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BONA-SMITH FAMILY OF BOUSSINESQ SYSTEMS

D. C. Antonopoulos ∗, V. A. Dougalis∗†, and D. E. Mitsotakis∗†

September 21, 2008

Abstract

In this paper we consider the one-parameter family of Bona-Smith systems, which belongs to

the class of Boussinesq systems modelling two-way propagation of long waves of small amplitude

on the surface of water in a channel. We study three initial-boundary-value problems for these

systems, corresponding, respectively, to nonhomogeneous Dirichlet, reflection, and periodic boundary

conditions posed at the endpoints of a finite spatial interval, and establish existence and uniqueness of

their solutions. We prove that the initial-boundary-value problem with Dirichlet boundary conditions

is well posed in appropriate spaces locally in time, while the analogous problems with reflection and

periodic boundary conditions are globally well posed under mild restrictions on the initial data.

1 Introduction

We consider the following family of Boussinesq type systems of water wave theory, introduced in [BCSI],

ηt + ux + (ηu)x + auxxx − bηxxt = 0,
ut + ηx + uux + cηxxx − duxxt = 0,

(1.1)

where η = η(x, t), u = u(x, t) are real-valued functions of x ∈ IR and t ≥ 0. The dispersion coefficients
a, b, c, d are given by

a =
1

2

(
θ2 − 1

3

)
ν, b =

1

2

(
θ2 − 1

3

)
(1 − ν) , c =

1

2

(
1 − θ2

)
µ, d =

1

2

(
1 − θ2

)
(1 − µ) , (1.2)

where 0 ≤ θ ≤ 1 and ν, µ are real constants.
The systems (1.1) are approximations of the two-dimensional Euler equations and model the irrota-

tional, free surface flow of an incompressible, inviscid fluid in a uniform horizontal channel in the absence
of cross-channel disturbances. As opposed to one-way models, like the KdV or the BBM equations, the
systems (1.1) describe two-way propagation. The variables in (1.1) are dimensionless and unscaled; x
and t are proportional to position along the channel and time, respectively, while η(x, t) and u(x, t) are
proportional to the excursion of the free surface at (x, t) above an undisturbed level, and to the horizontal
velocity of the fluid at a height y = −1 + θ(1 + η(x, t)), respectively. (In terms of these variables the
bottom of the channel is at y = −1, while the free surface corresponds to θ = 1.)

The Boussinesq systems (1.1) are long-wave, small-amplitude approximations of the Euler equations.
Specifically, they are valid when ε := A/h ≪ 1, λ/h ≫ 1 and the Stokes number Aλ2/h3 is of order 1,
[BCSI]. Here A measures the maximum surface elevation above an undisturbed level of fluid of depth
h, and λ is a typical wavelength. Appropriate expansions in powers of ε and substitution into the
Euler equations leads to a system of the form (1.1) with dimensionless but scaled variables, wherein the
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nonlinear and dispersive terms (the third-order derivatives) are balanced, being both multiplied by ε,
while the right-hand side is of order ε2. When the right-hand side is replaced by zero, it is expected
the solutions of the resulting system with suitable initial data will approximate for t > 0 appropriate
smooth solutions of the Euler equations in the same scaling with an error of O(ε2t). In [BCL] and [A-SL]
it was proved that the error of this approximation is indeed of O(ε2t), uniformly for t ∈ [0, Tε], where
Tε = O(1/ε), provided the Cauchy problem for the Boussinesq system under consideration is locally
well-posed. (In the present paper we will for the most part consider the systems in their dimensionless,
unscaled form (1.1).)

In particular, we will focus on the Bona-Smith family of systems, [BS], which are of the form (1.1) when
the parameters in (1.2) satisfy ν = 0 and b = d. The latter condition implies that µ = (4−6θ2)/3(1− θ2)
for θ 6= 1. Hence, the constants of the Bona-Smith systems are given by the formulas

a = 0, b = d =
3θ2 − 1

6
, c =

2 − 3θ2

3
. (1.3)

We will also consider the limiting case obtained by setting θ = 1 in (1.3), i.e. the system with a = 0,
b = d = 1/3, c = −1/3. The value θ2 = 2/3 in (1.3) yields the BBM-BBM system a = c = 0, b = d = 1/6,
[BC].

From the analysis of [BCSI] one may infer that the Bona-Smith systems are linearly ill posed if
θ2 < 2/3. Hence, in the sequel, we will only consider the systems with θ2 ∈ [2/3, 1]. It also follows from
[BCSI] that the Bona-Smith systems are linearly well posed for (η, u) in Hs+1 ×Hs for s ≥ 0 if θ2 > 2/3,
and in Hs ×Hs for s ≥ 0 if θ2 = 2/3. (By Hs = Hs(IR) for real s ≥ 0 we denote the usual, L2-based
Sobolev classes on IR, and put H0 = L2.) It also follows from [BCSI] that the linearized Bona-Smith
systems are well posed in the Lp-based Sobolev space pairs W s+1

p ×W s
p for s ≥ 0 and 1 < p < ∞, and

ill posed for p = 1 or ∞. (The BBM-BBM system, i.e. the case where θ2 = 2/3, is well posed in Lp for
1 ≤ p ≤ ∞, as explained in [BCSI].)

We turn now to the Cauchy problem for the nonlinear Bona-Smith systems, that we rewrite again for
ease in referencing as

ηt + ux + (ηu)x − bηxxt = 0,
ut + ηx + uux + cηxxx − buxxt = 0,
b = (3θ2 − 1)/6, c = (2 − 3θ2)/3, 2/3 ≤ θ2 ≤ 1,

(1.4)

for x ∈ IR, t > 0. The system is to be solved under the initial conditions

η(x, 0) = η0(x), u(x, 0) = u0(x), (1.5)

where η0, u0 are given functions on IR. This problem has been studied by Bona and Smith, [BS], in the
case θ2 = 1, but it is easy to extend their theory (cf. also [BCSII]) to the general case θ2 ∈ (2/3, 1]
and obtain the following result: If η0 ∈ H1 ∩ C3

b , u0 ∈ L2 ∩ C2
b (where Ck

b = Ck
b (IR) is the space of

bounded, continuous functions on IR whose first k derivatives are also continuous and bounded), and if
infx∈IR η0(x) > −1 and

E(0) :=

∫ ∞

−∞

(
η2
0 + |c|(η′0)2 + (1 + η0)u

2
0

)
dx < 2|c|1/2, (1.6)

then, there is a unique, global classical solution (η, u) of (1.4)–(1.5), which, for each T > 0, is a continuous
map from [0, T ] into (H1 ∩ C3

b ) × (L2 ∩ C2
b ). If further regularity is assumed for the initial data, then

(1.4–(1.5) is well posed in Hs+1 ×Hs for s ≥ 0 or in (H1 ∩ Cs+1
b ) × (L2 ∩ Cs

b ) for integer s ≥ 0.
The key step in the proof of this result in [BS] is establishing an a priori H1 × L2 estimate for the

solution (η, u). This follows from the fact that (1.4) is a Hamiltonian system, whose Hamiltonian or
“energy” functional

E(t) :=

∫ ∞

−∞

(
η2 + |c|η2

x + (1 + η)u2
)
dx, (1.7)

is invariant for t ≥ 0. The restrictions θ2 > 2/3 and η0 > −1 ensure that 1 + η(x, t) and, consequently,
E(t) remain positive for x ∈ IR, t > 0. In the case of the BBM-BBM system, where c = 0, the global
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theory breaks down and the Cauchy problem is well posed in Hs × Hs for s ≥ 0 only locally in time,
[BC], [BCSII].

Our aim in the paper at hand is to study the well-posedness of three types of initial-boundary-value
problems (ibvp’s) for systems of Bona-Smith type on bounded spatial intervals [−L,L], L > 0, in which
the system and the initial conditions η(x, 0) = η0(x), u(x, 0) = u0(x), x ∈ [−L,L], are supplemented
by three types of boundary conditions posed at x = ±L for t ≥ 0. In our study we follow the general
scheme of proof of [BS] adapting it to the case of the boundary-value-problems at hand. First, in
Paragraph 2.1, we analyze the ibvp with nonhomogeneous Dirichlet boundary conditions, wherein η and
u are prescribed as given functions of t at both endpoints. We prove that this ibvp is well posed, for
example in pairs of appropriate spaces of smooth functions, locally in time. (An analogous result for the
BBM-BBM system was proved in [BC].) Having in hand such a well-posedness result, enables one to
consider this type of boundary conditions, realized, for example, from temporal records of experimental
measurements of η and u at two stations along a channel where a two-way surface wave flow has been
established, to solve the resulting ibvp by an accurate and stable numerical scheme, and compare the
numerical solution with experimental values at points x ∈ (−L,L) in order to assess the effectiveness
of the particular Boussinesq system to model the flow. An energy type proof yields that, in general,
the temporal interval of existence of solutions of this ibvp, written in dimensionless but scaled variables,
wherein the nonlinear and dispersive terms in (1.4) are multiplied by the small parameter ε, is of the
form [0, Tε], where Tε may be taken independent of ε. (As was previously mentioned, for the Cauchy
problem Tε = O(1

ε ).) In Paragraph 2.2 we study the ibvp with reflection boundary conditions, i.e. with
ηx = 0, u = 0 prescribed at x = ±L for all t ≥ 0. These are useful for studying the (ideal) reflection of a
wave impinging on a rigid wall, vertical to the direction of the motion. With these boundary conditions
the ibvp for the Bona-Smith systems for θ2 ∈ (2/3, 1] is globally well-posed, under mild restrictions on the
initial data, analogous to those required for the proof of the Cauchy problem previously outlined. Global
well-posedness follows from the fact that the analog on [−L,L] of the Hamiltonian (1.7) is conserved
under the reflection boundary conditions. Finally, in Section 2.3 we prove that the periodic initial-value
problem for the Bona-Smith systems with θ2 ∈ (2/3, 1] is globally well posed under similar restrictions on
the (periodic) initial data. For the BBM-BBM system (θ2 = 2/3) we can only prove local well-posedness
for the reflection and the periodic ibvp.

The well-posedness of these ibvp’s provides a firm theoretical foundation for deriving and rigorously
analyzing numerical methods for the Bona-Smith systems. In a sequel to this paper, [ADM], we discretize
the three ibvp’s using the standard Galerkin-finite element method with piecewise polynomial functions in
space and the classical fourth-order Runge-Kutta scheme in time, analyze the convergence of the resulting
semidiscrete and fully discrete schemes, and use them in numerical experiments to study phenomena of
interactions of solitary wave solutions of these systems and their interactions with the boundary.

Many of the theoretical results of the paper at hand were first proved in [A]. Some were announced
in preliminary form in [AD1] and [AD2].

2 Initial-boundary-value problems

Let I = (−L,L) for some L > 0. In this section we study three initial-boundary-value problems (ibvp’s)
for some Boussinesq systems of the form (1.1). Specifically, we seek functions η and u defined for x ∈ Ī
and t ≥ 0 and satisfying for x ∈ Ī, t > 0 the system

ηt + ux + (ηu)x + auxxx − bηxxt = 0,
ut + ηx + uux + cηxxx − duxxt = 0,

(2.1)

with given initial conditions

η(x, 0) = η0(x), u(x, 0) = u0(x), x ∈ Ī , (2.2)

and several types of boundary conditions for u and η at x = ±L, t ≥ 0. Specific hypotheses about the
coefficients a, b, c, d will be made in each case.
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2.1 Nonhomogeneous Dirichlet boundary conditions

We start by considering the subclass of systems of the form (2.1) with b = d > 0, a = 0, c < 0, i.e. the
systems

ηt + ux + (ηu)x − bηxxt = 0,
ut + ηx + uux + cηxxx − buxxt = 0,

x ∈ Ī , t ≥ 0, (2.3)

which include the Bona-Smith family (1.4). We supplement (2.3) by the initial conditions (2.2) and
nonhomogeneous boundary conditions of Dirichlet type for η and u at both ends of the interval Ī, given
for t ≥ 0 by

η(−L, t) = h1(t), η(L, t) = h2(t), u(−L, t) = v1(t), u(L, t) = v2(t), (2.4)

where hi, vi, i = 1, 2, are given continuous functions.
To analyze the ibvp consisting of (2.3), (2.2), (2.4) we shall write it first in integral form, cf. e.g. [BS],

[BD], [BC]. With this aim in mind, given a suitable function f defined on Ī we consider the following
two-point boundary-value problem

w − bw′′ = −f ′, x ∈ Ī ,
w(−L) = w(L) = 0.

(2.5)

Let G be the Green’s function for (2.5) defined for x, ξ ∈ Ī by

G(x, ξ) := − 1

bW

{
w1(ξ)w2(x), −L 6 ξ 6 x,
w1(x)w2(ξ), x < ξ 6 L,

where w1(x) := sinh L+x√
b

, w2(x) := sinh L−x√
b

, and W := w1w
′
2−w′

1w2 = − 1√
b
sinh 2L√

b
. Then, the solution

of (2.5) may be expressed in the form

w(x) = (ADf)(x) :=

∫ L

−L

Gξ(x, ξ)f(ξ)dξ. (2.6)

In what follows, for a nonnegative integer k, we denote by Ck = Ck(Ī) the Banach space of real-
valued, k-times continuously differentiable functions defined on Ī. equipped with the norm ‖v‖Ck :=

max
06j6k

max
x∈Ī

∣∣∣v(j)(x)
∣∣∣. We also let Hk = Hk(I) denote the usual (Hilbert) Sobolev space of (classes of)

real-valued functions on I having generalized derivatives of order up to k in L2 = L2(I). We equip Hk

with the norm ‖v‖k :=
(∑k

j=0 ‖v(j)‖2
)1/2

, where ‖ ·‖ denotes the norm on L2 = H0. (The inner product

on L2 will be denoted by (·, ·)). In addition, H1
0 will denote the subspace of H1 whose elements vanish

at x = ±L. We denote norms of the spaces Lp = Lp(I), 1 6 p 6 ∞, by ‖ · ‖Lp . On occasion we shall also
use the Sobolev space W k

p = W k
p (I) for p = 1 and p = ∞, whose usual norm we will denote by ‖ · ‖W k

p
.

The following lemma gives some properties of the linear operator AD that will be useful in the sequel.

Lemma 2.1 Let AD be defined by (2.6) and M denote positive constants depending on b, not necessarily
the same at any two places. The the following hold:

(i) If v ∈ L1, then ADv ∈W 1
1 and ‖ADv‖L∞ 6 M‖v‖L1, ‖ADv‖ 6 M‖v‖L1.

(ii) If v ∈ L2, then ADv ∈ H1
0 and ‖ADv‖1 6 M‖v‖.

(iii) If v ∈ H1, then ADv ∈ H2 and ‖ADv‖2 6 M‖v‖1.

(iv) If v ∈ Cm, m ≥ 0, then ADv ∈ Cm+1 and ‖ADv‖Cm+1 6 M‖v‖Cm, where M = M(m, b).

Proof: (i): Let v ∈ L2. Then, if I1(x) :=
∫ x

−L
w′

1v and I2 :=
∫ L

x
w′

2v, x ∈ Ī, we have, by (2.6)

ADv := − 1

bW
[w2I1 + w1I2] . (2.7)
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It is clear that Ii, and therefore ADv belong to the space W 1
1 . Moreover, for x ∈ Ī, using the definitions

of the wi, we have

|(ADv)(x)| 6
1

b|W |

[
w2(x)

∫ x

−L

w′
1|v| − w1(x)

∫ L

x

w′
2|v|
]

6
1

b|W |(w2w
′
1 − w1w

′
2)‖v‖L1 =

1

b
‖v‖L1,

from which the two estimates in (i) follow. To prove (ii) note that it follows by the definition of Ii that
for v ∈ L2, ADv ∈ H1

0 . In addition, for φ ∈ H1
0 , integration by parts gives

(ADv, φ) + b((ADv)
′, φ′) = (v, φ′) − 1

bW
(w2I1 + w1I2, φ) − 1

W
(w′

2I1 + w′
1I2, φ

′) = (v, φ′).

Putting φ = ADv we obtain the estimate in (ii). To prove (iii) note that for v ∈ H1 we have, in L2, that

ADv − b(ADv)
′′ = −v′,

from which (iii) follows in view of (ii). Finally, note that if v ∈ C0, then ADv ∈ C1 by (2.7). Moreover,
for x ∈ Ī, by the properties of the wi

|(ADv)(x)| 6 − 1

bW

(
w2(x)

∫ x

−L

w′
1 − w1(x)

∫ L

x

w′
2

)
‖v‖C0 6

1√
b
‖v‖C0 ,

and

|(AD)′(x)v| 6
1

b
‖v‖C0 − 1

bW

(
−w′

2(x)

∫ x

−L

w′
1 − w′

1(x)

∫ L

x

w′
2

)
‖v‖C0 =

2

b
‖v‖C0,

and the required estimate follows for m = 0. For m ≥ 1 use the relation

(ADv)
(m+1) − b(ADv)

(m+1) = −v(m+1), (2.8)

and obtain the result by induction. �

Consider now the ibvp (2.3), (2.2), (2.4). Inverting the operator 1−b∂2
x under the boundary conditions

in (2.4) we obtain from the first p.d.e. of (2.3), after one integration by parts in space, the following
differential-integral equation valid for x ∈ Ī, t ≥ 0

ηt(x, t) =
w2(x)

µ
h′1(t) +

w1(x)

µ
h′2(t) +AD(u+ ηu)(x, t), (2.9)

where µ := sinh(2L/
√
b). If we perform analogous operations on the second p.d.e. of (2.3) we encounter

the term ADηxx. Now, using the definition of AD and integration by parts, it is not hard to see, for a
twice differentiable function v on Ī that

ADv
′′ =

1

b
(v′ +Bv′ +ADv), (2.10)

where, for v ∈ C0, the operator B is defined as

(Bv)(x) =
1√
bW

(v(−L)w2(x) + v(L)w1(x)), x ∈ Ī . (2.11)

Hence, ADηxx = 1
b (ηx +ADη +Bηx), and it follows from the second p.d.e. of (2.3) that for x ∈ Ī, t ≥ 0

ut(x, t) =
w2(x)

µ
v′1(t) +

w1(x)

µ
v′2(t) +

c

b
(ÃDη +Bηx)(x, t) +AD(η +

1

2
u2)(x, t), (2.12)
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where ÃD = AD + ∂x. Integrating now (2.9) and (2.12) with respect to t yields the system

η(x, t) = η0(x) +
w2(x)

µ
(h1(t) − h1(0)) +

w1(x)

µ
(h2(t) − h2(0)) +

∫ t

0

AD(u + ηu)dτ, (2.13)

u(x, t) = u0(x) +
w2(x)

µ
(v1(t)− v1(0)) +

w1(x)

µ
(v2(t) − v2(0)) +

∫ t

0

[
c

b
(ÃDη +Bηx) +AD(η +

1

2
u2)

]
dτ.

(2.14)
It is clear that any classical solution (η, u) of the i.b.v.p. (2.3), (2.2), (2.4) satisfies the system of integral
equation (2.13)-(2.14) in its temporal interval of existence.

In the sequel, given a Banach space X , and some positive number T we shall denote by C(0, T ;X)
the Banach space of continuous maps v : [0, T ] → X with norm ‖v‖C(0,T ;X) = sup06t6T ‖v(t)‖X . In
particular, when X = Cm we shall frequently denote Cm

T = C(0, T ;Cm) and the corresponding norm by
‖v‖Cm

T
.

We proceed now to establish uniqueness and local existence of solutions of the system of integral
equations (2.13)-(2.14).

Proposition 2.1 Let 0 < T < ∞, η0 ∈ C1, u0 ∈ C0, hi, vi ∈ C([0, T ]), i = 1, 2. Then, the system
(2.13)-(2.14) has at most one solution (η, u) ∈ C1

T × C0
T .

Proof: Let (ηi, ui), i = 1, 2, be two solutions of (2.13)-(2.14) in C1
T × C0

T . Then, with η := η1 − η2,
u := u1 − u2, we have for 0 6 t 6 T

η(t) =

∫ t

0

AD(u+ η1u+ u2η)dτ, (2.15)

u(t) =

∫ t

0

[
c

b
(ÃDη +Bηx) +ADη +

1

2
AD((u1 + u2)u)

]
dτ. (2.16)

Using Lemma 2.1(iv) we conclude from (2.15) that for some positive constant M1 = M1(b) there holds
for t ∈ [0, T ]

‖η(t)‖C1 6 M1

[
(1 + ‖η1‖C0

T
)

∫ t

0

‖u(τ)‖C0dτ + ‖u2‖C0
T

∫ t

0

‖η(τ)‖C0dτ

]
.

Since from (2.11) for any integer m ≥ 0 there exists a constant c1 = c1(m, b) such that for v ∈ C0

‖Bv‖Cm 6 c1 max(|v(L)|, |v(−L)|) 6 c1‖v‖C0,

it follows from (2.16) and Lemma 2.1(iv) that for t ∈ [0, T ]

‖u(t)‖C0 6 M2

[
‖u1 + u2‖C0

T

∫ t

0

‖u(τ)‖C0dτ +

∫ t

0

‖η(τ)‖C1dτ

]
,

for some positive constant M2 = M2(b, c). We conclude therefore that for t ∈ [0, T ] and some constant
c2 we have

‖η(t)‖C1 + ‖u(t)‖C0 6 c2

∫ t

0

(‖η(τ)‖C1 + ‖u(τ)‖C0)dτ,

from which, by Gronwall’s lemma, we infer that η = u = 0. �

Proposition 2.2 Let 0 < T < ∞, η0 ∈ C1, u0 ∈ C0, hi, vi ∈ C([0, T ]), i = 1, 2, and β0 := ‖η0‖C1 +

‖u0‖C0 + max
t∈[0,T ]

2∑

i=1

(|hi(t)| + |vi(t)|). Then, there exists a T0 = T0(T, β0) ∈ (0, T ] such that the system

(2.13)-(2.14) has a unique solution (η, u) ∈ C1
T0

× C0
T0

.
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Proof: With T0 to be suitably chosen, let E be the Banach space C1
T0

× C0
T0

with norm ‖(v, w)‖E :=
‖v‖C1

T0

+ ‖w‖C0
T0

. Consider the mapping Γ : E → E defined by

Γ(v, w) =

(
H +

∫ t

0

AD(w + vw)dτ, U +

∫ t

0

[
c

b
(ÃDv +Bvx) +AD(v +

1

2
w2)

]
dτ

)
,

where, cf. (2.13)-(2.14),

H(x, t) := η0(x) +
w2(x)

µ
(h1(t) − h1(0)) +

w1(x)

µ
(h2(t) − h2(0)),

U(x, t) := u0(x) +
w2(x)

µ
(v1(t) − v1(0)) +

w1(x)

µ
(v2(t) − v2(0)).

Let BR be the closed ball in E with center 0 and radius R > 0. Let (ηi, ui) ∈ BR, i = 1, 2. As in the
proof of Proposition 2.1 and with notation introduced therein, we have

‖Γ(η1, u1) − Γ(η2, u2)‖E 6 M1T0[(1 + ‖η1‖0
CT0

)‖u1 − u2‖C0
T0

+ ‖u2‖C0
T0

‖η1 − η2‖C0
T0

]

+M2T0[‖u1 + u2‖C0
T0

‖u1 − u2‖C0
T0

+ ‖η1 − η2‖C1
T0

]

6 Θ‖(η1, u1) − (η2, u2)‖E , (2.17)

where Θ := T0[M1 +M2 +R(M1 + 2M2)]. Moreover, if (η, u) ∈ BR it holds that

‖Γ(η, u)‖E 6 ‖Γ(η, u) − Γ(0, 0)‖E + ‖Γ(0, 0)‖E

6 ΘR+ ‖(H,U)‖E 6 ΘR+ c1β0, (2.18)

where c1 is a constant depending on β. If we choose now R = 2c1β and T0 6 1
2[M1+M2+R(M1+2M2)]

∈
(0, T ], we see that Θ 6 1

2 and ΘR + c1β0 6 R. Hence, in view of (2.17) and (2.18), the contraction
mapping theorem applies to Γ consider as a mapping of BR into itself. Consequently, Γ has a unique
fixed point (η, u) ∈ BR, which is the required solution of (2.13)-(2.14). �

We are now ready to establish a local existence-uniqueness result for the classical solutions of the ibvp
(2.3)-(2.2)-(2.4).

Theorem 2.1 Let 0 < T < ∞, η0 ∈ C3, u0 ∈ C2, hi, vi ∈ C1([0, T ]), i = 1, 2, and suppose that the
compatibility conditions

η0(−L) = h1(0), η0(L) = h2(0), u0(−L) = v1(0), u0(L) = v2(0), (2.19)

are satisfied. Then, the solution (η, u) ∈ C1
T0

×C0
T0

of (2.13)-(2.14), whose existence and uniqueness were
established in Proposition 2.2, lies in C3

T0
×C2

T0
, and is a classical solution of the ibvp (2.3), (2.2), (2.4)

in the temporal interval [0, T0].

Proof: Consider the system (2.13)-(2.14) of integral equations. It is straightforward, by repeating the
contraction mapping argument of Proposition 2.2, using out hypothesis on the regularity of the data,
and Lemma 2.1(iv) to establish the existence and uniqueness of a solution (η, u) in the Banach space

C3
T2

×C2
T2

for a suitably small T2 ∈ (0, T ], depending on β2 := ‖η0‖C3 +‖u0‖C2 + max
t∈[0,T ]

2∑

i=1

|hi(t)|+ |vi(t)|.

In addition, it is not hard to see that η and u, given by (2.13), (2.14), respectively, are differentiable with
respect to t and that their derivatives ηt, ut are by the formulas (2.9) and (2.12), respectively. Since we
assumed that hi, vi ∈ C1([0, T ]), i = 1, 2, use of Lemma 2.1(iv) gives now that (ηt, ut) ∈ C3

T2
× C2

T2
.

Suppose that T2 < T0. Then, by Proposition 2.1, the solution pair (η, u) ∈ C3
T2

× C2
T2

coincides, on
[0, T2], with that in C1

T0
×C0

T0
guaranteed by Proposition 2.2. By a standard argument, cf. [BS] Section
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5, its existence interval may be extended to [0, T0]. For this purpose, it is necessary to establish an a
priori estimate of ‖η‖C3

T0

+ ‖u‖C2
T0

independent of T2. Since (η, u) ∈ C2
T0

× C0
T0

, from (2.13) and using

Lemma 2.1(iv) we have for t ∈ [0, T0]

‖η‖C2 6 ‖η0‖C2 + C max
06t6T

2∑

i=1

|hi(t)| + C

∫ t

0

(1 + ‖η‖C1)‖u‖C1dτ,

where, here and in what follows, C will denote various constants independent of t and T2 not necessarily
the same in any two places. Since η ∈ C2

T0
, we conclude that for t ∈ [0, T0]

‖η‖C2 6 C(β1 +

∫ t

0

‖u‖C1dτ), (2.20)

where β1 := ‖η0‖C2 + ‖u0‖C1 + max
t∈[0,T ]

2∑

i=1

|hi(t)| + |vi(t)|. Similarly, from (2.14) we obtain, for t ∈ [0, T0]

‖u‖C1 6 ‖u0‖C1 + C max
t∈[0,T ]

2∑

i=1

|vi(t)| + C

∫ t

0

(‖η‖C2 + ‖u‖2
C0)dτ

6 C

[
β1 +

∫ t

0

(‖η‖C2 + ‖u‖C0)dτ

]
. (2.21)

From (2.20), (2.21) and Gronwall’s lemma we infer that

‖η‖C2
T0

+ ‖u‖C1
T0

6 Cβ1e
CT0 ,

which is the required a priori estimate.
At this point we have established the existence of a unique solution (η, u) of (2.13)-(2.14) with the

properties that (η, u) ∈ C3
T0

× C2
T0

and (ηt, ut) ∈ C3
T0

× C2
T0

. This solution is a classical solution of the
ibvp (2.3), (2.2), (2.4) in the temporal interval [0, T0]: That it satisfies the initial conditions (2.2) is
obvious from (2.13)-(2.14). Using the compatibility conditions (2.19), the definitions of the operators

ÃD, B and the the functions w1, w2 , and the fact that Gξ(±L, ξ) = 0, we may also check that the
boundary conditions (2.4) are satisfied for t ∈ [0, T0]. In addition, differentiating (2.9) twice with respect
to x and using the definition of w1, w2 and (2.8) for m = 1, we see that for x ∈ Ī, t ∈ [0, T0] we have
ηt − bηxxt = −∂x(u+ ηu), which is the first p.d.e. in (2.2). Finally, from (2.12), differentiating twice with
respect to x we have, similarly, that for x ∈ Ī, t ∈ [0, T0]

ut − buxxt =
c

b
[ADη + ηx − b(ADη)xx] − cηxxx + (I − b∂2

x)AD(η +
1

2
u2) = −∂x(η +

1

2
u2) − cηxxx,

where, in the last equality, we used twice (2.8) for m = 1. Hence, (η, u) is also a classical solution of the
second p.d.e. in (2.2). �

Remark 2.1: One may readily establish higher regularity of the solution provided the data are more
regular. For example, by a straightforward extension of the proof of Theorem 2.1 one may show that if
η0 ∈ Cm+1, u0 ∈ Cm and hi, vi ∈ Cℓ([0, T ]), i = 1, 2, for integers m ≥ 2, ℓ ≥ 1, and some 0 < T < ∞,
and if the compatibility conditions (2.19) hold, then the classical solution (η, u) of the ibvp (2.3), (2.2),
(2.4) has the properties that (η, u) ∈ Cm+1

T0
× Cm

T0
and (∂k

t η, ∂
k
t u) ∈ Cm+1

T0
× Cm

T0
, for 1 6 k 6 ℓ. �

Remark 2.2: Local in time well-posedness of the ibvp at hand may also be established in appropriate
pairs of Sobolev classes. For example, it is straightforward to prove, by a modification of Proposition 2.1,
that for any T > 0 the integral equations (2.13)-(2.14) have at most one solution (η, u) ∈ C(0, T ;H2) ×
C(0, T ;H1) provided η0 ∈ H2, u0 ∈ H1 and e.g. hi, vi ∈ C([0, T ]). (For this purpose use the properties
(ii) and (iii) of AD, cf. Lemma 2.1.) In addition, the proof of Proposition 2.2 may be adapted to yield local
existence of a solution (η, u) ∈ C(0, T ′;H2)×C(0, T ′;H1) of (2.13)-(2.14) for some T ′ 6 T , depending on
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β′ := ‖η0‖2 + ‖u0‖1 + max
t∈[0,T ]

2∑

i=1

|hi(t)| + |vi(t)|. This solution coincides with the classical solution of the

ibvp established in Theorem 2.1 if the data satisfy the additional regularity and compatibility conditions
in the statement of that theorem. �

Remark 2.3: Consider, for simplicity, the case of homogeneous boundary conditions and write the
system (1.4) in dimensionless but scaled variables to obtain the ibvp

ηt + ux + ε(ηu)x − εbηxxt = 0,
ut + ηx + εuux + εcηxxx − εbuxxt = 0,

x ∈ Ī , t ≥ 0, (2.22)

η(x, 0) = η0(x), u(x, 0) = u0(x), x ∈ Ī , (2.23)

η(±L, t) = u(±L, t) = 0, t ≥ 0, (2.24)

where ε = A/h≪ 1, cf. the remarks in the Introduction. If b > 0 and c < 0 we may derive local a priori
estimates in H2∩H1

0 ×H1
0 for the solution (η, u) of (2.22)–(2.24) by the energy method. These estimates

are valid on a temporal interval [0, Tε], where Tε is independent on ε. To see this, multiply the first pde
in (2.22) by η and ηxx and the second by u, and use integration by parts and the boundary conditions
(2.24) to obtain, for t > 0

1

2

d

dt

∫ L

−L

(η2 + εbη2
x)dx+

∫ L

−L

(uxη + ε(ηu)xη)dx = 0,

1

2

d

dt

∫ L

−L

(η2
x + εbη2

xx)dx−
∫ L

−L

(uxηxx + ε(ηu)xηxx)dx = 0,

1

2

d

dt

∫ L

−L

(u2 + εbu2
x)dx +

∫ L

−L

(ηxu− εcηxxux)dx = 0.

Multiplying the second identity by −εc and adding all three we finally obtain the energy identity

1

2

d

dt

∫ L

−L

(η2 + ε(b− c)η2
x − ε2bcη2

xx + u2 + εbu2
x)dx = −ε

2

∫ L

−L

η2uxdx − cε2
∫ L

−L

(ηu)xηxxdx. (2.25)

By the Cauchy-Schwarz and the Sobolev-Poincaré inequalities we have, for some generic constant C
independent of ε, ∣∣∣∣∣

∫ L

−L

η2uxdx

∣∣∣∣∣ ≤ ‖η‖L∞‖η‖‖ux‖ ≤ C‖η‖‖ηx‖‖ux‖,

∣∣∣∣∣

∫ L

−L

(ηu)xηxxdx

∣∣∣∣∣ =

∣∣∣∣∣

∫ L

−L

(ηxuηxx + ηuxηxx)dx

∣∣∣∣∣ ≤ ‖u‖L∞‖ηx‖‖ηxx‖+‖η‖L∞‖ux‖‖ηxx‖ ≤ C‖ηx‖‖ηxx‖‖ux‖.

Using now Hölder’s inequality we get

ε‖η‖‖ηx‖‖ux‖ = ‖η‖(ε1/2‖ηx‖)(ε1/2‖ux‖)
≤ C(‖η‖3 + ε3/2‖ηx‖3 + ε3/2‖ux‖3)

≤ C(‖η‖2 + ε‖ηx‖2 + ε‖ux‖2)3/2,

and

ε2‖ηx‖‖ηxx‖‖ux‖ = (ε1/2‖ηx‖)(ε‖ηxx‖)(ε1/2‖ux‖)
≤ C(ε‖ηx‖2 + ε2‖ηxx‖2 + ε‖ux‖2)3/2.

Therefore, if

Iε = Iε(t) :=

∫ L

−L

(η2 + ε(b− c)η2
x − ε2bcη2

xx + u2 + εbu2
x)dx,
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(2.25) implies that
dIε
dt

≤ CI3/2
ε ,

from which

Iε(t) ≤
Iε(0)

(1 − Ct
√
Iε(0))2

,

for t sufficiently small. Therefore we have local in time a priori H2 ∩H1
0 ×H1

0 estimates for the solution

of (2.22)–(2.24) on a temporal interval [0, Tε], where Tε = O
(

1
Iε(0)1/2

)
. Since

Iε(0) =

∫ L

−L

[η2
0 + ε(b− c)(η′0)

2 − ε2bc(η′′0 )2 + u2
0 + εb(u′0)

2]dx,

and 0 < ε≪ 1, it is clear that Tε may be taken to be independent of ε. If c = 0 (the BBM-BBM case) a
similar proof yields a priori H1

0 ×H1
0 estimates on [0, Tε] where Tε is independent of ε. �

Finally, let us note that the generalization of the analysis of this section to systems of form (2.1) with
a = 0, c < 0 and b > 0, d > 0 with b 6= d is immediate.

In addition, a similar analysis may be applied to the analogous ibvp for Boussinesq systems of ‘reverse’
Bona-Smith type, i.e. systems with a < 0, c = 0, b > 0, d > 0, with Dirichlet boundary conditions of the
type (2.4), to yield e.g. well-posedness with (η, u) ∈ C(0, T0;C

2) × C(0, T0;C
3) for small enough T0.

In the case of systems of BBM-BBM type (a = c = 0, b > 0, d > 0) we have local well-posedness in
the balanced spaces C(0, T0;C

2) ×C(0, T0;C
2) as Bona and Chen have shown in [BC]. In this case, the

proof of the analog of Theorem 2.1 is simpler.

2.2 Reflection boundary conditions

In this paragraph we shall study the well-posedness of ibvp’s for some systems of the form (2.1) in the
case of reflection boundary conditions at the endpoints of Ī, that is in the case of homogeneous boundary
conditions of Neumann type for η and of Dirichlet type for u.

First we consider ibvp’s of this kind for systems of Bona-Smith type, rewriting them here for the
convenience of reader:

ηt + ux + (ηu)x − bηxxt = 0,
ut + ηx + uux + cηxxx − buxxt = 0,

x ∈ Ī , t ≥ 0, (2.26)

where b > 0, c < 0. The systems are supplemented by initial conditions

η(x, 0) = η0(x), u(x, 0) = u0(x), x ∈ Ī , (2.27)

and the boundary conditions

ηx(−L, t) = ηx(L, t) = 0, u(−L, t) = u(L, t) = 0, t ≥ 0. (2.28)

As was done in the previous section, we shall convert first this ibvp into a system of integral equations.
For this purpose, consider the two-point boundary value problem with Neumann boundary conditions

w − bw′′ = −f ′, x ∈ Ī ,
w′(−L) = w′(L) = 0.

(2.29)

Let G1 be the Green’s function for (2.29) defined for x, ξ ∈ Ī by

G1(x, ξ) := − 1

bW

{
ω1(ξ)ω2(x), −L 6 ξ 6 x,
ω1(x)ω2(ξ), x < ξ 6 L,
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where ω1(x) := cosh
(

L+x√
b

)
, ω2(x) := cosh

(
L−x√

b

)
, W = ω1ω

′
2 − ω′

1ω2 = − 1√
b
sinh 2L√

b
. Define the linear

operator AN as

(ANf)(x) :=

∫ L

−L

G1,ξf(ξ)dξ. (2.30)

Note that if e.g. f ∈ C1 with f(−L) = f(L) = 0, then w = ANf is a classical solution of the boundary-
value problem (2.29). In the following lemma we prove two properties of AN that will be needed in the
sequel.

Lemma 2.2 (i) If v ∈ L2, then ANv ∈ H1 and ‖ANv‖1 6 max
(
1, 1

b

)
‖v‖.

(ii) If v ∈ Cm for m ≥ 0, then ANv ∈ Cm+1 and ‖ANv‖Cm+1 6 M‖v‖Cm, for some constant M
depending on m and b.

Proof: Let v ∈ L2. Then, if I1(x) :=
∫ x

−L ω
′
1v and I2(x) :=

∫ L

x ω′
2v we have, by the definition of AN ,

ANv = − 1

bW
(ω2I1 + ω1I2), (2.31)

and

(ANv)
′ =

1

b

[
v − 1

W
(ω′

2I1 + ω′
1I2)

]
. (2.32)

Hence, using the definitions of ωi, we see that ANv ∈ H1 and v − b(ANv)
′ ∈ H1

0 . It follows that for any
φ ∈ H1

(v − b(ANv)
′, φ′) =

1

W
(ω′

2I1 + ω′
1I2, φ

′) = (ANv, φ),

which yields the required estimate in (i) if we put φ = ANv. To prove (ii), note that for v ∈ C0, it follows
from (2.31) that ANv ∈ C1. In addition, ‖ANv‖C0 6 M1(b)‖v‖C0 and ‖(ANv)

′‖C0 6 M2(b)‖v‖C0, from
which (ii) follows for m = 0.

To prove the result for general m, note that (2.31) and (2.32) imply, if v ∈ C1, that b(ANv)
′′ =

v′ + (ANv). By induction, if v ∈ Cm, m ≥ 1, we obtain that

(ANv)
(m+1) =

1

b

[
(ANv)

(m−1) + v(m)
]
, (2.33)

from which the required estimate in (ii) follows. �

Consider now the ibvp (2.26)–(2.28). Inverting the operator 1 − b∂2
x under the boundary conditions

in (2.29) and taking into account the fact that u satisfies homogeneous Dirichlet boundary conditions at
x = ±L, we obtain from the first p.d.e. in (2.26), for x ∈ Ī and t ≥ 0, that

ηt = AN (u+ ηu). (2.34)

Inverting now the operator 1 − b∂2
x under the boundary conditions in (2.5) we obtain from the second

p.d.e. in (2.26) that ut = AD(cηxx + η + 1
2u

2). Taking into account (2.10) and the fact that (2.28) and
(2.11) imply that Bηx = 0, we see that

ut =
c

b
ÃDη + AD(η +

1

2
u2), (2.35)

where we put again ÃD = AD + ∂x. Integrating (2.34) and (2.35) with respect to t yields the system of
integral equations

η(x, t) = η0(x) +

∫ t

0

AN (u+ ηu)dτ, (2.36)

u(x, t) = u0(x) +

∫ t

0

[
c

b
ÃDη +AD(η +

1

2
u2)

]
dτ, (2.37)
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where x ∈ Ī, t ≥ 0. It is clear that any classical solution of the ibvp (2.26)–(2.28) satisfies in its temporal
interval of existence the system of integral equations (2.36)–(2.37).

As in the previous section, we study first the uniqueness and existence of solutions of (2.36)–(2.37).
For this purpose we shall denote H1

T = C(0, T ;H1), L2
T = C(0, T ;L2).

Proposition 2.3 Let 0 < T < ∞, η0 ∈ H1, u0 ∈ L2. Then, the system (2.36)–(2.37) has at most one
solution (η, u) ∈ H1

T × L2
T .

Proof: Let (ηi, ui), i = 1, 2, be two solutions of (2.36)–(2.37) in H1
T × L2

T . Then, with η := η1 − η2,
u := u1 − u2, we have for 0 6 t 6 T

η(t) =

∫ t

0

AN (u + η1u+ u2η)dτ, (2.38)

u(t) =

∫ t

0

[
c

b
ÃDη +AD(η +

1

2
(u1 + u2)u)

]
dτ. (2.39)

Using Lemma 2.2(i) and Sobolev’s theorem we have from (2.38) for some positive constant M1 = M1(b)
that t ∈ [0, T ]

‖η(t)‖1 6 M1

[
(1 + ‖η1‖H1

T
)

∫ t

0

‖u(τ)‖dτ + ‖u2‖L2
T

∫ t

0

‖η(τ)‖1dτ

]
.

In addition, using (2.39) and Lemma 2.1(i) we have, for some constant M2(b) and for t ∈ [0, T ]

‖u(t)‖ 6 M2

[∫ t

0

‖η‖1dτ + ‖u1 + u2‖L2
T

∫ t

0

‖u(τ)‖dτ
]
.

By our hypotheses on ηi, ui there follows for t ∈ [0, T ] and for some constant c1 that

‖η(t)‖1 + ‖u(t)‖ 6 c1

∫ t

0

(‖η(τ)‖1 + ‖u(τ)‖)dτ,

which, by Gronwall’s lemma, leads to η = u = 0. �

Remark 2.4: Suppose that (η0, u0) ∈ Cm+1 × Cm, for some integer m ≥ 0. Then, using (2.38) and
(2.39) and the properties of AD, AN given by Lemma 2.1(iv) and Lemma 2.2(ii), we may prove, in a
manner similar to the proof of the previous proposition, that given 0 < T <∞, the system (2.36)–(2.37)
has at most one solution (η, u) ∈ Cm+1

T × Cm
T . �

Proposition 2.4 Suppose that (η0, u0) ∈ H1 × L2 and β := ‖η0‖1 + ‖u0‖. Then, there exists a positive
number T = T (β) such that the system (2.36)–(2.37) has a unique solution (η, u) ∈ H1

T × L2
T .

Proof: With T to be suitably chosen, let E be the Banach space H1
T × L2

T with norm ‖(v, w)‖E :=
‖v‖H1

T
+ ‖w‖L2

T
. The mapping Γ : E → E given for (v, w) ∈ E by

Γ(v, w) =

(
η0 +

∫ t

0

AN (w + vw)dτ, u0 +

∫ t

0

[
c

b
ÃDv +AD(v +

1

2
w2)

]
dτ

)
,

is well-defined, as may be seen by the properties of AD and AN in Lemma 2.1(i) and Lemma 2.2(i),
respectively. Let BR be the closed ball in E with center 0 and radius R > 0 and let (ηi, ui) ∈ BR,
i = 1, 2. As in the proof of Proposition 2.3, we have, using the properties of AD and AN and Sobolev’s
theorem, that

‖Γ(η1, u1) − Γ(η2, u2)‖E 6 M1T [(1 + ‖η1‖H1
T
)‖u1 − u2‖L2

T
+ ‖u2‖L2

T
‖η1 − η2‖H1

T
]

+M2T [‖η1 − η2‖H1
T

+ ‖u1 + u2‖L2
T
‖u1 − u2‖L2

T
]

6 Θ‖(η1, u1) − (η2, u2)‖E , (2.40)
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where Θ := T [M1 +M2 +R(M1 + 2M2)]. In addition, if (η, u) ∈ BR it follows that

‖Γ(η, u)‖E 6 ‖Γ(η, u) − Γ(0, 0)‖E + ‖Γ(0, 0)‖E

6 ΘR+ ‖(η0, u0)‖E 6 ΘR+ β. (2.41)

Choosing R = 2β, T = 1
2[M1+M2+R(M1+2M2)] , we see that Θ = 1/2, and ΘR + β = R. Consequently,

(2.40) and (2.41) imply that the contraction mapping theorem applies to the mapping Γ : BR → BR.
Therefore, Γ has a unique fixed point (η, u) ∈ BR, which is the required solution of (2.36)–(2.37). �

It will be found useful in the sequel to have local in time existence results for solutions of (2.36)–(2.37)
in spaces of smooth functions as well. With this aim in mind, we define for integer m ≥ 0

Cm
0 := {v ∈ Cm : v(−L) = v(L) = 0}

and
C̃m+1

0 := {v ∈ Cm+1 : v′(−L) = v′(L) = 0}.

The spaces Cm
0 , C̃m+1

0 are obviously closed subspaces of the Banach spaces Cm and Cm+1, respectively.
With this notation in mind, we have:

Proposition 2.5 Given a nonnegative integer m, and (η0, u0) ∈ C̃m+1
0 × Cm

0 , let γm := ‖η0‖Cm+1 +
‖u0‖Cm . Then, there exists Tm = Tm(γm) > 0, such that the system (2.36)–(2.37) has a unique solution

(η, u) ∈ C(0, Tm; C̃m+1
0 ) × C(0, Tm;Cm

0 ).

Proof: With Tm to be suitably chosen, let Em be the Banach space C(0, Tm; C̃m+1
0 ) × C(0, Tm;Cm

0 )
with norm ‖(v, w)‖Em := ‖v‖Cm+1

Tm

+ ‖w‖Cm
Tm

. Consider the mapping Γm given for (v, w) ∈ Em by

Γm(v, w) = (η0 +

∫ t

0

AN (w + vw)dτ, u0 +

∫ t

0

[
c

b
ÃDv +AD(v +

1

2
w2)]dτ.

That Γm is well defined on Em and has values in Cm+1
Tm

× Cm
Tm

, follows from our hypotheses on the

initial data and by Lemma 2.1(iv) and Lemma 2.2(ii). Let φ(x, t) := η0(x) +
∫ t

0 AN (w + vw)(x, t)dτ .

Differentiating φ with respect to x, using (2.32) and the facts that w ∈ C(0, Tm;Cm
0 ), η0 ∈ C̃m+1

0 , yields

that φx(±L, t) = 0, 0 6 t 6 Tm. In addition, it follows from the hypothesis u0 ∈ Cm
0 , v ∈ C(0, Tm; C̃m+1

0 ),

and the definition of AD that ψ := u0 +
∫ t

0 [ c
b ÃDv + AD(v + 1

2w
2)]dτ vanishes at x = ±L. Therefore,

Γm : Em → Em. The rest of the proof follows, mutatis mutandis, that of Proposition 2.4, when use is
made of the estimates in Lemma 2.1(iv) and Lemma 2.2(ii) to establish that Γm is a contraction map
from B to B, where B is a closed ball of center zero and suitable radius in Em, provided Tm is taken
sufficiently small. �

We are now in position to prove a local well-posedness result for classical solutions of the ibvp (2.26)–
(2.28).

Proposition 2.6 Suppose that (η0, u0) ∈ C̃3
0 × C2

0 . Let (η, u) ∈ H1
T × L2

T be the solution of the sys-
tem (2.36)–(2.37), whose existence and uniqueness was established in Proposition 2.4. Then, η, ηt ∈
C(0, T ; C̃3

0), u, ut ∈ C(0, T ;C2
0) and (η, u) is a classical solution of the ibvp (2.26)–(2.28) in [0, T ].

Proof: Consider the system of integral equations (2.36)–(2.37). By Proposition 2.5, there exists a
positive T2 = T2(γ2) where γ2 = ‖η0‖C3 + ‖u0‖C2 , such that a unique solution (η, u) of this system exists

in C(0, T2; C̃
3
0 )×C(0, T2;C

2
0 ). (It is not hard to see from (2.36) and (2.37) that η and u are differentiable

with respect to t and that ηt and ut are given by (2.34) and (2.35), respectively. Use of Lemma 2.1(iv)

and Lemma 2.2(ii) gives that (ηt, ut) ∈ C(0, T2; C̃
3
0 ) × C(0, T2;C

2
0 ).)

Suppose that T2 < T . By Proposition 2.3 the solution pair (η, u) coincides on [0, T2] with that in
H1

T × L2
T guaranteed by Proposition 2.4. As was done e.g. in Theorem 2.1, if an a priori estimate of

‖η‖C3
T

+ ‖u‖C2
T

independent of T2 is established, then the argument of Proposition 2.5 may be repeated
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to extend the solution from T2 to T
(1)
2 > T2 and then for T

(1)
2 to T

(2)
2 > T

(1)
2 and so on, reaching T in a

finite number of steps.
To establish this a priori estimate, note that (2.36), Lemma 2.2 and Sobolev’s theorem yield for

t ∈ [0, T ]

‖η‖C1 6 ‖η0‖C1 + C(1 + ‖η‖H1
T
)

∫ t

0

‖u‖C0dτ, (2.42)

where C in the sequel will denote generically various constants independent of t and T2. In addition,
from (2.37), Lemma 2.1(iv) and (i), we have for t ∈ [0, T ]

‖u‖C0 6 ‖u0‖C0 + C(T ‖u‖2
L2

T
+

∫ t

0

‖η‖C1dτ). (2.43)

From (2.42) and (2.43) and Gronwall’s lemma we conclude that for some constant C depending on T ,
‖η‖H1

T
, ‖u‖L2

T
and ‖η0‖C1 + ‖u0‖C0 , we have

‖η‖C1
T

+ ‖u‖C0
T

6 C.

Using this estimate and similar arguments we may easily obtain the required a priori estimate of
‖η‖C2

T
+ ‖u‖C1

T
and finally the needed estimate of ‖η‖C3

T
+ ‖u‖C2

T
.

At this point we have established the existence of a unique solution (η, u) of (2.36)–(2.37) with the

property that (η, u) ∈ C(0, T, C̃3
0 )×C(0, T ;C2

0), (and such that (ηt, ut) ∈ C(0, T, C̃3
0 )×C(0, T ;C2

0).) This
solution is a classical solution of the ibvp (2.26)–(2.28). Indeed, differentiating twice (2.34) with respect
to x we have, by (2.33), for x ∈ Ī, t ∈ [0, T ], that

ηt + bηxxt = AN (u+ ηu) − b[AN (u + ηu)]xx = (u+ ηu)x.

In addition, differentiating twice in (2.35) with respect to x and using the last argument of the proof of
Theorem 2.1, we conclude that (η, u) also satisfies the second p.d.e. of (2.26) for x ∈ Ī, t ∈ [0, T ]. We
conclude that (η, u) is a classical solution of the ibvp (2.26)–(2.28) for t ∈ [0, T ]. �

Consider a classical solution (η, u) of the system (2.26). If we write the latter in the form

ηt + Px = 0,
ut +Qx = 0,

with P := u+ ηu− bηxt, Q := η + 1
2u

2 + cηxx − buxt, there follows that

ηtQ+ utP + (PQ)x = 0. (2.44)

The boundary conditions (2.28) imply that P (±L, t) = 0. In addition, we may easily check that

∫ L

−L

(ηtQ+ utP )dx =
1

2
∂t

∫ L

−L

(η2 + u2 + ηu2 − cη2
x)dx.

Using these observations and integrating (2.44) with respect to x on I we conclude that classical solutions
of (2.26)–(2.28) conserve the ‘energy’ functional

E(t) :=

∫ L

−L

(η2 + |c|η2
x + (1 + η)u2)(x, t)dx, (2.45)

i.e. they satisfy E(t) = E(0) in the temporal interval of their existence. The functional E is analogous
to the Hamiltonian of the Cauchy problem for the same system, [BS], [BCSII].

The conservation of E leads to a global existence result for classical solutions of the ibvp (2.26)–(2.28)
under mild restrictions on the initial data:
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Theorem 2.2 Suppose that (η0, u0) ∈ C̃3
0 × C2

0 and that η0(x) > −1, x ∈ Ī. Suppose also that

E(0) =

∫ L

−L

(η2
0 + |c|(η′0)2 + (1 + η0)u

2
0)dx <

L|c|1/2

L+ |c|1/2
. (2.46)

Then, given any T ∗ ∈ (0,∞) there exists a unique classical solution of the ibvp (2.26)–(2.28) in [0, T ∗].

Proof: From our hypotheses and Propositions 2.4 and 2.6 there follows that there exists a T = T (β) > 0,
where β = ‖η0‖1 + ‖u0‖, such that the ibvp (2.26)–(2.28) has a classical solution in [0, T ]. It also follows
that there is a t0 > 0 such that 1 + η > 0 in [−L,L]× [0, t0]. Consider now the Sobolev type inequality

‖v‖2
C0 6

γ + L

γL
(‖v‖2 + γ2‖v′‖2), (2.47)

which is valid for any γ > 0 and v ∈ H1. To prove (2.47) consider the set {φn}n≥0 of functions on Ī

given by φ0(x) = (2L)−1/2, φn(x) =
(

4L
4L2+n2π2

)1/2

cos nπ(x+L)
2L , n = 1, 2, . . .. It is straightforward to

check that {φn}n≥0 is an orthonormal basis of H1 and that the φn are also orthogonal in L2. It follows
that for any v ∈ H1 we have v =

∑
n≥0 anφn with an = (v, φn)1, where (·, ·)1 denotes the usual inner

product in H1. Hence, for any γ > 0 we have

‖v‖2 + γ2‖v′‖2 =
∑

n≥0

γn|an|2, (2.48)

where γn := 4L2+γ2n2π2

4L2+n2π2 , n ≥ 0. Moreover, for x ∈ Ī

|v(x)| 6
1√
2L

|a0| +
∑

n≥1

(
4L

4L2 + n2π2

)1/2

|an| 6
∑

n≥0

(
4L

4L2 + n2π2

)1/2

|an|.

Therefore,

‖v‖2
C0 6

∑

n≥0

4L

(4L2 + n2π2)γ2
n

·
∑

n≥0

γ2
n|an|2,

and (2.47) follows from (2.48) and the estimate
∑

n≥0

4L

(4L2 + n2π2)γ2
n

=
1

L
+

4L

γ2π2

∑

n≥1

1

n2 +
(

2L
γπ

)2 6

1

L
+

4L

γ2π2
· γπ
2L

· π
2

=
1

L
+

1

γ
.

From (2.47) with γ = |c|1/2 we infer for t ∈ [0, t0] that

‖η(t)‖2
C0 6

L+ |c|1/2

L|c|1/2
E(t) =

L+ |c|1/2

L|c|1/2
E(0) =: λ2 < 1,

using the invariance of E and the hypothesis (2.46). Therefore, ‖η(t)‖C0 6 λ < 1 in [0, t0], implying that
minx∈Ī η(x, t0) ≥ −λ > −1. So this argument may continue up to t = T yielding

1 + η(x, t) ≥ 1 − λ > 0,

for x ∈ Ī, t ∈ [0, T ]. Hence,

E(0) = E(t) ≥
∫ L

−L

(η2 + |c|η2
x + (1 − λ)u2)dx ≥M(‖η(t)‖2

1 + ‖u(t)‖2),

where M = min(1, |c|, 1 − λ) > 0, implying that the quantity ‖η(t)‖1 + ‖u(t)‖ is bounded by a constant
independent of t. We conclude that the contraction mapping argument of Proposition 2.3 may be repeated
a finite number of times to reach any T ∗ <∞, thus proving the theorem. �
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Remark 2.5: The condition 1 + η0 > 0 in Ī is a natural one and means that initially there is water
in the channel at all points x ∈ Ī, since the bottom in this choice of variables is at depth −1. As we saw
in the proof of the above theorem, this condition and the assumption (2.46) imply that the channel never
runs dry. As a consequence, E(t) remains positive for all t and global existence of classical solutions
follows. The specific form of the constants in the Sobolev inequality (2.47) allows us to recover the bound
|c|1/2 (cf. [BCSII]) as L→ ∞ in the right-hand side of (2.46). �

Let us point out that it is quite easy to generalize the analysis of this section in order to obtain local
existence of classical solutions (i.e. up to Proposition 2.6) of ibvp’s with reflection boundary conditions
for systems of the form (2.1) with a = 0, c < 0 and b > 0, d > 0 with b 6= d. However, such systems
are not Hamiltonian and global existence does not follow from our arguments. In the case of BBM-BBM
type (a = c = 0, b > 0, d > 0) systems, we have local well-posedness in C(0, T ; C̃2

0) × C(0, T ;C2
0 ), but

even in the case b = d global existence of smooth solutions does not follow from our arguments since
c = 0 in (2.45).

2.3 Periodic boundary conditions

Finally, in this paragraph we shall study the well-posedness of the initial-periodic-boundary-value problem
(ipvp) for some systems of the form (2.1). As the general scheme of proof resembles that of the two
previous subsections we shall just state the results omitting the proofs. As usual we first consider the
Bona-Smith system. We seek functions η, u, 2L-periodic in x for t ≥ 0, satisfying the system

ηt + ux + (ηu)x − bηxxt = 0,
ut + ηx + uux + cηxxx − buxxt = 0,

x ∈ Ī , t ≥ 0, (2.49)

where b > 0, c < 0. The systems are supplemented by the initial conditions

η(x, 0) = η0(x), u(x, 0) = u0(x), x ∈ Ī , (2.50)

where η0, u0 are given 2L-periodic functions. As usual, we convert first this ipvp into a system of integral
equations. For this purpose, consider the two-point boundary-value problem with periodic boundary
conditions

w − bw′′ = −f ′, x ∈ Ī ,
w(−L) = w(L),
w′(−L) = w′(L),

(2.51)

where suppose, for example, that f ∈ C1 is 2L-periodic. (In this section we shall denote by Ck
p the

subspace of Ck consisting of 2L-periodic functions v, whose derivatives v′, · · · , v(k) are 2L-periodic. We
shall also denote by H1

p the space of 2L-periodic functions in H1.) Define the linear operator

(Apf)(x) :=

∫ L

−L

Gp,ξ(x, ξ)f(ξ)dξ, (2.52)

where Gp is the Green’s function for (2.51) defined for x, ξ ∈ Ī by

Gp(x, ξ) :=
1

2bω′(L)

{
ω(x− ξ − L), −L 6 ξ 6 x,
ω(x− ξ + L), x < ξ 6 L,

where ω(x) := cosh x√
b
. If f ∈ C1 with f(−L) = f(L), then w = Apf is a classical solution of (2.51). It

is proved in [A] using the representation (2.52) and Fourier analysis that the following Lemma holds:

Lemma 2.3 Let Ap be defined by (2.52) and M denote generic constants depending on b. Then, the
following hold:

(i) If v ∈ L1, then Apv ∈W 1
1 and ‖Apv‖L∞ 6 M‖v‖L1, ‖Apv‖ 6 M‖v‖L1.
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(ii) If v ∈ L2, then Apv ∈ H1
p and ‖Apv‖1 6 M‖v‖.

(iii) If v ∈ Cm
p , m ≥ 0, then Apv ∈ Cm+1

p and ‖Apv‖Cm+1 6 M‖v‖Cm, where M = M(m, b). �

In analogy to what was done in the previous two subsections, we may derive from (2.49)–(2.50) the
system of integral equations

η(x, t) = η0(x) +

∫ t

0

Ap(u+ ηu)dτ, (2.53)

u(x, t) = u0(x) +

∫ t

0

[
c

b
Ãpη +Ap(η +

1

2
u2)

]
dτ, (2.54)

where x ∈ Ī, t ≥ 0, and Ãp := Ap + ∂x. Using Lemma 2.3, we see that the following analogs of similar
previous results are valid:

Proposition 2.7 Let 0 < T < ∞, η0 ∈ H1
p , u0 ∈ L2. Then, the system (2.53)–(2.54) has at most one

solution (η, u) ∈ C(0, T ;H1
p) × L2

T . �

Proposition 2.8 Suppose that (η0, u0) ∈ H1
p ×L2 and β := ‖η0‖1+‖u0‖. Then, there exists T = T (β) >

0 such that the system (2.53)–(2.54) has a unique solution (η, u) ∈ C(0, T ;H1
p) × L2

T . �

Proposition 2.9 Suppose that (η0, u0) ∈ Cm+1
p × Cm

p for a nonnegative integer m, and let γm :=
‖η0‖Cm+1 + ‖u0‖Cm . Then, there exists Tm = Tm(γm) > 0 such that the system (2.53)–(2.54) has a
unique solution (η, u) ∈ C(0, T ;Cm+1

p ) × C(0, T ;Cm
p ). �

Combining these results we may prove the following local well-posedness result for the ipvp (2.49)–(2.50).

Proposition 2.10 Suppose that (η0, u0) ∈ C3
p × C2

p . Let (η, u) ∈ C(0, T ;H1
p) × L2

T be the solution
of the system (2.53)–(2.54), whose existence and uniqueness was established in Proposition 2.8. Then,
η, ηt ∈ C(0, T ;C3

p), u, ut ∈ C(0, T ;C2
p) and (η, u) is a classical solution of the ipvp (2.49)–(2.50) in the

temporal interval [0, T ]. �

It is easily seen, integrating (2.44) with respect to x in (−L,L) and using the periodic boundary conditions
on u and η, that classical solutions of the ipvp (2.49)–(2.50) conserve the energy functional E(t) given
by (2.45). Therefore, one may prove again a global existence result under mild restrictions on the initial
data, analogous to Theorem 2.2. The Sobolev inequality (2.47) should be replaced now by the inequality

‖v‖2
C0 6

(
γ + L

2γL

)
(‖v‖2 + γ2‖v′‖2),

valid for any v ∈ H1
p and γ > 0; this inequality may be established again by Fourier expansions, cf. [A].

Theorem 2.3 Suppose (η0, u0) ∈ C3
p × C2

p and that η0(x) > −1, x ∈ Ī. In addition, suppose that

E(0) =

∫ L

−L

(η2
0 + |c|(η′0)2 + (1 + η0)u

2
0)dx <

2L|c|1/2

L+ |c|1/2
. (2.55)

Then, given any T ∈ (0,∞), there exists a unique classical solution of the ipvp (2.49)–(2.50) in [0, T ].�

In closing, let us point out that taking L → ∞ in (2.55), one may recover the constant 2√
3

that

appears as a bound of E(0) in the analogous theorem proved in [BS] for the Cauchy problem for the
Bona-Smith system with c = −1/3.

The local existence results of this section (i.e Propositions 2.7 to 2.10) are easily generalized for
systems of the form (2.1) with a = 0, c < 0 and b > 0, d > 0 with b 6= d. Similar local existence and
uniqueness results may be proved by the same techniques for systems of BBM-BBM type (a = c = 0,
b, d > 0), establishing that (η, u) ∈ C(0, T ;C2

p) × C(0, T ;C2
p) for small enough positive T , and also

for the ‘reverse’ Bona-Smith systems (a < 0, c = 0, b > 0, d > 0) for which it may be shown that
(η, u) ∈ C(0, T ;C2

p) × C(0, T ;C3
p) for small enough T .
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