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INITIAL-BOUNDARY-VALUE PROBLEMS FOR THE BONA-SMITH FAMILY OF BOUSSINESQ SYSTEMS

In this paper we consider the one-parameter family of Bona-Smith systems, which belongs to the class of Boussinesq systems modelling two-way propagation of long waves of small amplitude on the surface of water in a channel. We study three initial-boundary-value problems for these systems, corresponding, respectively, to nonhomogeneous Dirichlet, reflection, and periodic boundary conditions posed at the endpoints of a finite spatial interval, and establish existence and uniqueness of their solutions. We prove that the initial-boundary-value problem with Dirichlet boundary conditions is well posed in appropriate spaces locally in time, while the analogous problems with reflection and periodic boundary conditions are globally well posed under mild restrictions on the initial data.

Introduction

We consider the following family of Boussinesq type systems of water wave theory, introduced in [BCSI],

η t + u x + (ηu) x + au xxx -bη xxt = 0, u t + η x + uu x + cη xxx -du xxt = 0, (1.1)
where η = η(x, t), u = u(x, t) are real-valued functions of x ∈ IR and t ≥ 0. The dispersion coefficients a, b, c, d are given by

a = 1 2 θ 2 - 1 3 ν, b = 1 2 θ 2 - 1 3 (1 -ν) , c = 1 2 1 -θ 2 µ, d = 1 2 1 -θ 2 (1 -µ) , (1.2) 
where 0 ≤ θ ≤ 1 and ν, µ are real constants.

The systems (1.1) are approximations of the two-dimensional Euler equations and model the irrotational, free surface flow of an incompressible, inviscid fluid in a uniform horizontal channel in the absence of cross-channel disturbances. As opposed to one-way models, like the KdV or the BBM equations, the systems (1.1) describe two-way propagation. The variables in (1.1) are dimensionless and unscaled; x and t are proportional to position along the channel and time, respectively, while η(x, t) and u(x, t) are proportional to the excursion of the free surface at (x, t) above an undisturbed level, and to the horizontal velocity of the fluid at a height y = -1 + θ(1 + η(x, t)), respectively. (In terms of these variables the bottom of the channel is at y = -1, while the free surface corresponds to θ = 1.)

The Boussinesq systems (1.1) are long-wave, small-amplitude approximations of the Euler equations. Specifically, they are valid when ε := A/h ≪ 1, λ/h ≫ 1 and the Stokes number Aλ 2 /h 3 is of order 1, [BCSI]. Here A measures the maximum surface elevation above an undisturbed level of fluid of depth h, and λ is a typical wavelength. Appropriate expansions in powers of ε and substitution into the Euler equations leads to a system of the form (1.1) with dimensionless but scaled variables, wherein the nonlinear and dispersive terms (the third-order derivatives) are balanced, being both multiplied by ε, while the right-hand side is of order ε 2 . When the right-hand side is replaced by zero, it is expected the solutions of the resulting system with suitable initial data will approximate for t > 0 appropriate smooth solutions of the Euler equations in the same scaling with an error of O(ε 2 t). In [BCL] and [A-SL] it was proved that the error of this approximation is indeed of O(ε 2 t), uniformly for t ∈ [0, T ε ], where T ε = O(1/ε), provided the Cauchy problem for the Boussinesq system under consideration is locally well-posed. (In the present paper we will for the most part consider the systems in their dimensionless, unscaled form (1.1).)

In particular, we will focus on the Bona-Smith family of systems, [BS], which are of the form (1.1) when the parameters in (1.2) satisfy ν = 0 and b = d. The latter condition implies that µ = (4 -6θ 2 )/3(1 -θ 2 ) for θ = 1. Hence, the constants of the Bona-Smith systems are given by the formulas

a = 0, b = d = 3θ 2 -1 6 , c = 2 -3θ 2 3 .
(1.3)

We will also consider the limiting case obtained by setting θ = 1 in (1.3), i.e. the system with a = 0, b = d = 1/3, c = -1/3. The value θ 2 = 2/3 in (1.3) yields the BBM-BBM system a = c = 0, b = d = 1/6, [BC].

From the analysis of [BCSI] one may infer that the Bona-Smith systems are linearly ill posed if θ 2 < 2/3. Hence, in the sequel, we will only consider the systems with θ 2 ∈ [2/3, 1]. It also follows from [BCSI] that the Bona-Smith systems are linearly well posed for (η, u) in H s+1 × H s for s ≥ 0 if θ 2 > 2/3, and in H s × H s for s ≥ 0 if θ 2 = 2/3. (By H s = H s (IR) for real s ≥ 0 we denote the usual, L 2 -based Sobolev classes on IR, and put H 0 = L 2 .) It also follows from [BCSI] that the linearized Bona-Smith systems are well posed in the L p -based Sobolev space pairs W s+1 p × W s p for s ≥ 0 and 1 < p < ∞, and ill posed for p = 1 or ∞. (The BBM-BBM system, i.e. the case where θ 2 = 2/3, is well posed in L p for 1 ≤ p ≤ ∞, as explained in [BCSI].)

We turn now to the Cauchy problem for the nonlinear Bona-Smith systems, that we rewrite again for ease in referencing as η t + u x + (ηu) x -bη xxt = 0, u t + η x + uu x + cη xxx -bu xxt = 0, b = (3θ 2 -1)/6, c = (2 -3θ 2 )/3, 2/3 ≤ θ 2 ≤ 1,

(1.4) for x ∈ IR, t > 0. The system is to be solved under the initial conditions

η(x, 0) = η 0 (x), u(x, 0) = u 0 (x), (1.5)
where η 0 , u 0 are given functions on IR. This problem has been studied by Bona and Smith, [BS], in the case θ 2 = 1, but it is easy to extend their theory (cf. also [BCSII]) to the general case θ 2 ∈ (2/3, 1] and obtain the following result:

If η 0 ∈ H 1 ∩ C 3 b , u 0 ∈ L 2 ∩ C 2 b (where C k b = C k b (IR)
is the space of bounded, continuous functions on IR whose first k derivatives are also continuous and bounded), and if inf x∈IR η 0 (x) > -1 and

E(0) := ∞ -∞ η 2 0 + |c|(η ′ 0 ) 2 + (1 + η 0 )u 2 0 dx < 2|c| 1/2 , (1.6) then, there is a unique, global classical solution (η, u) of (1.4)-(1.5), which, for each T > 0, is a continuous map from [0, T ] into (H 1 ∩ C 3 b ) × (L 2 ∩ C 2 b ). If further regularity is assumed for the initial data, then (1.4-(1.5) is well posed in H s+1 × H s for s ≥ 0 or in (H 1 ∩ C s+1 b ) × (L 2 ∩ C s b )
for integer s ≥ 0. The key step in the proof of this result in [BS] is establishing an a priori H 1 × L 2 estimate for the solution (η, u). This follows from the fact that (1.4) is a Hamiltonian system, whose Hamiltonian or "energy" functional

E(t) := ∞ -∞ η 2 + |c|η 2 x + (1 + η)u 2 dx, (1.7)
is invariant for t ≥ 0. The restrictions θ 2 > 2/3 and η 0 > -1 ensure that 1 + η(x, t) and, consequently, E(t) remain positive for x ∈ IR, t > 0. In the case of the BBM-BBM system, where c = 0, the global theory breaks down and the Cauchy problem is well posed in H s × H s for s ≥ 0 only locally in time, [BC], [BCSII].

Our aim in the paper at hand is to study the well-posedness of three types of initial-boundary-value problems (ibvp's) for systems of Bona-Smith type on bounded spatial intervals [-L, L], L > 0, in which the system and the initial conditions η(x, 0) = η 0 (x), u(x, 0) = u 0 (x), x ∈ [-L, L], are supplemented by three types of boundary conditions posed at x = ±L for t ≥ 0. In our study we follow the general scheme of proof of [BS] adapting it to the case of the boundary-value-problems at hand. First, in Paragraph 2.1, we analyze the ibvp with nonhomogeneous Dirichlet boundary conditions, wherein η and u are prescribed as given functions of t at both endpoints. We prove that this ibvp is well posed, for example in pairs of appropriate spaces of smooth functions, locally in time. (An analogous result for the BBM-BBM system was proved in [BC].) Having in hand such a well-posedness result, enables one to consider this type of boundary conditions, realized, for example, from temporal records of experimental measurements of η and u at two stations along a channel where a two-way surface wave flow has been established, to solve the resulting ibvp by an accurate and stable numerical scheme, and compare the numerical solution with experimental values at points x ∈ (-L, L) in order to assess the effectiveness of the particular Boussinesq system to model the flow. An energy type proof yields that, in general, the temporal interval of existence of solutions of this ibvp, written in dimensionless but scaled variables, wherein the nonlinear and dispersive terms in (1.4) are multiplied by the small parameter ε, is of the form [0, T ε ], where T ε may be taken independent of ε. (As was previously mentioned, for the Cauchy problem T ε = O( 1 ε ).) In Paragraph 2.2 we study the ibvp with reflection boundary conditions, i.e. with η x = 0, u = 0 prescribed at x = ±L for all t ≥ 0. These are useful for studying the (ideal) reflection of a wave impinging on a rigid wall, vertical to the direction of the motion. With these boundary conditions the ibvp for the Bona-Smith systems for θ 2 ∈ (2/3, 1] is globally well-posed, under mild restrictions on the initial data, analogous to those required for the proof of the Cauchy problem previously outlined. Global well-posedness follows from the fact that the analog on [-L, L] of the Hamiltonian (1.7) is conserved under the reflection boundary conditions. Finally, in Section 2.3 we prove that the periodic initial-value problem for the Bona-Smith systems with θ 2 ∈ (2/3, 1] is globally well posed under similar restrictions on the (periodic) initial data. For the BBM-BBM system (θ 2 = 2/3) we can only prove local well-posedness for the reflection and the periodic ibvp.

The well-posedness of these ibvp's provides a firm theoretical foundation for deriving and rigorously analyzing numerical methods for the Bona-Smith systems. In a sequel to this paper, [ADM], we discretize the three ibvp's using the standard Galerkin-finite element method with piecewise polynomial functions in space and the classical fourth-order Runge-Kutta scheme in time, analyze the convergence of the resulting semidiscrete and fully discrete schemes, and use them in numerical experiments to study phenomena of interactions of solitary wave solutions of these systems and their interactions with the boundary.

Many of the theoretical results of the paper at hand were first proved in [A]. Some were announced in preliminary form in [START_REF] Antonopoulos | Galerkin methods for the Bona-Smith version of the Boussinesq equations[END_REF] and [START_REF] Antonopoulos | Numerical approximations of Boussinesq systems[END_REF].

Initial-boundary-value problems

Let I = (-L, L) for some L > 0. In this section we study three initial-boundary-value problems (ibvp's) for some Boussinesq systems of the form (1.1). Specifically, we seek functions η and u defined for x ∈ Ī and t ≥ 0 and satisfying for x ∈ Ī, t > 0 the system

η t + u x + (ηu) x + au xxx -bη xxt = 0, u t + η x + uu x + cη xxx -du xxt = 0, (2.1)
with given initial conditions

η(x, 0) = η 0 (x), u(x, 0) = u 0 (x), x ∈ Ī, (2.2)
and several types of boundary conditions for u and η at x = ±L, t ≥ 0. Specific hypotheses about the coefficients a, b, c, d will be made in each case.

Nonhomogeneous Dirichlet boundary conditions

We start by considering the subclass of systems of the form (2.1) with b = d > 0, a = 0, c < 0, i.e. the systems

η t + u x + (ηu) x -bη xxt = 0, u t + η x + uu x + cη xxx -bu xxt = 0, x ∈ Ī, t ≥ 0, (2.3)
which include the Bona-Smith family (1.4). We supplement (2.3) by the initial conditions (2.2) and nonhomogeneous boundary conditions of Dirichlet type for η and u at both ends of the interval Ī, given for t ≥ 0 by

η(-L, t) = h 1 (t), η(L, t) = h 2 (t), u(-L, t) = v 1 (t), u(L, t) = v 2 (t), (2.4)
where h i , v i , i = 1, 2, are given continuous functions.

To analyze the ibvp consisting of (2.3), (2.2), (2.4) we shall write it first in integral form, cf. e.g. [BS], [BD], [BC]. With this aim in mind, given a suitable function f defined on Ī we consider the following two-point boundary-value problem

w -bw ′′ = -f ′ , x ∈ Ī, w(-L) = w(L) = 0. (2.5)
Let G be the Green's function for (2.5) defined for x, ξ ∈ Ī by

G(x, ξ) := - 1 bW w 1 (ξ)w 2 (x), -L ξ x, w 1 (x)w 2 (ξ), x < ξ L,
where w 1 (x) := sinh L+x √ b , w 2 (x) := sinh L-x √ b , and

W := w 1 w ′ 2 -w ′ 1 w 2 = -1 √ b sinh 2L √ b .
Then, the solution of (2.5) may be expressed in the form

w(x) = (A D f )(x) := L -L G ξ (x, ξ)f (ξ)dξ. (2.6)
In what follows, for a nonnegative integer k, we denote by C k = C k ( Ī) the Banach space of realvalued, k-times continuously differentiable functions defined on Ī. equipped with the norm v C k := max

0 j k max x∈ Ī v (j) (x) .
We also let H k = H k (I) denote the usual (Hilbert) Sobolev space of (classes of) real-valued functions on I having generalized derivatives of order up to k in L 2 = L 2 (I). We equip

H k with the norm v k := k j=0 v (j) 2 1/2
, where • denotes the norm on L 2 = H 0 . (The inner product on L 2 will be denoted by (•, •)). In addition, H 1 0 will denote the subspace of H 1 whose elements vanish at x = ±L. We denote norms of the spaces L p = L p (I), 1 p ∞, by • L p . On occasion we shall also use the Sobolev space W k p = W k p (I) for p = 1 and p = ∞, whose usual norm we will denote by • W k p . The following lemma gives some properties of the linear operator A D that will be useful in the sequel.

Lemma 2.1 Let A D be defined by (2.6) and M denote positive constants depending on b, not necessarily the same at any two places. The the following hold:

(i) If v ∈ L 1 , then A D v ∈ W 1 1 and A D v L ∞ M v L 1 , A D v M v L 1 . (ii) If v ∈ L 2 , then A D v ∈ H 1 0 and A D v 1 M v . (iii) If v ∈ H 1 , then A D v ∈ H 2 and A D v 2 M v 1 . (iv) If v ∈ C m , m ≥ 0, then A D v ∈ C m+1 and A D v C m+1 M v C m , where M = M (m, b). Proof: (i): Let v ∈ L 2 . Then, if I 1 (x) := x -L w ′ 1 v and I 2 := L x w ′ 2 v, x ∈ Ī,
we have, by (2.6)

A D v := - 1 bW [w 2 I 1 + w 1 I 2 ] . (2.7)
It is clear that I i , and therefore A D v belong to the space W 1 1 . Moreover, for x ∈ Ī, using the definitions of the w i , we have

|(A D v)(x)| 1 b|W | w 2 (x) x -L w ′ 1 |v| -w 1 (x) L x w ′ 2 |v| 1 b|W | (w 2 w ′ 1 -w 1 w ′ 2 ) v L 1 = 1 b v L 1 ,
from which the two estimates in (i) follow. To prove (ii) note that it follows by the definition of

I i that for v ∈ L 2 , A D v ∈ H 1 0 .
In addition, for φ ∈ H 1 0 , integration by parts gives

(A D v, φ) + b((A D v) ′ , φ ′ ) = (v, φ ′ ) - 1 bW (w 2 I 1 + w 1 I 2 , φ) - 1 W (w ′ 2 I 1 + w ′ 1 I 2 , φ ′ ) = (v, φ ′ ).
Putting φ = A D v we obtain the estimate in (ii). To prove (iii) note that for v ∈ H 1 we have, in L 2 , that

A D v -b(A D v) ′′ = -v ′ , from which (iii) follows in view of (ii). Finally, note that if v ∈ C 0 , then A D v ∈ C 1 by (2.7). Moreover, for x ∈ Ī, by the properties of the w i |(A D v)(x)| - 1 bW w 2 (x) x -L w ′ 1 -w 1 (x) L x w ′ 2 v C 0 1 √ b v C 0 , and 
|(A D ) ′ (x)v| 1 b v C 0 - 1 bW -w ′ 2 (x) x -L w ′ 1 -w ′ 1 (x) L x w ′ 2 v C 0 = 2 b v C 0 ,
and the required estimate follows for m = 0. For m ≥ 1 use the relation

(A D v) (m+1) -b(A D v) (m+1) = -v (m+1) , (2.8)
and obtain the result by induction. Consider now the ibvp (2.3), (2.2), (2.4). Inverting the operator 1-b∂ 2 x under the boundary conditions in (2.4) we obtain from the first p.d.e. of (2.3), after one integration by parts in space, the following differential-integral equation valid for x ∈ Ī, t ≥ 0

η t (x, t) = w 2 (x) µ h ′ 1 (t) + w 1 (x) µ h ′ 2 (t) + A D (u + ηu)(x, t), (2.9) 
where µ := sinh(2L/ √ b). If we perform analogous operations on the second p.d.e. of (2.3) we encounter the term A D η xx . Now, using the definition of A D and integration by parts, it is not hard to see, for a twice differentiable function v on Ī that

A D v ′′ = 1 b (v ′ + Bv ′ + A D v), (2.10)
where, for v ∈ C 0 , the operator B is defined as

(Bv)(x) = 1 √ bW (v(-L)w 2 (x) + v(L)w 1 (x)), x ∈ Ī. (2.11) Hence, A D η xx = 1 b (η x + A D η + Bη x )
, and it follows from the second p.d.e. of (2.3) that for x ∈ Ī, t ≥ 0

u t (x, t) = w 2 (x) µ v ′ 1 (t) + w 1 (x) µ v ′ 2 (t) + c b ( A D η + Bη x )(x, t) + A D (η + 1 2 u 2 )(x, t),
(2.12)

where

A D = A D + ∂ x .
Integrating now (2.9) and (2.12) with respect to t yields the system

η(x, t) = η 0 (x) + w 2 (x) µ (h 1 (t) -h 1 (0)) + w 1 (x) µ (h 2 (t) -h 2 (0)) + t 0 A D (u + ηu)dτ, (2.13) u(x, t) = u 0 (x) + w 2 (x) µ (v 1 (t) -v 1 (0)) + w 1 (x) µ (v 2 (t) -v 2 (0)) + t 0 c b ( A D η + Bη x ) + A D (η + 1 2 u 2 ) dτ.
(2.14) It is clear that any classical solution (η, u) of the i.b.v.p. (2.3), (2.2), (2.4) satisfies the system of integral equation (2.13)-(2.14) in its temporal interval of existence.

In the sequel, given a Banach space X, and some positive number T we shall denote by C(0, T ; X) the Banach space of continuous maps v :

[0, T ] → X with norm v C(0,T ;X) = sup 0 t T v(t) X . In particular, when X = C m we shall frequently denote C m T = C(0, T ; C m ) and the corresponding norm by v C m T .
We proceed now to establish uniqueness and local existence of solutions of the system of integral equations (2.13)-(2.14).

Proposition 2.1 Let 0 < T < ∞, η 0 ∈ C 1 , u 0 ∈ C 0 , h i , v i ∈ C([0, T ]), i = 1, 2. Then, the system (2.13)-(2.14) has at most one solution (η, u) ∈ C 1 T × C 0 T . Proof: Let (η i , u i ), i = 1, 2, be two solutions of (2.13)-(2.14) in C 1 T × C 0 T . Then, with η := η 1 -η 2 , u := u 1 -u 2 , we have for 0 t T η(t) = t 0 A D (u + η 1 u + u 2 η)dτ,
(2.15)

u(t) = t 0 c b ( A D η + Bη x ) + A D η + 1 2 A D ((u 1 + u 2 )u) dτ.
(2.16)

Using Lemma 2.1(iv) we conclude from (2.15) that for some positive constant

M 1 = M 1 (b) there holds for t ∈ [0, T ] η(t) C 1 M 1 (1 + η 1 C 0 T ) t 0 u(τ ) C 0 dτ + u 2 C 0 T t 0 η(τ ) C 0 dτ .
Since from (2.11) for any integer m ≥ 0 there exists a constant

c 1 = c 1 (m, b) such that for v ∈ C 0 Bv C m c 1 max(|v(L)|, |v(-L)|) c 1 v C 0 , it follows from (2.16) and Lemma 2.1(iv) that for t ∈ [0, T ] u(t) C 0 M 2 u 1 + u 2 C 0 T t 0 u(τ ) C 0 dτ + t 0 η(τ ) C 1 dτ ,
for some positive constant M 2 = M 2 (b, c). We conclude therefore that for t ∈ [0, T ] and some constant c 2 we have

η(t) C 1 + u(t) C 0 c 2 t 0 ( η(τ ) C 1 + u(τ ) C 0 )dτ,
from which, by Gronwall's lemma, we infer that η = u = 0.

Proposition 2.2 Let 0 < T < ∞, η 0 ∈ C 1 , u 0 ∈ C 0 , h i , v i ∈ C([0, T ]), i = 1, 2, and β 0 := η 0 C 1 + u 0 C 0 + max t∈[0,T ] 2 i=1 (|h i (t)| + |v i (t)|).
Then, there exists a T 0 = T 0 (T, β 0 ) ∈ (0, T ] such that the system

(2.13)-(2.14) has a unique solution (η, u) ∈ C 1 T0 × C 0 T0 .
Proof: With T 0 to be suitably chosen, let E be the Banach space

C 1 T0 × C 0 T0 with norm (v, w) E := v C 1 T 0 + w C 0 T 0 . Consider the mapping Γ : E → E defined by Γ(v, w) = H + t 0 A D (w + vw)dτ, U + t 0 c b ( A D v + Bv x ) + A D (v + 1 2 w 2 ) dτ ,
where, cf. (2.13)-(2.14),

H(x, t) := η 0 (x) + w 2 (x) µ (h 1 (t) -h 1 (0)) + w 1 (x) µ (h 2 (t) -h 2 (0)), U (x, t) := u 0 (x) + w 2 (x) µ (v 1 (t) -v 1 (0)) + w 1 (x) µ (v 2 (t) -v 2 (0)).
Let B R be the closed ball in E with center 0 and radius

R > 0. Let (η i , u i ) ∈ B R , i = 1, 2.
As in the proof of Proposition 2.1 and with notation introduced therein, we have

Γ(η 1 , u 1 ) -Γ(η 2 , u 2 ) E M 1 T 0 [(1 + η 1 0 CT 0 ) u 1 -u 2 C 0 T 0 + u 2 C 0 T 0 η 1 -η 2 C 0 T 0 ] +M 2 T 0 [ u 1 + u 2 C 0 T 0 u 1 -u 2 C 0 T 0 + η 1 -η 2 C 1 T 0 ] Θ (η 1 , u 1 ) -(η 2 , u 2 ) E , (2.17) 
where Θ :

= T 0 [M 1 + M 2 + R(M 1 + 2M 2 )]. Moreover, if (η, u) ∈ B R it holds that Γ(η, u) E Γ(η, u) -Γ(0, 0) E + Γ(0, 0) E ΘR + (H, U ) E ΘR + c 1 β 0 , (2.18) 
where c 1 is a constant depending on β. If we choose now R = 2c 1 β and T 0 1 2[M1+M2+R(M1+2M2)] ∈ (0, T ], we see that Θ 1 2 and ΘR + c 1 β 0 R. Hence, in view of (2.17) and (2.18), the contraction mapping theorem applies to Γ consider as a mapping of B R into itself. Consequently, Γ has a unique fixed point (η, u) ∈ B R , which is the required solution of (2.13)-(2.14).

We are now ready to establish a local existence-uniqueness result for the classical solutions of the ibvp

(2.3)-(2.2)-(2.4). Theorem 2.1 Let 0 < T < ∞, η 0 ∈ C 3 , u 0 ∈ C 2 , h i , v i ∈ C 1 ([0, T ]), i = 1, 2,
and suppose that the compatibility conditions Proof: Consider the system (2.13)-(2.14) of integral equations. It is straightforward, by repeating the contraction mapping argument of Proposition 2.2, using out hypothesis on the regularity of the data, and Lemma 2.1(iv) to establish the existence and uniqueness of a solution (η, u) in the Banach space

η 0 (-L) = h 1 (0), η 0 (L) = h 2 (0), u 0 (-L) = v 1 (0), u 0 (L) = v 2 (0), (2.19) are satisfied. Then, the solution (η, u) ∈ C 1 T0 × C 0 T0 of (2.
C 3 T2 × C 2 T2 for a suitably small T 2 ∈ (0, T ], depending on β 2 := η 0 C 3 + u 0 C 2 + max t∈[0,T ] 2 i=1 |h i (t)|+ |v i (t)|.
In addition, it is not hard to see that η and u, given by (2.13), (2.14), respectively, are differentiable with respect to t and that their derivatives η t , u t are by the formulas (2.9) and (2.12), respectively. Since we assumed that

h i , v i ∈ C 1 ([0, T ]), i = 1, 2, use of Lemma 2.1(iv) gives now that (η t , u t ) ∈ C 3 T2 × C 2 T2 . Suppose that T 2 < T 0 . Then, by Proposition 2.1, the solution pair (η, u) ∈ C 3 T2 × C 2 T2 coincides, on [0, T 2 ], with that in C 1 T0 × C 0 T0
guaranteed by Proposition 2.2. By a standard argument, cf. [BS] Section 5, its existence interval may be extended to [0, T 0 ]. For this purpose, it is necessary to establish an a priori estimate of η C 3

T 0 + u C 2 T 0 independent of T 2 . Since (η, u) ∈ C 2 T0 × C 0 T0
, from (2.13) and using Lemma 2.1(iv) we have for t ∈ [0, T 0 ]

η C 2 η 0 C 2 + C max 0 t T 2 i=1 |h i (t)| + C t 0 (1 + η C 1 ) u C 1 dτ,
where, here and in what follows, C will denote various constants independent of t and T 2 not necessarily the same in any two places. Since η ∈ C 2 T0 , we conclude that for t ∈ [0, T 0 ]

η C 2 C(β 1 + t 0 u C 1 dτ ), (2.20)
where

β 1 := η 0 C 2 + u 0 C 1 + max t∈[0,T ] 2 i=1 |h i (t)| + |v i (t)|. Similarly, from (2.14) we obtain, for t ∈ [0, T 0 ] u C 1 u 0 C 1 + C max t∈[0,T ] 2 i=1 |v i (t)| + C t 0 ( η C 2 + u 2 C 0 )dτ C β 1 + t 0 ( η C 2 + u C 0 )dτ . (2.21)
From (2.20), (2.21) and Gronwall's lemma we infer that

η C 2 T 0 + u C 1 T 0 Cβ 1 e CT0 ,
which is the required a priori estimate.

At this point we have established the existence of a unique solution (η, u) of (2.13)-(2.14) with the properties that (η, u)

∈ C 3 T0 × C 2 T0 and (η t , u t ) ∈ C 3 T0 × C 2 T0 .
This solution is a classical solution of the ibvp (2.3), (2.2), (2.4) in the temporal interval [0, T 0 ]: That it satisfies the initial conditions (2.2) is obvious from (2.13)-(2.14). Using the compatibility conditions (2.19), the definitions of the operators A D , B and the the functions w 1 , w 2 , and the fact that G ξ (±L, ξ) = 0, we may also check that the boundary conditions (2.4) are satisfied for t ∈ [0, T 0 ]. In addition, differentiating (2.9) twice with respect to x and using the definition of w 1 , w 2 and (2.8) for m = 1, we see that for x ∈ Ī, t ∈ [0, T 0 ] we have η t -bη xxt = -∂ x (u + ηu), which is the first p.d.e. in (2.2). Finally, from (2.12), differentiating twice with respect to x we have, similarly, that for

x ∈ Ī, t ∈ [0, T 0 ] u t -bu xxt = c b [A D η + η x -b(A D η) xx ] -cη xxx + (I -b∂ 2 x )A D (η + 1 2 u 2 ) = -∂ x (η + 1 2 u 2 ) -cη xxx ,
where, in the last equality, we used twice (2.8) for m = 1. Hence, (η, u) is also a classical solution of the second p.d.e. in (2.2). Remark 2.1: One may readily establish higher regularity of the solution provided the data are more regular. For example, by a straightforward extension of the proof of Theorem 2.1 one may show that if

η 0 ∈ C m+1 , u 0 ∈ C m and h i , v i ∈ C ℓ ([0, T ]), i = 1, 2, for integers m ≥ 2, ℓ ≥ 1,
and some 0 < T < ∞, and if the compatibility conditions (2.19) hold, then the classical solution (η, u) of the ibvp (2.3), (2.2), (2.4) has the properties that (η, u)

∈ C m+1 T0 × C m T0 and (∂ k t η, ∂ k t u) ∈ C m+1 T0 × C m T0
, for 1 k ℓ. Remark 2.2: Local in time well-posedness of the ibvp at hand may also be established in appropriate pairs of Sobolev classes. For example, it is straightforward to prove, by a modification of Proposition 2.1, that for any T > 0 the integral equations (2.13)-(2.14) have at most one solution (η, u) ∈ C(0, T ; H 2 ) × C(0, T ; H 1 ) provided η 0 ∈ H 2 , u 0 ∈ H 1 and e.g. h i , v i ∈ C([0, T ]). (For this purpose use the properties (ii) and (iii) of A D , cf. Lemma 2.1.) In addition, the proof of Proposition 2.2 may be adapted to yield local existence of a solution (η, u) ∈ C(0, T ′ ; H 2 ) × C(0, T ′ ; H 1 ) of (2.13)-(2.14) for some T ′ T , depending on

β ′ := η 0 2 + u 0 1 + max t∈[0,T ] 2 i=1 |h i (t)| + |v i (t)|.
This solution coincides with the classical solution of the ibvp established in Theorem 2.1 if the data satisfy the additional regularity and compatibility conditions in the statement of that theorem.

Remark 2.3: Consider, for simplicity, the case of homogeneous boundary conditions and write the system (1.4) in dimensionless but scaled variables to obtain the ibvp

η t + u x + ε(ηu) x -εbη xxt = 0, u t + η x + εuu x + εcη xxx -εbu xxt = 0, x ∈ Ī, t ≥ 0, (2.22) η(x, 0) = η 0 (x), u(x, 0) = u 0 (x), x ∈ Ī, (2.23) η(±L, t) = u(±L, t) = 0, t ≥ 0, (2.24)
where ε = A/h ≪ 1, cf. the remarks in the Introduction. If b > 0 and c < 0 we may derive local a priori estimates in H 2 ∩ H 1 0 × H 1 0 for the solution (η, u) of (2.22)-(2.24) by the energy method. These estimates are valid on a temporal interval [0, T ε ], where T ε is independent on ε. To see this, multiply the first pde in (2.22) by η and η xx and the second by u, and use integration by parts and the boundary conditions (2.24) to obtain, for t > 0 1 2

d dt L -L (η 2 + εbη 2 x )dx + L -L (u x η + ε(ηu) x η)dx = 0, 1 2 d dt L -L (η 2 x + εbη 2 xx )dx - L -L (u x η xx + ε(ηu) x η xx )dx = 0, 1 2 d dt L -L (u 2 + εbu 2 x )dx + L -L (η x u -εcη xx u x )dx = 0.
Multiplying the second identity by -εc and adding all three we finally obtain the energy identity 1 2

d dt L -L (η 2 + ε(b -c)η 2 x -ε 2 bcη 2 xx + u 2 + εbu 2 x )dx = - ε 2 L -L η 2 u x dx -cε 2 L -L (ηu) x η xx dx.
(2.25)

By the Cauchy-Schwarz and the Sobolev-Poincaré inequalities we have, for some generic constant C independent of ε,

L -L η 2 u x dx ≤ η L ∞ η u x ≤ C η η x u x , L -L (ηu) x η xx dx = L -L (η x uη xx + ηu x η xx )dx ≤ u L ∞ η x η xx + η L ∞ u x η xx ≤ C η x η xx u x .
Using now Hölder's inequality we get

ε η η x u x = η (ε 1/2 η x )(ε 1/2 u x ) ≤ C( η 3 + ε 3/2 η x 3 + ε 3/2 u x 3 ) ≤ C( η 2 + ε η x 2 + ε u x 2 ) 3/2 ,
and

ε 2 η x η xx u x = (ε 1/2 η x )(ε η xx )(ε 1/2 u x ) ≤ C(ε η x 2 + ε 2 η xx 2 + ε u x 2 ) 3/2 .
Therefore, if

I ε = I ε (t) := L -L (η 2 + ε(b -c)η 2 x -ε 2 bcη 2 xx + u 2 + εbu 2 x )dx, (2.25) implies that dI ε dt ≤ CI 3/2 ε , from which I ε (t) ≤ I ε (0) (1 -Ct I ε (0)) 2 ,
for t sufficiently small. Therefore we have local in time a priori H 2 ∩ H 1 0 × H 1 0 estimates for the solution of (2.22)-(2.24) on a temporal interval [0, T ε ], where

T ε = O 1 Iε(0) 1/2 . Since I ε (0) = L -L [η 2 0 + ε(b -c)(η ′ 0 ) 2 -ε 2 bc(η ′′ 0 ) 2 + u 2 0 + εb(u ′ 0 ) 2 ]dx,
and 0 < ε ≪ 1, it is clear that T ε may be taken to be independent of ε. If c = 0 (the BBM-BBM case) a similar proof yields a priori H 1 0 × H 1 0 estimates on [0, T ε ] where T ε is independent of ε. Finally, let us note that the generalization of the analysis of this section to systems of form (2.1) with a = 0, c < 0 and b > 0, d > 0 with b = d is immediate.

In addition, a similar analysis may be applied to the analogous ibvp for Boussinesq systems of 'reverse' Bona-Smith type, i.e. systems with a < 0, c = 0, b > 0, d > 0, with Dirichlet boundary conditions of the type (2.4), to yield e.g. well-posedness with (η, u) ∈ C(0, T 0 ; C 2 ) × C(0, T 0 ; C 3 ) for small enough T 0 .

In the case of systems of BBM-BBM type (a = c = 0, b > 0, d > 0) we have local well-posedness in the balanced spaces C(0, T 0 ; C 2 ) × C(0, T 0 ; C 2 ) as Bona and Chen have shown in [BC]. In this case, the proof of the analog of Theorem 2.1 is simpler.

Reflection boundary conditions

In this paragraph we shall study the well-posedness of ibvp's for some systems of the form (2.1) in the case of reflection boundary conditions at the endpoints of Ī, that is in the case of homogeneous boundary conditions of Neumann type for η and of Dirichlet type for u.

First we consider ibvp's of this kind for systems of Bona-Smith type, rewriting them here for the convenience of reader:

η t + u x + (ηu) x -bη xxt = 0, u t + η x + uu x + cη xxx -bu xxt = 0, x ∈ Ī, t ≥ 0, (2.26)
where b > 0, c < 0. The systems are supplemented by initial conditions

η(x, 0) = η 0 (x), u(x, 0) = u 0 (x), x ∈ Ī, (2.27)
and the boundary conditions

η x (-L, t) = η x (L, t) = 0, u(-L, t) = u(L, t) = 0, t ≥ 0.
(2.28)

As was done in the previous section, we shall convert first this ibvp into a system of integral equations. For this purpose, consider the two-point boundary value problem with Neumann boundary conditions

w -bw ′′ = -f ′ , x ∈ Ī, w ′ (-L) = w ′ (L) = 0. (2.29)
Let G 1 be the Green's function for (2.29) defined for x, ξ ∈ Ī by

G 1 (x, ξ) := - 1 bW ω 1 (ξ)ω 2 (x), -L ξ x, ω 1 (x)ω 2 (ξ), x < ξ L,
where

ω 1 (x) := cosh L+x √ b , ω 2 (x) := cosh L-x √ b , W = ω 1 ω ′ 2 -ω ′ 1 ω 2 = -1 √ b sinh 2L √ b . Define the linear operator A N as (A N f )(x) := L -L G 1,ξ f (ξ)dξ.
(2.30)

Note that if e.g. f ∈ C 1 with f (-L) = f (L) = 0, then w = A N f is a classical solution of the boundaryvalue problem (2.29). In the following lemma we prove two properties of A N that will be needed in the sequel.

Lemma 2.2 (i) If v ∈ L 2 , then A N v ∈ H 1 and A N v 1 max 1, 1 b v . (ii) If v ∈ C m for m ≥ 0, then A N v ∈ C m+1 and A N v C m+1 M v C m ,
for some constant M depending on m and b.

Proof: Let v ∈ L 2 . Then, if I 1 (x) := x -L ω ′ 1 v and I 2 (x) := L x ω ′ 2 v
we have, by the definition of A N ,

A N v = - 1 bW (ω 2 I 1 + ω 1 I 2 ), (2.31) and (A N v) ′ = 1 b v - 1 W (ω ′ 2 I 1 + ω ′ 1 I 2 ) .
(2.32)

Hence, using the definitions of ω i , we see that

A N v ∈ H 1 and v -b(A N v) ′ ∈ H 1 0 . It follows that for any φ ∈ H 1 (v -b(A N v) ′ , φ ′ ) = 1 W (ω ′ 2 I 1 + ω ′ 1 I 2 , φ ′ ) = (A N v, φ),
which yields the required estimate in (i) if we put φ = A N v. To prove (ii), note that for v ∈ C 0 , it follows from (2.31) that

A N v ∈ C 1 . In addition, A N v C 0 M 1 (b) v C 0 and (A N v) ′ C 0 M 2 (b) v C 0 , from which (ii) follows for m = 0.
To prove the result for general m, note that (2.31) and (2.32 (2.33) from which the required estimate in (ii) follows.

) imply, if v ∈ C 1 , that b(A N v) ′′ = v ′ + (A N v). By induction, if v ∈ C m , m ≥ 1, we obtain that (A N v) (m+1) = 1 b (A N v) (m-1) + v (m) ,
Consider now the ibvp (2.26)-(2.28). Inverting the operator 1 -b∂ 2 x under the boundary conditions in (2.29) and taking into account the fact that u satisfies homogeneous Dirichlet boundary conditions at x = ±L, we obtain from the first p.d.e. in (2.26), for x ∈ Ī and t ≥ 0, that

η t = A N (u + ηu).
(2.34)

Inverting now the operator 1 -b∂ 2 x under the boundary conditions in (2.5) we obtain from the second p.d.e. in (2.26) that u t = A D (cη xx + η + 1 2 u 2 ). Taking into account (2.10) and the fact that (2.28) and (2.11) imply that Bη x = 0, we see that

u t = c b ÃD η + A D (η + 1 2 u 2 ), (2.35)
where we put again ÃD = A D + ∂ x . Integrating (2.34) and (2.35) with respect to t yields the system of integral equations (2.37) where x ∈ Ī, t ≥ 0. It is clear that any classical solution of the ibvp (2.26)-(2.28) satisfies in its temporal interval of existence the system of integral equations (2.36)-(2.37). As in the previous section, we study first the uniqueness and existence of solutions of (2.36)-(2.37). For this purpose we shall denote

η(x, t) = η 0 (x) + t 0 A N (u + ηu)dτ, (2.36) u(x, t) = u 0 (x) + t 0 c b ÃD η + A D (η + 1 2 u 2 ) dτ,
H 1 T = C(0, T ; H 1 ), L 2 T = C(0, T ; L 2 ). Proposition 2.3 Let 0 < T < ∞, η 0 ∈ H 1 , u 0 ∈ L 2 . Then, the system (2.36)-(2.37) has at most one solution (η, u) ∈ H 1 T × L 2 T . Proof: Let (η i , u i ), i = 1, 2, be two solutions of (2.36)-(2.37) in H 1 T × L 2 T . Then, with η := η 1 -η 2 , u := u 1 -u 2 , we have for 0 t T η(t) = t 0 A N (u + η 1 u + u 2 η)dτ,
(2.38)

u(t) = t 0 c b ÃD η + A D (η + 1 2 (u 1 + u 2 )u) dτ.
(2.39) Using Lemma 2.2(i) and Sobolev's theorem we have from (2.38) for some positive constant

M 1 = M 1 (b) that t ∈ [0, T ] η(t) 1 M 1 (1 + η 1 H 1 T ) t 0 u(τ ) dτ + u 2 L 2 T t 0 η(τ ) 1 dτ .
In addition, using (2.39) and Lemma 2.1(i) we have, for some constant M 2 (b) and for t ∈ [0, T ]

u(t) M 2 t 0 η 1 dτ + u 1 + u 2 L 2 T t 0 u(τ ) dτ .
By our hypotheses on η i , u i there follows for t ∈ [0, T ] and for some constant c 1 that

η(t) 1 + u(t) c 1 t 0 ( η(τ ) 1 + u(τ ) )dτ,
which, by Gronwall's lemma, leads to η = u = 0. Remark 2.4: Suppose that (η 0 , u 0 ) ∈ C m+1 × C m , for some integer m ≥ 0. Then, using (2.38) and (2.39) and the properties of A D , A N given by Lemma 2.1(iv) and Lemma 2.2(ii), we may prove, in a manner similar to the proof of the previous proposition, that given 0 < T < ∞, the system (2.36)-(2.37) has at most one solution (η, u)

∈ C m+1 T × C m T .
Proposition 2.4 Suppose that (η 0 , u 0 ) ∈ H 1 × L 2 and β := η 0 1 + u 0 . Then, there exists a positive number T = T (β) such that the system (2.36)-( 2.37) has a unique solution

(η, u) ∈ H 1 T × L 2 T .
Proof: With T to be suitably chosen, let E be the Banach space

H 1 T × L 2 T with norm (v, w) E := v H 1 T + w L 2 T . The mapping Γ : E → E given for (v, w) ∈ E by Γ(v, w) = η 0 + t 0 A N (w + vw)dτ, u 0 + t 0 c b ÃD v + A D (v + 1 2 w 2 ) dτ ,
is well-defined, as may be seen by the properties of A D and A N in Lemma 2.1(i) and Lemma 2.2(i), respectively. Let B R be the closed ball in E with center 0 and radius R > 0 and let (η i , u i ) ∈ B R , i = 1, 2. As in the proof of Proposition 2.3, we have, using the properties of A D and A N and Sobolev's theorem, that

Γ(η 1 , u 1 ) -Γ(η 2 , u 2 ) E M 1 T [(1 + η 1 H 1 T ) u 1 -u 2 L 2 T + u 2 L 2 T η 1 -η 2 H 1 T ] +M 2 T [ η 1 -η 2 H 1 T + u 1 + u 2 L 2 T u 1 -u 2 L 2 T ] Θ (η 1 , u 1 ) -(η 2 , u 2 ) E , (2.40) 
where Θ :

= T [M 1 + M 2 + R(M 1 + 2M 2 )]. In addition, if (η, u) ∈ B R it follows that Γ(η, u) E Γ(η, u) -Γ(0, 0) E + Γ(0, 0) E ΘR + (η 0 , u 0 ) E ΘR + β. (2.41) Choosing R = 2β, T = 1 2[M1+M2+R(M1+2M2)]
, we see that Θ = 1/2, and ΘR + β = R. Consequently, (2.40) and (2.41) imply that the contraction mapping theorem applies to the mapping Γ : B R → B R . Therefore, Γ has a unique fixed point (η, u) ∈ B R , which is the required solution of (2.36)-(2.37).

It will be found useful in the sequel to have local in time existence results for solutions of (2.36)-(2.37) in spaces of smooth functions as well. With this aim in mind, we define for integer m ≥ 0

C m 0 := {v ∈ C m : v(-L) = v(L) = 0} and C m+1 0 := {v ∈ C m+1 : v ′ (-L) = v ′ (L) = 0}.
The spaces C m 0 , C m+1 0 are obviously closed subspaces of the Banach spaces C m and C m+1 , respectively. With this notation in mind, we have: Proposition 2.5 Given a nonnegative integer m, and

(η 0 , u 0 ) ∈ C m+1 0 × C m 0 , let γ m := η 0 C m+1 + u 0 C m . Then, there exists T m = T m (γ m ) > 0, such that the system (2.36)-(2.37) has a unique solution (η, u) ∈ C(0, T m ; C m+1 0 ) × C(0, T m ; C m 0 ).
Proof: With T m to be suitably chosen, let E m be the Banach space

C(0, T m ; C m+1 0 ) × C(0, T m ; C m 0 ) with norm (v, w) Em := v C m+1 Tm + w C m Tm . Consider the mapping Γ m given for (v, w) ∈ E m by Γ m (v, w) = (η 0 + t 0 A N (w + vw)dτ, u 0 + t 0 [ c b ÃD v + A D (v + 1 2 w 2 )]dτ.
That Γ m is well defined on E m and has values in C m+1 Tm × C m Tm , follows from our hypotheses on the initial data and by Lemma 2.1(iv) and Lemma 2.2(ii). Let φ(x, t) := η 0 (x) + t 0 A N (w + vw)(x, t)dτ . Differentiating φ with respect to x, using (2.32) and the facts that w ∈ C(0, T m ; C m 0 ), η 0 ∈ C m+1 0 , yields that φ x (±L, t) = 0, 0 t T m . In addition, it follows from the hypothesis

u 0 ∈ C m 0 , v ∈ C(0, T m ; C m+1 0 
), and the definition of

A D that ψ := u 0 + t 0 [ c b A D v + A D (v + 1 2 w 2 )]dτ vanishes at x = ±L. Therefore, Γ m : E m → E m .
The rest of the proof follows, mutatis mutandis, that of Proposition 2.4, when use is made of the estimates in Lemma 2.1(iv) and Lemma 2.2(ii) to establish that Γ m is a contraction map from B to B, where B is a closed ball of center zero and suitable radius in E m , provided T m is taken sufficiently small.

We are now in position to prove a local well-posedness result for classical solutions of the ibvp (2.26)-(2.28).

Proposition 2.6 Suppose that (η 0 , u 0 ) ∈ C 3 0 × C 2 0 . Let (η, u) ∈ H 1 T × L 2
T be the solution of the system (2.36)-(2.37), whose existence and uniqueness was established in Proposition 2.4. Then, η, η t ∈ C(0, T ;

C 3 0 ), u, u t ∈ C(0, T ; C 2 0 ) and (η, u) is a classical solution of the ibvp (2.26)-(2.28) in [0, T ].
Proof: Consider the system of integral equations (2.36)-(2.37). By Proposition 2.5, there exists a positive T 2 = T 2 (γ 2 ) where γ 2 = η 0 C 3 + u 0 C 2 , such that a unique solution (η, u) of this system exists in C(0, T 2 ; C 3 0 ) × C(0, T 2 ; C 2 0 ). (It is not hard to see from (2.36) and (2.37) that η and u are differentiable with respect to t and that η t and u t are given by (2.34) and (2.35), respectively. Use of Lemma 2.1(iv) and Lemma 2.2(ii) gives that (η t , u t ) ∈ C(0, T 2 ; C 3 0 ) × C(0, T 2 ; C 2 0 ).) Suppose that T 2 < T . By Proposition 2.3 the solution pair (η, u) coincides on [0, T 2 ] with that in H 1 T × L 2 T guaranteed by Proposition 2.4. As was done e.g. in Theorem 2.1, if an a priori estimate of η C 3 T + u C 2 T independent of T 2 is established, then the argument of Proposition 2.5 may be repeated to extend the solution from T 2 to T

(1) 2

> T 2 and then for T

(1) 2

to T

(2) 2 > T

(1) 2

and so on, reaching T in a finite number of steps.

To establish this a priori estimate, note that (2.36), Lemma 2.2 and Sobolev's theorem yield for t ∈ [0, T ] (2.42) where C in the sequel will denote generically various constants independent of t and T 2 . In addition, from (2.37), Lemma 2.1(iv) and (i), we have for t ∈ [0, T ]

η C 1 η 0 C 1 + C(1 + η H 1 T ) t 0 u C 0 dτ,
u C 0 u 0 C 0 + C(T u 2 L 2 T + t 0 η C 1 dτ ).
(2.43)

From (2.42) and (2.43) and Gronwall's lemma we conclude that for some constant C depending on T ,

η H 1 T , u L 2 T and η 0 C 1 + u 0 C 0 , we have η C 1 T + u C 0 T C.
Using this estimate and similar arguments we may easily obtain the required a priori estimate of η C 2 T + u C 1 T and finally the needed estimate of η C 3 T + u C 2 T . At this point we have established the existence of a unique solution (η, u) of (2.36)-(2.37) with the property that (η, u) ∈ C(0, T, C 3 0 )× C(0, T ; C 2 0 ), (and such that (η t , u t ) ∈ C(0, T, C 3 0 )× C(0, T ; C 2 0 ).) This solution is a classical solution of the ibvp (2.26)-(2.28). Indeed, differentiating twice (2.34) with respect to x we have, by (2.33), for x ∈ Ī, t ∈ [0, T ], that

η t + bη xxt = A N (u + ηu) -b[A N (u + ηu)] xx = (u + ηu) x .
In addition, differentiating twice in (2.35) with respect to x and using the last argument of the proof of Theorem 2.1, we conclude that (η, u) also satisfies the second p.d.e. of (2.26) for x ∈ Ī, t ∈ [0, T ]. We conclude that (η, u) is a classical solution of the ibvp (2.26)-(2.28) for t ∈ [0, T ].

Consider a classical solution (η, u) of the system (2.26). If we write the latter in the form

η t + P x = 0, u t + Q x = 0, with P := u + ηu -bη xt , Q := η + 1 2 u 2 + cη xx -bu xt , there follows that η t Q + u t P + (P Q) x = 0.
(2.44)

The boundary conditions (2.28) imply that P (±L, t) = 0. In addition, we may easily check that

L -L (η t Q + u t P )dx = 1 2 ∂ t L -L (η 2 + u 2 + ηu 2 -cη 2 x )dx.
Using these observations and integrating (2.44) with respect to x on I we conclude that classical solutions of (2.26)-(2.28) conserve the 'energy' functional (2.45) i.e. they satisfy E(t) = E(0) in the temporal interval of their existence. The functional E is analogous to the Hamiltonian of the Cauchy problem for the same system, [BS], [BCSII].

E(t) := L -L (η 2 + |c|η 2 x + (1 + η)u 2 )(x, t)dx,
The conservation of E leads to a global existence result for classical solutions of the ibvp (2.26)-(2.28) under mild restrictions on the initial data: Theorem 2.2 Suppose that (η 0 , u 0 ) ∈ C 3 0 × C 2 0 and that η 0 (x) > -1, x ∈ Ī. Suppose also that

E(0) = L -L (η 2 0 + |c|(η ′ 0 ) 2 + (1 + η 0 )u 2 0 )dx < L|c| 1/2 L + |c| 1/2 . (2.46)
Then, given any T * ∈ (0, ∞) there exists a unique classical solution of the ibvp (2.26)-(2.28) in [0, T * ].

Proof: From our hypotheses and Propositions 2.4 and 2.6 there follows that there exists a T = T (β) > 0, where β = η 0 1 + u 0 , such that the ibvp (2.26)-(2.28) has a classical solution in [0, T ]. It also follows that there is a t 0 > 0 such that 1 + η > 0 in [-L, L] × [0, t 0 ]. Consider now the Sobolev type inequality

v 2 C 0 γ + L γL ( v 2 + γ 2 v ′ 2 ), (2.47)
which is valid for any γ > 0 and v ∈ H 1 . To prove (2.47) consider the set {φ n } n≥0 of functions on Ī

given by φ 0

(x) = (2L) -1/2 , φ n (x) = 4L 4L 2 +n 2 π 2 1/2 cos nπ(x+L)

2L

, n = 1, 2, . . .. It is straightforward to check that {φ n } n≥0 is an orthonormal basis of H 1 and that the φ n are also orthogonal in L 2 . It follows that for any v ∈ H 1 we have v = n≥0 a n φ n with a n = (v, φ n ) 1 , where (•, •) 1 denotes the usual inner product in H 1 . Hence, for any γ > 0 we have

v 2 + γ 2 v ′ 2 = n≥0 γ n |a n | 2 , (2.48) 
where

γ n := 4L 2 +γ 2 n 2 π 2 4L 2 +n 2 π 2 , n ≥ 0. Moreover, for x ∈ Ī |v(x)| 1 √ 2L |a 0 | + n≥1 4L 4L 2 + n 2 π 2 1/2 |a n | n≥0 4L 4L 2 + n 2 π 2 1/2 |a n |. Therefore, v 2 C 0 n≥0 4L (4L 2 + n 2 π 2 )γ 2 n • n≥0 γ 2 n |a n | 2 ,
and (2.47) follows from (2.48) and the estimate

n≥0 4L (4L 2 + n 2 π 2 )γ 2 n = 1 L + 4L γ 2 π 2 n≥1 1 n 2 + 2L γπ 2 1 L + 4L γ 2 π 2 • γπ 2L • π 2 = 1 L + 1 γ . From (2.47) with γ = |c| 1/2 we infer for t ∈ [0, t 0 ] that η(t) 2 C 0 L + |c| 1/2 L|c| 1/2 E(t) = L + |c| 1/2 L|c| 1/2 E(0) =: λ 2 < 1,
using the invariance of E and the hypothesis (2.46). Therefore, η(t)

C 0 λ < 1 in [0, t 0 ], implying that min x∈ Ī η(x, t 0 ) ≥ -λ > -1. So this argument may continue up to t = T yielding 1 + η(x, t) ≥ 1 -λ > 0, for x ∈ Ī, t ∈ [0, T ]. Hence, E(0) = E(t) ≥ L -L (η 2 + |c|η 2 x + (1 -λ)u 2 )dx ≥ M ( η(t) 2 1 + u(t) 2 ),
where M = min(1, |c|, 1 -λ) > 0, implying that the quantity η(t) 1 + u(t) is bounded by a constant independent of t. We conclude that the contraction mapping argument of Proposition 2.3 may be repeated a finite number of times to reach any T * < ∞, thus proving the theorem.

Remark 2.5: The condition 1 + η 0 > 0 in Ī is a natural one and means that initially there is water in the channel at all points x ∈ Ī, since the bottom in this choice of variables is at depth -1. As we saw in the proof of the above theorem, this condition and the assumption (2.46) imply that the channel never runs dry. As a consequence, E(t) remains positive for all t and global existence of classical solutions follows. The specific form of the constants in the Sobolev inequality (2.47) allows us to recover the bound |c| 1/2 (cf. [BCSII]) as L → ∞ in the right-hand side of (2.46).

Let us point out that it is quite easy to generalize the analysis of this section in order to obtain local existence of classical solutions (i.e. up to Proposition 2.6) of ibvp's with reflection boundary conditions for systems of the form (2.1) with a = 0, c < 0 and b > 0, d > 0 with b = d. However, such systems are not Hamiltonian and global existence does not follow from our arguments. In the case of BBM-BBM type (a = c = 0, b > 0, d > 0) systems, we have local well-posedness in C(0, T ; C 2 0 ) × C(0, T ; C 2 0 ), but even in the case b = d global existence of smooth solutions does not follow from our arguments since c = 0 in (2.45).

Periodic boundary conditions

Finally, in this paragraph we shall study the well-posedness of the initial-periodic-boundary-value problem (ipvp) for some systems of the form (2.1). As the general scheme of proof resembles that of the two previous subsections we shall just state the results omitting the proofs. As usual we first consider the Bona-Smith system. We seek functions η, u, 2L-periodic in x for t ≥ 0, satisfying the system

η t + u x + (ηu) x -bη xxt = 0, u t + η x + uu x + cη xxx -bu xxt = 0, x ∈ Ī, t ≥ 0, (2.49) 
where b > 0, c < 0. The systems are supplemented by the initial conditions η(x, 0) = η 0 (x), u(x, 0) = u 0 (x), x ∈ Ī, (2.50)

where η 0 , u 0 are given 2L-periodic functions. As usual, we convert first this ipvp into a system of integral equations. For this purpose, consider the two-point boundary-value problem with periodic boundary conditions w

-bw ′′ = -f ′ , x ∈ Ī, w(-L) = w(L), w ′ (-L) = w ′ (L),
(2.51) where suppose, for example, that f ∈ C 1 is 2L-periodic. (In this section we shall denote by C k p the subspace of C k consisting of 2L-periodic functions v, whose derivatives v ′ , • • • , v (k) are 2L-periodic. We shall also denote by H 1 p the space of 2L-periodic functions in H 1 .) Define the linear operator ). It is proved in [A] using the representation (2.52) and Fourier analysis that the following Lemma holds: Lemma 2.3 Let A p be defined by (2.52) and M denote generic constants depending on b. Then, the following hold: In analogy to what was done in the previous two subsections, we may derive from (2.49)-(2.50) the system of integral equations η(x, t) = η 0 (x) + Proposition 2.7 Let 0 < T < ∞, η 0 ∈ H 1 p , u 0 ∈ L 2 . Then, the system (2.53)-( 2.54) has at most one solution (η, u) ∈ C(0, T ; H 1 p ) × L 2 T .

(i) If v ∈ L 1 , then A p v ∈ W 1 1 and A p v L ∞ M v L 1 , A p v M v L 1 . (ii) If v ∈ L 2 , then A p v ∈
Proposition 2.8 Suppose that (η 0 , u 0 ) ∈ H 1 p ×L 2 and β := η 0 1 + u 0 . Then, there exists T = T (β) > 0 such that the system (2.53)-( 2.54) has a unique solution (η, u) ∈ C(0, T ; H 1 p ) × L 2 T .

Proposition 2.9 Suppose that (η 0 , u 0 ) ∈ C m+1 It is easily seen, integrating (2.44) with respect to x in (-L, L) and using the periodic boundary conditions on u and η, that classical solutions of the ipvp (2.49)-(2.50) conserve the energy functional E(t) given by (2.45). Therefore, one may prove again a global existence result under mild restrictions on the initial data, analogous to Theorem 2.2. The Sobolev inequality (2.47) should be replaced now by the inequality

v 2 C 0 γ + L 2γL ( v 2 + γ 2 v ′ 2 ),
valid for any v ∈ H 1 p and γ > 0; this inequality may be established again by Fourier expansions, cf. [A].

Theorem 2.3 Suppose (η 0 , u 0 ) ∈ C 3 p × C 2 p and that η 0 (x) > -1, x ∈ Ī. In addition, suppose that

E(0) = L -L (η 2 0 + |c|(η ′ 0 ) 2 + (1 + η 0 )u 2 0 )dx < 2L|c| 1/2 L + |c| 1/2 .
(2.55)

Then, given any T ∈ (0, ∞), there exists a unique classical solution of the ipvp (2.49)-(2.50) in [0, T ].

In closing, let us point out that taking L → ∞ in (2.55), one may recover the constant 2 √ 3 that appears as a bound of E(0) in the analogous theorem proved in [BS] for the Cauchy problem for the Bona-Smith system with c = -1/3.

The local existence results of this section (i.e Propositions 2.7 to 2.10) are easily generalized for systems of the form (2.1) with a = 0, c < 0 and b > 0, d > 0 with b = d. Similar local existence and uniqueness results may be proved by the same techniques for systems of BBM-BBM type (a = c = 0, b, d > 0), establishing that (η, u) ∈ C(0, T ; C 2 p ) × C(0, T ; C 2 p ) for small enough positive T , and also for the 'reverse' Bona-Smith systems (a < 0, c = 0, b > 0, d > 0) for which it may be shown that (η, u) ∈ C(0, T ; C 2 p ) × C(0, T ; C 3 p ) for small enough T .

(

  is the Green's function for (2.51) defined for x, ξ ∈ Ī byG p (x, ξ) := 1 2bω ′ (L) ω(x -ξ -L), -L ξ x, ω(x -ξ + L), x < ξ L,where ω(x):= cosh x √ b . If f ∈ C 1 with f (-L) = f (L), then w = A p f is a classical solution of (2.51

  H 1 p and A p v 1 M v . (iii) If v ∈ C m p , m ≥ 0, then A p v ∈ C m+1 p and A p v C m+1 M v C m , where M = M (m, b).

  x ∈ Ī, t ≥ 0, and Ãp := A p + ∂ x . Using Lemma 2.3, we see that the following analogs of similar previous results are valid:

  p × C m p for a nonnegative integer m, and let γ m :=η 0 C m+1 + u 0 C m . Then, there exists T m = T m (γ m ) > 0 such that the system (2.53)-(2.54) has a unique solution (η, u) ∈ C(0, T ; C m+1 p ) × C(0, T ; C m p ). Combining these results we may prove the following local well-posedness result for the ipvp (2.49)-(2.50).Proposition 2.10 Suppose that (η 0 , u 0) ∈ C 3 p × C 2 p . Let (η, u) ∈ C(0, T ; H 1 p ) × L 2 T bethe solution of the system (2.53)-(2.54), whose existence and uniqueness was established in Proposition 2.8. Then, η, η t ∈ C(0, T ; C 3 p ), u, u t ∈ C(0, T ; C 2 p ) and (η, u) is a classical solution of the ipvp (2.49)-(2.50) in the temporal interval [0, T ].
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