitude A ′ = 1.000660 and speed c ′ s = 1.44363. The time history of the amplitude of η up to t = 300 is shown in Figure 11(a). Figure 11(b) is a magnification of 11(a) around the interaction time. Figure 11(c) shows the behaviour of the (spatial) L 2 -norm of η as a function of t. Note the transient nonmonotonic behaviour of the amplitude of η during the interaction, before it stabilizes to its higher value, and the momentary dip of the L 2 norm. A similar eventual increase is observed in the analogous quantities (absolute amplitude and L 2 norm) of the u component of the solution. Thus, in the case of the θ 2 = 9/11 system, in contrast to the reflection of a solitary wave at an ideal reflection boundary (η x = u = 0), which is equivalent to a collision of two solitary waves symmetric about the boundary and where, therefore, the height of the wave reflected is decreased, a homogeneous Dirichlet boundary condition on η and u seems to return a larger wave.

A similar behaviour was observed when a solitary wave of the θ 2 = 1 system interacted with a boundary where homogeneous Dirichlet boundary conditions were posed. Indeed, an η-solitary wave of initial amplitude A = 0.866190 is 'reflected' backwards from such a boundary with a larger amplitude, which stabilizes to the value A ′ = 0.868607. However, as the other end of the interval [2/3, 1] of θ 2 values is approached, the behaviour of the wave that is returned backwards changes. For example, Figure 12(a) shows the η-profile at t = 250 of the solution of the system corresponding to θ 2 = 2/3 + 0.01 that emanates from a single solitary wave initially centered at x = 0 with a height A = 0.916990. The wave travels to the right, hits the Dirichlet boundary at x = 150 and returns, as Figure 12(a) shows, as a wavetrain composed by a main solitary wave pulse of smaller height A ′ = 0.717377 apparently followed by a smaller solitary wave and dispersive oscillations, a high-frequency group of which stays close to the boundary. When the experiment is repeated with a solitary wave of the BBM-BBM (θ 2 = 2/3) system of initial height equal to 0.918963, no solitary wave is visible at t = 250 in the returning oscillations, cf. Figure 12(b), while the high-frequency group, near the boundary has larger amplitude. It appears that the BBM-BBM system is singular in this respect as well.

The fact that for values of θ 2 near 1 the solitary wave that returns from the right-hand Dirichlet boundary is larger that the impinging one raises the natural question whether it will keep growing after repeated collisions at both endpoints of the spatial interval of integration where homogeneous Dirichlet b.c.'s hold. In the numerical experiment that yielded the results of Figure 13, a solitary wave of unit initial amplitude (θ 2 = 9/11) travels to the right at first and is 'reflected' back and forth for 0 ≤ t ≤ 500, suffering repeated 'collisions' at the boundaries x = ±50, where η = u = 0. After each 'collision' (cf. also Figure 11(c)) the mean level of the L 2 norm of η increases, but the norm oscillates due to the increased presence of the boundary-generated oscillations that grow as they interact with themselves and with the solitary wave. A slow growth of the η 2 + u 1 norm with time is clearly observed. (In [START_REF] Antonopoulos | Initial-boundary-value problems for the Bona-Smith family of Boussinesq systems[END_REF] it was proved that the ibvp with Dirichlet boundary conditions is locally well-posed in H 2 × H 1 . The spikes in both graphs represent momentary changes of the norms at 'collision' times.). This behaviour is to be contrasted with that of the analogous experiment with perfect reflection (i.e. η x = u = 0) at x = ±50, cf. Figure 14. Between collisions, the quantities η and η 2 + u 1 oscillate around a practically constant mean level. (This ibvp has been shown in [START_REF] Antonopoulos | Initial-boundary-value problems for the Bona-Smith family of Boussinesq systems[END_REF] to possess a unique classical solution in [0, T ] for any T < ∞, under mild restrictions on the initial data.)
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 1 Fig. 1. Speed cs of η-solitary waves as a function of their amplitude As. '-' 2 terms, '--' 3 terms, '-.-' 4 terms of (31), • • • Scott Russell's prediction (32), Bona-Smith systems: • θ 2 = 2/3, θ 2 = 1, ⋄ θ 2 = 9/11.
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 2 Fig. 2. Head-on collision of two η-solitary waves of unequal heights, θ 2 = 1. (a) Interaction on the x, t plane, (b) solution profile, t = 100, (c) dispersive tails, t = 100, (d) paths of the solitary waves in the x, t plane.
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 34 Fig. 3. Maximum amplitude of η during the collision of Figure 2; (b) is a magnification of (a).
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 567 Fig. 5. Overtaking collision of two η-solitary waves, θ 2 = 9/11.
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 8 Fig. 8. Wavelet produced by the overtaking collision of Figures 5 and 7. (a) Perspective of the evolution, (b) absolute amplitude of the peaks of the wavelet. (c) Paths of the peaks in the x, t plane, (d) distance of peaks as a function of t.

η at t = 60 Fig. 9 .

 609 Fig. 9. Reflection of an η-solitary wave at x = 150, θ 2 = 9/11. Solid line: reflected solitary wave. Dotted line: two η-solitary waves of equal height colliding. After the collision the leftwards-travelling wave coincides, within graph thickness, with the reflected wave.
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 20010 Fig. 10. Interaction of a solitary wave with the boundary η = u = 0 at x = 150, θ 2 = 9/11
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 1112 Fig. 11. Evolution of Figure 10. (a) Amplitude of η as a function of t, (b) a magnification of (a), (c) L 2 norm of η as a function of t.
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 1314 Fig. 13. Ping-pong of a solitary wave between x = ±50, where η = u = 0, θ 2 = 9/11. (a) η as a function of t, (b) η 2 + u 1 as a function of t.

Table 1

 1 Errors and spatial convergence rates at T = 2. Homogeneous Dirichlet boundary conditions. System with θ 2 = 9/11.

	N	η-error	rate	u-error	rate η-error	rate	u-error	rate
			L 2 -errors			H 1 -errors
	10	0.9748(-2)		0.1441(-1)	0.5542(-1)		0.1641
	20	0.1165(-2) 3.065	0.1696(-2) 3.087 0.6786(-2) 3.030	0.2778(-1) 2.562
	40	0.1439(-3) 3.016	0.2086(-3) 3.023 0.8450(-3) 3.006	0.4913(-2) 2.499
	80	0.1795(-4) 3.004	0.2596(-4) 3.006 0.1057(-3) 2.999	0.8740(-3) 2.491
	160	0.2243(-5) 3.001	0.3240(-5) 3.002 0.1322(-4) 2.999	0.1552(-3) 2.493
	320	0.2803(-6) 3.000	0.4048(-6) 3.001 0.1653(-5) 2.999	0.2752(-4) 2.496
			H 2 -errors			L ∞ -errors
	10	2.5660		6.3047		0.1568(-1)		0.2452(-1)
	20	0.6232	2.042	2.1878	1.527 0.1859(-2) 3.077	0.2708(-2) 3.179
	40	0.1547	2.010	0.7805	1.487 0.2284(-3) 3.025	0.3215(-3) 3.075
	80	0.3859(-1) 2.003	0.2788	1.485 0.2840(-4) 3.008	0.3927(-4) 3.033
	160	0.9642(-2) 2.001	0.9924(-1) 1.490 0.3542(-5) 3.003	0.4856(-5) 3.016
	320	0.2410(-2) 2.000	0.3522(-1) 1.495 0.4422(-6) 3.002	0.6039(-6) 3.007
					W 1 ∞ -errors		
			N	η-error	rate	u-error	rate	
			10	0.1212		0.9519		
			20	0.1576(-1) 2.942	0.2153	2.144	
			40	0.1969(-2) 3.001	0.5174(-1) 2.057	
			80	0.2450(-3) 3.007	0.1272(-1) 2.024	
			160	0.3064(-4) 2.999	0.3157(-2) 2.011	
			320	0.3834(-5) 2.998	0.7864(-3) 2.005	
	(ii) Reflection boundary conditions				

Table 2

 2 Errors and spatial convergence rates at T = 2. Periodic boundary conditions. System with θ 2 = 9/11.

	N	η-error	rate	u-error	rate η-error	rate	u-error	rate
			L 2 -errors			H 1 -errors
	10	0.8919(-2)		0.1162(-1)	0.8783(-1)		0.8826(-1)
	20	0.3657(-3) 4.608	0.8027(-3) 3.855 0.6832(-2) 3.684	0.6838(-2) 3.690
	40	0.1841(-4) 4.312	0.5184(-4) 3.953 0.7580(-3) 3.172	0.6370(-3) 3.424
	80	0.1038(-5) 4.149	0.3273(-5) 3.985 0.9223(-4) 3.039	0.7064(-4) 3.173
	160	0.6180(-7) 4.070	0.2052(-6) 3.995 0.1146(-4) 3.009	0.8519(-5) 3.052
	320	0.3775(-8) 4.033	0.1284(-7) 4.998 0.1430(-5) 3.002	0.1055(-5) 3.014
			H 2 -errors			L ∞ -errors
	10	3.2648		2.4343		0.1838(-1)		0.1965(-1)
	20	0.7685	2.087	0.5660	2.105 0.8098(-3) 4.504	0.1202(-2) 4.031
	40	0.1902	2.014	0.1400	2.016 0.4227(-4) 4.260	0.7396(-4) 4.023
	80	0.4745(-1) 2.003	0.3491(-1) 2.003 0.2422(-5) 4.125	0.4661(-5) 3.988
	160	0.1186(-1) 2.001	0.8724(-2) 2.001 0.1452(-6) 4.060	0.2947(-6) 3.983
	320	0.2964(-2) 2.000	0.2181(-2) 2.000 0.8896(-8) 4.029	0.1852(-7) 3.993
					W 1 ∞ -errors		
			N	η-error	rate	u-error	rate	
			10	0.1939		0.2044		
			20	0.1631(-1) 3.572	0.1732(-1) 3.561	
			40	0.1686(-2) 3.274	0.1617(-2) 3.421	
			80	0.1928(-3) 3.128	0.1668(-3) 3.277	
			160	0.2317(-4) 3.057	0.1865(-4) 3.161	
			320	0.2845(-5) 3.026	0.2195(-5) 3.087	
	3.2. Amplitude-speed relationship for solitary waves			

Table 4

 4 Head-on collision of solitary waves, θ 2 = 2/3, η profiles. Labels as in Table3.

		Before					After				Maximum
	-→		←-			-→			←-		amplitude
	A	c s	A	c s	A	c s	ph. shift	A	c s	ph. shift
	0.918963 1.4 0.429752 1.2 0.918952 1.399995 0.3294 0.429756 1.200001 0.5141 1.498639
	0.918963 1.4 symmetric 0.918962 1.4	0.4805		symmetric	2.131893
	0.429752 1.2 symmetric 0.429752 1.2	0.3526		symmetric	0.936017
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