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Abstract. We present a new algorithm for approximate joint diagonal-
ization of several symmetric matrices. While it is based on the classical
least squares criterion, a novel intrinsic scale constraint leads to a simple
and easily parallelizable algorithm, called LSDIC (Least squares Diag-
onalization under an Intrinsic Constraint). Numerical simulations show
that the algorithm behaves well as compared to other approximate joint
diagonalization algorithms.

1 Introduction

The diagonalization of a matrix and the joint diagonalization of two matrices
are well-established concepts in linear algebra and their use in engineering is
ubiquitous. Approximate joint diagonalization (AJD) refers to the problem of
diagonalizing more then two matrices simultaneously. Considerable interest for
AJD followed the discovery that it yields a solution for independent component
analysis (e.g., JADE [2]) and second-order blind source separation (e.g., SOBI [1],
see also [8]).

The classical linear instantaneous BSS problem assumes a mixing model of
the form x(t) = As(t), where x is a K-vector holding the sensor measurements,
A is the K x K mixing matrix and s is a K-vector holding the source processes.
The task is to recover the sources out of a scaling and permutation indetermi-
nacies from the observation x, assuming no knowledge of A and of the sources
distribution. A simple approach to the source separation problem is to consider a
set of matrices {Cy,...,Cy} consisting of statistics of the observations (of sec-
ond order in most cases) which are estimates of matrices of the form AD, AT,
where D,, is a diagonal matrix with k-th diagonal element depending only on
the distribution of the k-th source. The AJD then seeks a matrix B” such that
all N congruence transformations BTC,,B, n = 1,...,N, are as diagonal as
possible. Therefore it provides an estimate of the inverse of A (up to a scaling
and a permutation) and the BSS problem is solved by s(t) = BTx(t).

Several iterative algorithms have been developed to solve the AJD problem.
A simple way to proceed is to minimize the criterion

>_lloff(BTC,B)|? 1)

n=1



where Off denotes the operator which retains only the off diagonal of its matrix
argument and |M]| = [tr(MM?7)]'/2 denotes the Frobenius norm of the matrix
M. However, without any restriction, one would end up with the trivial solution
B = 0. In [3], B is restricted to the orthogonal group and an efficient algorithm
based on Givens rotations is presented. This restriction allows BSS only after
whitening the sensor measurements, but whitening is known to affect adversely
the quality of the separation forcing the data covariance to be exactly diagonal
at the expenses of the input matrix set. In [9,5] it is required instead that
Diag(BTCyB) = I, with Cy being some positive definite matrix, Diag denoting
the operator which cancels the off diagonal elements of its matrix argument. This
amounts to a normalization of the columns of B (a scaling). The algorithms
are slow because for each iteration one needs to repeat K times the search for
the eigenvector associated with the smallest eigenvalue of a K x K matrix. To
avoid degeneracy, as well as the trivial solution, in [6] a term proportional to
—log | det(B)] is added to the criterion, albeit yielding an even slower algorithm.

Another line of research has focused on multiplicative algorithms with super-
linear convergence. Such algorithms update the C,, matrices at each iteration
and typically are faster than those minimizing the off-criterion. In [7] the intro-
duction of a different criterion leads to a very efficient multiplicative Givens-like
algorithm. However, it allows only positive definite input matrices and such
requirement may be cumbersome in some BSS applications. The notion of cri-
terion is dropped altogether in [10], where a multiplicative algorithm based on
heuristics is described instead.

In this paper we will elaborate further upon the off criterion (1), expand-
ing results presented in [4], where it has been shown that its minimizer under
certain constraint satisfies a nested system of K generalized Rayleigh quotients.
We propose a pseudo-Newton fixed point algorithm to solve such system which
requires no eigenvalue-eigenvector decomposition and no C,, matrices updates.
We discuss the local stability of the algorithm, i.e., its convergence near the
solution. The algorithm, named LSDIC (Least Squares Diagonalization under
an Intrinsic Constraint) has complexity per iteration similar to multiplicative
algorithms. As in the case of other algorithms minimizing the off-criterion, the
convergence is linear, thus overall execution time may be superior to multi-
plicative algorithms. However LSDIC is naturally parallelizable not only with
respect to NV, like multiplicative algorithms, but also with respect to K, allow-
ing computational super-efficiency in massive parallel computing architectures.
Furthermore, unlike multiplicative algorithms (with the exception of [7]), it ac-
commodates complex mixing and/or sources.

2 The criterion

We consider the joint approximation diagonalization of a set of N symmetric
K x K matrices Cq, ..., Cy. We consider the least square criterion (1) subjected
to the constraint: Zf:;l(bf(}kbk)z =1, k=1,...,K (b denoting the k-th
column of B). Unlike other constraints, this is a new intrinsic constraint that



does not favor a particular matrix in the above set or make use of another matrix
outside this set.

Since Zle(b;{cnbk)? = ZnN:1 bgCnbkbenbk the constraint can be
rewritten as b M(by)b, =1, k=1,..., K, where

N
M(by) = Z C,b:bl'C,. (2)
n=1
Further, |Off (BT C,B)||2 = |BTC,B|? - Y i, (b7 C,b;)? and |BTC,B|> =
tr(BTC,BBT'C,,B), therefore, the criterion (1) under the above constraint re-
duces to tr[BTM(B)B]— K where M(B) is defined as in (2) but with by, replaced
by B. Note that M(B) can also be computed as M(B) = Zszl M(by).

One can turn the minimization problem of tr[BTM(B)B] under the con-
straint b M(by)b, = 1, k= 1,..., K, into one without constraint, as follows.
Note that for an arbitrary matrix B, the matrix BD~/4(B), where D(B) is the
diagonal matrix with diagonal elements

d(by) = bIM(by)by, k=1,...,K, (3)

will satisfy the constraint. Replacing B in the criterion tr[BTM(B)B] by
BD~'/4(B) then yields the criterion

C(B) = tr[D"2(B) B"M(B)B| = ﬁ:tr{[D_l/Q(B)BTCnB]Q}, (4)

where v «
M(B) =) C,BD'*B)B"C, = > M(by)/d"/?(by).
n=1 k=1

Therefore one may simply minimize C'(B) given in (4) without any constraint.

3 Gradient of the criterion

To compute the gradient of the criterion (4) at the point B we shall perform its
Taylor expansion around B up to first order. Let A be a small increment of B
then for any symmetric matrix E, one has

tr{[E(B + A)'C,(B+ A)?}
= tr[(EBTC,B + EBTC,A + EATC,B + EATC,A)?]
= tr[(EBTC,B)?] + 4tr(EBTC,BEB”C,A) + O(||A]?), (5)
where O(||Al|?) denotes a term of the same order as ||A|? as A — 0. By the

same calculation with E being the identity matrix and B and A replaced by
their k-th rows by and 8, one gets, after summing up with respect to n:

d(by + 85) = d(bg) + 4bj M(by)dx + O([|6x ).



Therefore
D(B + A) = D(B) + 4Diag[P” (B)A] + O(|| A )

where
P(B) = [M(b1)b; - M(bg)bxk].

Then from the first order Taylor expansion (z + €)1/ = 271/2 — 1373/2¢ 4
O(le|?), one gets

D 2B+ A) =D Y%B) — 2D~%/?(B)Diag[PT(B)A] + O(|A|?)  (6)
Applying now (5) with E = D™/2(B + A) = D~'/2(B) + O(||D||) yields

tr{ DB+ A)B+A)TC,(B+A)]*} =
tr{{D~?(B + A)BTC,BJ?} + 4tr[D~*/?(B)BTC,BD"/2(B)B”C, A]
+Oo([A]?).

But by (6)

tr{[D~Y?(B + A)BTC,B]*} = tr{[D"'/?(B)BTC,,B]?}
— 4tr{BTC,BD/2(B)BT'C,,BD%/?(B)Diag[P(B)A]} + O(| A|?).

Therefore combining the above results and summing up with respect to n, one
gets:

C(B+ A) =C(B) + 4tr[D"/2(B)BTM(B)A]
— 4tr{B"M(B)BD~%/2(B)Diag[P” (B)A]} + O(||A[?).

Finally, noting that tr[UDiag(V)] = tr[Diag(U)Diag(V)] = tr[Diag(U)V],
one gets

C(B+ A) = C(B) + 4tr{D~'/2(B)[BYM(B) — I'(B)PT(B)|A} + O(||A|?).

where
I'(B) = D~!(B)Diag[B’M(B)B].

The above relation shows that the gradient of the criterion C is
C'(B) = 4M(B)B — P(B)I'(B)|D~'/2(B)].

Setting the gradient to 0 yields the equations

bl M (b )by ~
M(by)b, = MM(B)bk, k=1,....K
b M(B)by,
which means that by is a generalized eigenvector of M(by) relative to M(B),
with eigenvalue [bf M(by)b]/[bIM(B)by].



4 Pseudo Newton algorithm

We have thought of implementing quasi Newton algorithm to minimize the cri-
terion (4), which would require the calculation of an approximate Hessian. Al-
though such calculation is theoretically possible, the result is quite involved so
that the corresponding algorithm is very complex and costly computationally.
Therefore we shall replace the true Hessian with some reasonable positive definite
matrix, which we call pseudo Hessian. Let vec(B) denotes the vector formed by
stacking the columns of B, then the pseudo Newton algorithm can be expressed
as vec(B) « vec(B) — H~1(B)vec|C'(B)] where H(B) is the pseudo Hessian. We
take

FM®) ]
d1/2(b1)
H(B) =4 0
| u(s)
M(B
I 0 e 0 0172(by) |

This is a reasonable choice as it is positive definite and is of about the same order
of magnitude as the Hessian (the expansion of C(B 4+ A) up to second order in
A contains actually the positive term 4tr[ATD~1/2(B)M(B)A]). But the main
reason for making the above choice is that the corresponding algorithm reduces
to a very simple fixed point iteration:

B — M~ {(B)P(B)I'(B)D~'/2(B),
or explicitly

bIM(B)by -

b M YB)M(bi)bs, k=1,... K.
k< d(bk) () (k) k> ) )

Further, since the criterion (4) is scale invariant, we may drop the factor
b M(B)by,/d(by) and renormalize by so that d(by) = 1. This leads to the
algorithm:

b, — M~Y(B)M(by)by, by « b/[bIM(b)bi]4, k=1,...,K,

assuming that B has been previously normalized so that M(B) = M(B).

It is worthwhile to note that the normalization of by already requires the
calculation of M(bg)by, hence the computation of the unnormalized new by
requires only a pre-multiplication with M_l(B). Thus our algorithm can be
implemented as follows.

1. Initialization: Start with some unnormalized B. For kK = 1,..., K, compute
(in parallel): M = 20 C,bybTC,, pr = Myby, s, = (bLpi)/2 and
normalize by, « bk/sllg/Q, Pk — pk/sim.

2. Iteration: while not converge do



— Compute M = Zszl My /s, then make the Cholesky decomposition
M = RTR (R upper triangular).

— For k = 1,..., K, compute (in parallel): b, = R™}RT ~1py), My =
SN C.bblC,, pr = Myby, s, = (bpy)/2 and normalize by —
bk/sllc/g, P — pk/sz/2. (Note that multiplication by the inverse of a
triangular matrix is done by solving a linear triangular system.)

The above fixed point algorithm is locally stable (i.e. convergent when started
near a solution) if the matrix I — H~(B)C”(B), where C”(B) denotes the true
Hessian, has all its eigenvalues of modulus strictly less than 1. The conver-
gence speed is controlled by the maximum modulus of the eigenvalues. For
the (quasi-) Newton algorithm, H is (nearly) equal to C”(B), hence the ma-
trix I —H~1(B)C"”(B) is (nearly) zero and the algorithm has (almost) quadratic
convergence. For the pseudo Newton algorithm, if the chosen H(B) is not too far
from C”(B), one may still expect convergence although the speed is only linear.
Simulations indeed show that our pseudo Newton algorithm converges generally
well. Note that (global) convergence is not guaranteed even in the quasi-Newton
algorithm, as the starting point may be too far from the solution. But since
H(B) is positive definite, one can always reduce the step size, i.e. by taking the
new vec(B) as vec(B) — AH~1(B)C'(B), with A € (0,1], so that the criterion
is decreased at each iteration. The algorithm would then converge at least to a
local minimum point.

5 Simulation

We compare our LSDIC algorithm to the well-established FFDIAG algorithm
of [10] and QDIAG of [9]. We plan to perform a more comprehensive comparison
and to publish that in a longer article elsewhere.

Square diagonal matrices with each diagonal entry distributed as a y-square
random variable with one degree of freedom are generated. Each of these ma-
trices, named D,,, may represent the error-free covariance matrix of indepen-
dent standard Gaussian processes. The noisy input matrices are obtained as
C, = AD,AT + N,, with symmetric noise matrix N,, having entries randomly
distributed as a Gaussian with zero mean and standard deviation o. Further-
more, the diagonal elements of N,, are taken unsigned so to obtain (in general)
positive definitive input matrices C,,. The parameter ¢ controls the overall sig-
nal to noise ratio of the input matrices. Two different values will be considered,
of which one (¢ = 0.01) represents a small amount of noise closely simulating
the exact joint diagonalization (JD) case and the other (o = 0.05) simulating
the approximate JD case. Two kinds of mixing matrix A are considered. In the
general case mixing matrix A is obtained as the pseudo-inverse of a matrix with
unit norm row vectors which entries are randomly distributed as a standard
Gaussian; in this case the mixing matrix may be badly conditioned and we can
evaluate the robustness of the AJD algorithms with respect to the conditioning
of the mixing matrix. We also consider the case in which A is a random orthog-
onal matrix; in this case we can evaluate their robustness with respect to noise.



For QDIAG a normalization matrix Cy such that Diag(B7C¢B) = I needs to
be specified; we use the sum of the input matrix for Cy. As it is well known
given true mixing A, each AJD algorithm estimates demixing matrix B, which
should approximate the inverse of actual A out of row scaling and permutation.
Then, the global matrix G = BT A should equal a scaled permutation matrix.
At each (simulation) repetition we compute the performance index as

2AK - 1), Y, G

Performance Index = 5 7 =
Yimimaxjoi kG + Y maxi— kG

(7)

This index is positive and reaches its maximum 1 if and only if G has only
one non-null elements in each row and column, i.e., if B” has been estimated
exactly out of the usual row scaling and permutation ambiguities. We computed
the means and standard deviations obtained across 250 repetitions for 30 input
matrices of dimension 15 x 15. For each simulation set we then computed all
pair-wise bi-directional student-t tests for the null hypothesis p; = pi,j # k,
where p1; (j = 1,2,3) denotes the performance means of the j-th AJD methods.
We corrected the resulting p-values for the number of comparisons (3 method
pairs) using Bonferroni’s method. Results are presented in table 1.

Orthogonal Mixing Non-Orthogonal Mixing

(good conditioning) (variable conditioning)

o =10.01 o =0.05 o =10.01 o =0.05
QDIAG | 0.99976054 [0.93320283<| 0.99976047 | 0.93436055
(0.00015259)(0.05647088){(0.00015269)|(0.05463265)
FFDIAG| 0.99975514 | 0.94904938 [0.98244331<0.88311444<
(0.00015743){(0.04617571){(0.05888834)((0.13230755)
LSDIC | 0.99976258 | 0.95775684 | 0.99976252 [0.95796237~
(0.00014988){(0.03721794){(0.00014992){(0.03702060)

Table 1. Mean and standard deviation (in parentheses) of the performance index (7)
attained by QDIAG [9], FFDIAG [10] and our LSDIC algorithm across 250 repetitions
of the simulation with K = 15 and N = 30. The higher the mean and the lower
the standard deviation, the better the performance. Legend: < (>) indicates that the
mean performance of the AJD method is significantly worse (better) as compared to the
other two methods as seen with a student-t test with 248 degrees of freedom and setting
the type I (false positive) error rate to 0.05 after Bonferroni correction (bi-directional
p(t) < 0.017).

To see how badly conditioned are our (non orthogonal) mixing matrices,
we have computed their condition number for matrix inversion with respect to
the Frobenius Iscjadiag-ica-final.pdfnorm, which for a square matrix A is given
by [|A]|[|[A~Y]]. This number is always not less than 1 and high values indicate
bad conditioning. In our 250 repetitions of the simulation, we found that the
logarithms base 10 of the condition numbers of our mixing matrices have mean
2.13, standard deviation 0.43, minimum 1.50 and maximum 3.92, which means
that some mixing matrices used in the simulation are pretty badly conditioned.



In the case of orthogonal mixing the three algorithms display nearly identical
results in the low-noise simulation (o = 0.01), whereas in the noisy simulation
(o = 0.05) QDIAG performs significantly worse then both FFDIAG and LS-
DIC. In the case of non-orthogonal mixing matrices (general case) FFDIAG
performs significantly worse than both QDIAG and LSDIC regardless the noise
level, whereas LSDIC significantly outperformed both QDIAG and FFDIAG in
the high-noise (¢ = 0.05) case. The lower mean and larger standard deviation
displayed by FFDIAG in the non-orthogonal case reflects occasional failing in
estimating correctly the demixing matrix B due to the ill-conditioning of the
mixing matrix. On the other hand QDIAG appears little robust with respect
to noise regardless the conditioning of the mixing matrix. These simulations
show the good behavior of LSDIC both in low and high noise conditions and its
robustness with respect of the ill-conditioning of the mixing matrix.

6 Conclusion

We have proposed a new algorithm for joint approximated diagonalization of a
set of matrices, based on the common least squares criterion but with a novel
intrinsic scale constraint. The algorithm is simple, generally fast and is easy to
parallelize.
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