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The approximate joint diagonalization (AJD) is an important analytic tool at the base of 
numerous independent component analysis (ICA) and other blind source separation 
(BSS) methods, thus finding more and more applications in medical imaging analysis. In 
this work we present a new AJD algorithm named SDIAG (Spheric Diagonalization). It 
imposes no constraint either on the input matrices or on the joint diagonalizer to be 
estimated, thus it is very general. Whereas it is well grounded on the classical least-
squares criterion, a new normalization reveals a very simple form of the solution matrix. 
Numerical simulations shown that the algorithm, named SDIAG (spheric 
diagonalization), behaves well as compared to state-of-the art AJD algorithms.  

1.   Introduction 

In the following we will indicate matrices by upper case italic letters (A), 
matrix sets by bold upper case italic letters (A), vectors and indexes by lower-
case italic letters (a), scalars by lower-case letters (a) and integers by upper-case 
letters (A). Notations (·)T, (·)-1 and ║(·)║ indicate transpose, inverse and 
Frobenius norm, respectively. diag(·) and off(·) returns a matrix comprising only 
the diagonal and off-diagonal elements of the argument, respectively. λ(·) 
indicates an eigenvalue of the argument. ej indicates a vector where the j th 
element equals one and the others equals zero and Eji the matrix where the ji  
element equals one and the others zero. Given a set of input matrices 
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{ }: =1...K, K>2kC k=C , (1) 

 
the joint diagonalization (JD) problem consists in finding a matrix B such that 
all K congruence transformations BTCkB [11, p. 324] result in diagonal matrices 
[1-9]; we are given C and we seek a B such that 
 

T
k kB C B Λ= , (2) 

 
where all Λk are diagonal. Note that if (2) is true for matrix B, then it is true also 
for any matrix of the group BΥP, where Υ is a diagonal matrix and P a 
permutation matrix. This simply shows that AJD is solved up to a sign, scaling 
and permutation indeterminacy, just like in ICA and BSS.  In the approximate 
joint diagonalization (AJD) problem, which is of practical interest in 
engineering, the input matrices are statistical estimations, thus they are perturbed 
by finite sampling error plus noise. Then we may state the AJD problem as 
 

( )T T
k k k kB C N B Λ B N B+ = + , (3) 

 
where the Nks are sampling error plus noise matrices. Hereafter we assume that 
B, Ck and Λk are all N-dimensional square matrices and that the Ck matrices are 
symmetric (real case) or Hermitian (complex case). In the sequel we will treat 
the real case for simplicity, for the extension in the complex domain is 
straightforward. In this paper we present a new least-squares (LS) iterative 
algorithm for finding B in the exact case and an approximation of B in the 
approximate case. The basic idea involves the minimization of 

 

( ) ( ) 2
OFF T

k
k

B Off B C Bℑ =∑    ,   (4) 

 
while avoiding the trivial solution B=0. Several constraints may serve this 
purpose. For example: 

 
BTB=I (5) and diag(BTC0B)=I (6). 

 
Constraint (5) assumes that B is orthogonal and has been considered in this 
fashion in [1]. The authors proposed a solution by Givens rotations. We are 
rather interested in the general case, i.e., finding non-orthogonal Bs. For this 
purpose (6) has been proposed almost simultaneously in [6] and [8]. C0 is any 
positive definite matrix, such as the data covariance matrix or I, boiling down to 
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fixing the filter gain or the norm of the filter vectors to unity, respectively. The 
algorithm starts by finding a matrix H such that HTC0H=I and then iteratively 
applies transformations that minimize the criterion using successive eigenvector 
decompositions satisfying (6). In [7] a similar LS idea has been used to perform 
simultaneous joint diagonalization and zero-diagonalization on two matrix sets, 
an approach that suits time-frequency data expansions. Contrarily to (5), 
constrained (6) by itself cannot prevent degenerate solutions, thus a penalty term 
proportional to -log|det(B)| has been added to (4) in [9]. However the resulting 
algorithm is slow, even more so than the (already slow) algorithms in [6-8]. 

 

2.   Method 

Denoting by T
ib  the i th row vector of BT and by ib its transpose (the i th 

column vector of B) let us define 
 

( ) = T T
n k n n k

k

M C b b C∑  (7) 

and 

( ) = T T
k k n

k n

M C BB C M=∑ ∑ ,  (8) 

 
with n=1…N and k=1…K. Note for future use that multiplying the left-hand side 
of (2) by its transpose and summing across the K matrices we obtain 
 

( ) 2T T T T
k k k

k k

B C BB C B B MB Λ= =∑ ∑    (9) 

 
From (9) it results that the diagonality of M (8) is a necessary condition for (2) to 
be true. Notice that such condition is meaningful regardless the sign of the 
entries of the Λks and the symmetry of the matrices in C. We have seen that the 
scaling of the columns of B is arbitrary. Let us fix the scale such that  
 

1,  for all =1...NT
n n nb M b n=       (10) 

 
and consider the minimization of (4) under constraint (10). Since 
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( ) ( ) ( )2 2 2
T T T

k k k
k k k

Off B C B B C B Diag B C B= −∑ ∑ ∑  

 
we may write the off-criterion as 
 

( ) ( ) ( )Off T T
n n b

n

B tr B MB b M bΓ = −∑ .     (11) 

 
The method of Lagrange multipliers leads us to minimize 
 

( ) ( )δT T
n n n b

n

tr B MB b M b−∑ , 

where the δn values are adjusted in order to satisfy constraint (10). The first 
derivative of ΓOff (B) with respect to the element ji  of B is 
 

( ) ( )

( )( )
( ) ( )

2

           - 2

    4 4

off
T T

k ji k k ji
kji

T T T
i n k n n k j j k n

k

T T T T
i k k ji n k n n k j

k

B
tr B C B E C B B C E

B

b C b b C e e C b

tr B C BB C E b C b b C e

δ

δ

∂Γ
 = + ∂

 + 

 = − 

∑

∑

∑

. 

 
This is the ij  element of matrix 
 

1 1

4 4    ...

T

T

T
N N

b M

B M

b M

 
 − ∆  
 
 

, 

 
where ∆ is a diagonal matrix having diagonal elements δn. The solution to our 
optimization problem (11) must therefore satisfy (equating the above to zero) 
 

1 1

1   ...

T

T

T
N N

b M

B M

b M

−

 
  = ∆ 
 
 

. 
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But this is 
 

1δn n n nM b Mb−= ,    (12) 

 
which is readily recognized as a system of nested generalized eigenvalue-
eigenvector decomposition for matrix pencils (Mn, M). For each pencil bn is the 
eigenvector associated with the largest eigenvalue and it is normalized so to 
satisfy (10), which using (7) implies that each bn is normalized so that 
 

( )2
1T

n k n
k

b C b =∑ . 

 
Eq. (12) shows that the system of generalized eigenvalue-eigenvector 
decompositions is a stationary point for criterion (11), or equivalently of 
criterion (4). This result matches our intuition noting that 
 

( ) ( )
K N N2 2

1 1 1

T T T
k n k n n n n

k k n n

Diag B C B b C b b M b
= = =

= =∑ ∑∑ ∑     

 
and 
 

( ) ( )
K N N N2 2

1 1 1 1

T T T
k i k j n n

k k i j n

B C B b C b b Mb
= = = =

= =∑ ∑∑∑ ∑ ,         

 
thus the sought eigenvectors are directions maximizing the sum of the square of 
the diagonal elements of the input matrices with respect to the sum of the squares 
of all their elements. 
 
The above maximization problem has not known closed-form solution, as we 
may expect for an AJD problem, however, following [7] we can proceed 
iteratively row-by-row with mutual restriction. The general scheme for the 
optimization of (11), which we name SDIAG (Spheric Diagonalization), is 
reported here below. 
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SDIAG Iteration Scheme 

Initialize B by a non-singular clever guess or by I  if no guess is available.  

While not Convergence do 

Obtain 1... NM M  by (7) and their sum M  

(Sphering) 

Find a matrix H such that TH MH I=   

(Optimal Directions) 

For n=1 to N do find the principal eigenvector nu  of T
nH M H     

UpdateB as B HU← , where [ ]1... NU u u=  

NormalizeB so that ( )2
1T

n k n
k

b C b =∑ , for n=1 to N 

End While 

 
SDIAG has a number of properties, to which we now turn. The following 
theorem applies in general: 
  
 
Theorem 2.1 

If TH MH I= (after the sphering stage),  then ( )
N N

1 1

NT
i n

n i

H M Hλ
= =

=∑∑ , 

that is, the sum of the N eigenvalues of the N matrices HTMnH equals N. 
 
Proof : since the trace of a square matrix equal the sum of its eigenvalues, using 
(8) we have  
 

( ) ( ) ( )
N N

1 1

NT T T
n n

n n

tr H M H tr H M H tr H MH tr I
= =

 = = = = 
 

∑ ∑ .     

 
The following two theorems apply only at the limit of B in the exact JD case, that 
is, when the stationary point has been reached and (2) is true: 
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Theorem 2.2 

If TH MH I= , let nu be the unit L2 norm  eigenvector associated with the 

largest eigenvalue of T
nH M H , i.e., ( )1

T T T
n n n nu H M Hu H M Hλ= , then 

square [ ]1 N...U u u=  is orthogonal. 

 

Proof: Let us write n nb Hu= . Eq. (9) states that TB M B = T TU H MH U is 

diagonal, thus for all i, j=1…N, i≠j, we have 0T
i jb M b = , but since 

TH MH I= we have 0T
i ju u = , implying orthogonality of U whether its 

vectors have unit L2 norm.       
 
Theorem 2.3 

If TH MH I= ,  then for each n=1…N 

( )
( ) ( )

1

2 N

1.0
 

,..., 0.0

T
n

T T
n n

H M H

H M H H M H

λ

λ λ

 =


=

, 

 that is, the largest eigenvalue of all the N matrices HTMnH equals 1.0 and all 
the others N-1 eigenvalues are null. 
 

Proof: Let T
kn k nq H C Hu= . For the nth matrix Mn use (7) and n nb Hu= to 

write  

( ) ( )
K K

1 1

T T T T T T
n k n n k kn kn

k k

H M H H C Hu u H C H q q
= =

= =∑ ∑ . 

Such matrix is a rank-1 projection matrix [11, p. 156], thus it has one non-null 
eigenvalue. Furthermore, the eigenvalues of a projection matrix are either 1.0 or 
0 [11, p. 238], which proves the theorem for any given n.           
 
We end up this section with three remarks: 
 
1. Theorems 2.1 to 2.3 above assume the existence of a matrix H such that 
HTMH=I.  Being M symmetric regardless the symmetry of C, such a matrix 
always exists if M is positive definite. If this is not the case it suffices to reduce 
appropriately the number of columns of H, say, keeping only R<N of them; H 
will be now of dimension NxR while R-dimensional HTMH=I will be satisfied. 
Finally, U will still be square, but R-dimensional as well. Ideally, R should 
match the rank of M. In practice, we shall define R as the number of eigenvalues 
of M larger then λmax(M)/f, where f is an estimation of the ratio between the 
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variance of the signal and the variance of the noise (by default we may set 
f=100). 
 
2. The SDIAG algorithm naturally avoids degenerate solutions (see [9]). 
Referring to the previous point, H has row-rank R≤N. Since at the stationary 
point U is orthogonal (theorem 2.2) and multiplication by a nonsingular matrix 
does not alter rank [12, p. 197], BT will have raw-rank R as well. Its pseudo-
inverse, the estimation of the “mixing” matrix in ICA/BSS applications, will 
have column-rank R and it will be a right inverse of BT [12, p. 199].  
 
3. The N eigenvectors un (optimal directions) sought at each iteration of SDIAG 
can be found in parallel running N threads. Furthermore, they can be found by 
power iterations (difference equations) of the form un(p+1)=(M-1Mn)un(p), where 
p is the power iteration index [11, p. 359]. To avoid confusion with SDIAG 
iterations hereafter we name a power iteration a “pass”. Note that theorem 2.3 
ensures the stability of SDIAG, for the eigenvectors sought in the optimal 
directions step have eigenvalues bounded superiorly by 1.0 (neutrally stable as 
per [11, p. 259]). Now, If  λn1 is the largest eigenvalue of HTMnH associated to un 
and λn2 is the next largest eigenvalue,  power passes have convergence factor λn2 / 
λn1 [11, p. 360]. From theorem 2.3 we see that the convergence factor approaches 
zero as the SDIAG algorithm converges, thus in the proximity of the solution the 
difference equations will convergence with only one pass. 
 

3.   Results 

We compare our SDIAG algorithm to the well-established FFDIAG 
algorithm of [5] and QDIAG of [6]. Referring to (6), we use the sum of the input 
matrices as C0 for QDIAG. We generate square diagonal matrices with each 
diagonal entry distributed as a chi-squares random variable with one degree of 
freedom. Each of these matrices, named Dk, may represent the error-free 
covariance matrix of independent standard Gaussian processes (zero mean and 
unit variance). The noisy input matrices are obtained following the noisy model 
in (3) such as 
 

k kC N+ , ( )T
k kC AD A= .         (13) 

 
In (13), symmetric noise matrix N has entries randomly distributed as a Gaussian 
with zero mean and σ standard deviation. The parameter σ controls the signal to 
noise ratio of the input matrices. Two different values will be considered in the 
simulations, of which one (σ=0.01) represents a small amount of noise closely 
simulating the exact JD case and the other (σ=0.03) simulating the approximate 
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(realistic) JD case.  Two kinds of mixing matrix A are considered in (13). In the 
general case mixing matrix A is obtained as the pseudo-inverse of a matrix with 
unit norm row vectors which entries are randomly distributed as a standard 
Gaussian; in this case (A non-orthogonal) the mixing matrix may be badly 
conditioned and we can evaluate the robustness of the AJD algorithms with 
respect to the conditioning of the mixing matrix. We also consider the case in 
which A is a random orthogonal matrix; in this case the conditioning does not 
jeopardize the performance of the algorithms and we can evaluate their 
robustness with respect to noise. As it is well known, given true mixing A, each 
AJD algorithm estimates demixing matrix BT, which should approximate the 
inverse of actual A out of row scaling (including sign) and permutation. Then, 
matrix G= BTA should equal a scaled permutation matrix. At each repetition we 
compute the performance index as 
 

Perfirmance Index = 

( )

( ) ( )

2

i j

2 2

i j

2 -1

max max

ij

ij ij
j i

N G

G G+

∑∑

∑ ∑
,      (14) 

 
where i and j are the row and column index, respectively. Performance index 
(14) is positive and reaches its maximum 1.0 iff G has only one non-null 
elements in each row and column, i.e., if BT has been estimated exactly out of 
usual row scaling and permutation arbitrariness. The means and standard 
deviations obtained across 250 repetitions for 30 input matrices of dimension 
10x10 are reported in table 1.  
 
All pair-wise statistical tests between the mean performance of the three methods 
(bi-directional unpaired student-t with 248 degrees of freedom) reveal that the 
performance of the three algorithms is statistically equivalent in all conditions 
but in the case of non-orthogonal mixing and high noise (σ=0.03). In this 
condition the performance of FFDIAG is statistically lower then both QDIAG 
and SDIAG. This indicates that in noisy conditions FFDIAG occasionally fails in 
estimating correctly the demixing matrix B due to the ill-conditioning of the 
mixing matrix. In [10] we have performed simulations accounting for other kinds 
of perturbations of the exact JD model in (2). Those simulations showed that 
SDIAG is more robust than QDIAG to such violations. We note by the way that 
in [10] the correct criterion and consequent correct normalization for vectors bn 
(10) were not identified. Further work is currently in progress to study the 
convergence properties of SDIAG and an efficient implementation. 
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Table 1. Mean and standard deviation (in parentheses) of the 
performance index (14) attained by QDIAG [6], FFDIAG [5] and our 
SDIAG algorithm across 250 repetitions of the simulation with N=10 
and K=30. The higher the mean the better the performance. See text 
for details. 

 

 
Orthogonal Mixing 
(good conditioning) 

Non-Orthogonal Mixing 
(variable conditioning) 

 σ=0.01 σ=0.03 σ=0.01 σ=0.03 

QDIAG 
0.99978693  

(0.00014084) 
0.99459649 

(0.00804553) 
0.99978692 

(0.00014071) 
0.99429150 

(0.00885019) 

FFDIAG 
0.99977825 

(0.00015045) 
0.99555599 

(0.00628480) 
0.99568611 

(0.02840985) 
0.98832193 

(0.03840436) 

   SDIAG 
0.99978186 

(0.00014960) 
0.99539675 

(0.00656474) 
0.99978183 

(0.00014947) 
0.99521559 

(0.00704235) 
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