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The approximate joint diagonalization (AJD) is ampbrtant analytic tool at the base of
numerous independent component analysis (ICA) aheéraoblind source separation
(BSS) methods, thus finding more and more appboatin medical imaging analysis. In
this work we present a new AJD algorithm named SBISpheric Diagonalization). It
imposes no constraint either on the input matrimesn the joint diagonalizer to be
estimated, thus it is very general. Whereas it &l grounded on the classical least-
squares criterion, a new normalization revealsrg sinple form of the solution matrix.
Numerical simulations shown that the algorithm, edm SDIAG (spheric
diagonalization), behaves well as compared to-stitke art AJD algorithms.

1. Introduction

In the following we will indicate matrices by uppease italic lettersA),
matrix sets by bold upper case italic lettéd3, vectors and indexes by lower-
case italic lettersa)), scalars by lower-case letters (a) and integgngpiper-case
letters (A). Notations () (-)* and ||(-)|| indicate transpose, inverse and
Frobenius norm, respectivelgiag(-) andoff(-) returns a matrix comprising only
the diagonal and off-diagonal elements of the aentmrespectivelyi(:)
indicates an eigenvalue of the argumesjtindicates a vector where thHe
element equals one and the others equals zerdgatite matrix where thé
element equals one and the others zero. Givend sgiut matrices

" This Research has been partially funded by thadfrélational Research Agency (ANR) within
the National Network for Software Technologies (RI)\Tproject Open-ViBE (Open Platform for
Virtual Brain Environments).



C={C.: k=1..K, K>3 (1)

the joint diagonalization(JD) problem consists in finding a matixsuch that
all K congruenceransformation®8'CB [11, p. 324] result in diagonal matrices
[1-9]; we are giverC and we seek B such that

B'"C.B=4,(2)

where all/l,are diagonal. Note that if (2) is true for matBixthen it is true also
for any matrix of the grouBYP, where Y is a diagonal matrix and® a
permutation matrix. This simply shows that AJD édved up to a sign, scaling
and permutation indeterminacy, just like in ICA aB8S. In theapproximate
joint diagonalization (AJD) problem, which is of practical interest in
engineering, the input matrices are statisticairegtons, thus they are perturbed
by finite sampling error plus noise. Then we majesthe AJD problem as

B"(C,+ N,) B=4,+B"N,B,(3)

where theN,s are sampling error plus noise matrices. Hereafteassume that
B, C and/ are all N-dimensional square matrices and thaCthmatrices are
symmetric (real case) or Hermitian (complex case)he sequel we will treat
the real case for simplicity, for the extension tie complex domain is
straightforward. In this paper we present a nevstiequares (LS) iterative
algorithm for findingB in the exact case and an approximationBoin the
approximate case. The basic idea involves the naiion of

°F (B) :Zk:HOff( e )

while avoiding the trivial solutiorB=0. Several constraints may serve this
purpose. For example:

B'B=I (5) anddiag(B'C,B)=I (6).

Constraint (5) assumes thBtis orthogonal and has been considered in this
fashion in [1]. The authors proposed a solutiondiyens rotations. We are
rather interested in the general case, i.e., fopndion-orthogonaBs. For this
purpose (6) has been proposed almost simultanegu$Bj and [8].C, is any
positive definite matrix, such as the data covadamatrix orl, boiling down to
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fixing the filter gain or the norm of the filter e®rs to unity, respectively. The
algorithm starts by finding a matrid such thatH'CsH=I and then iteratively
applies transformations that minimize the criteri@ing successive eigenvector
decompositions satisfying (6). In [7] a similar idga has been used to perform
simultaneous joint diagonalization and zero-diadgj@adon on two matrix sets,
an approach that suits time-frequency data expassi€ontrarily to (5),
constrained (6) by itself cannot prevent degenesali¢tions, thus a penalty term
proportional to -log|deB)| has been added to (4) in [9]. However the rawult
algorithm is slow, even more so than the (alredoly)salgorithms in [6-8].

2. Method

Denoting byl" thei™ row vector ofB™ and byl its transpose (thé"
column vector oB) let us define

Mn:Z(Ckbnb:; CI) (7)

and

M=) (C,BB'G)=>"M,. @)

k

with n=1...N andk=1...K. Note for future use that multiplying the kifand side
of (2) by its transpose and summing across the icea we obtain

> (B'CBB G B=E MB:> 4 9
k k
From (9) it results that the diagonalityf(8) is a necessary condition for (2) to
be true. Notice that such condition is meaningkgardless the sign of the

entries of the/ls and the symmetry of the matricesdnWe have seen that the
scaling of the columns & is arbitrary. Let us fix the scale such that

bl M, b, =1, for alln=1...N\ (10)

and consider the minimization of (4) under constrél0). Since
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we may write the off-criterion as

ro' (B)=tr(B"MB)-Y_ (b M k). (11)

n

The method of Lagrange multipliers leads us to miné

tr(BTMB)—Zn:Sn(b:Man),

where thed, values are adjusted in order to satisfy constréif). The first
derivative ofT°™ (B) with respect to the elemejitof B is

ore" (B)
B,

)

=Y 2r|B'CB(E,GB+ B GE)|
-zx[(b'ch)(HGer ¢ o b))
:d;[m(BTckBBTCK E)-4FGhb¢d]
This is theij element of matrix
b M,
4B"M - 4A
byMy

whereA is a diagonal matrix having diagonal elemedtsThe solution to our
optimization problem (11) must therefore satisfyuating the above to zero)

b M,
=A"B'M.
byM,



But this is
M. b, =5'Mb,, (12)

which is readily recognized as system of nested generalized eigenvalue-
eigenvector decomposition for matrix pen¢h&, M). For each penclb, is the
eigenvector associated with the largest eigenvahe it is normalized so to
satisfy (10), which using (7) implies that edslis normalized so that

> (brch) =1.

k

Eq. (12) shows that the system of generalized e#&jaa-eigenvector
decompositions is a stationary point for criterighl), or equivalently of
criterion (4). This result matches our intuitiorting that

Y |oisg(&G 8 =23 (H G h) = 6 M

k=1 n=1

and

Slecef =335 (e =5 6w,

k=1 i=1 j=1

thus the sought eigenvectors are directions makigihe sum of the square of
the diagonal elements of the input matrices witipeet to the sum of the squares
of all their elements.

The above maximization problem has not known cldeea solution, as we
may expect for an AJD problem, however, following] we can proceed
iteratively row-by-row with mutual restriction. Thgeneral scheme for the
optimization of (11), which we name SDIAG (Sphefiagonalization), is
reported here below.



SDIAG lteration Scheme
Initialize B by a non-singular clever guess orlbif no guess is available.

While notConvergenceo

Obtain M,...M , by (7) and their sunM

(Sphering)
Find a matrixH such thatH "MH = |
(Optimal Directions)

For n=1to N do find the principal eigenvectty, of HTMnH

UpdateBas B « HU , whereU =[u1...uN]
NormalizeB so thatZ(bI th%)2 =1,forn=1to N
k

End While

SDIAG has a number of properties, to which we namn.t The following
theorem applies in general:

Theorem 2.1

N N

If H'MH =1 (after the sphering stage)henZZAi (H ™ H ) =N,
n=1 i=1

that is, the sum of thé eigenvalues of th matrices HM,H equalsN.

Proof : since the trace of a square matrix equal thedits eigenvalues, using
(8) we have

itr(HTMnH):tr(HTiMnHJ:tr (HMH )=tr (1 )=N. ¢

The following two theorems apply only at the liroftB in the exact JD case, that
is, when the stationary point has been reached2jrid true:



Theorem 2.2
If H'MH =I , let u_ be the unit L2 norm eigenvector associated wiéh th

largest eigenvalue ¢l 'M_H ,i.e.,ui H'M Hu, = A, ( H'™™ H ) , then

squareU :[ul...uN] is orthogonal.

Proof: Let us writeh, = Hu, . Eq. (9) states thaB'™MB=U"HMHU is
diagonal, thus for all j=1...N, i#, we have'M b =0, butsince

H'™H =1 we haveuiT u = 0, implying orthogonality ofJ whether its

vectors have unit L2 norm.]

Theorem 2.3
If H'MH =1, then for each nt...N

A (H™M H)=1.0
A(HMH),..A (H'M H)=00

that is, the largest eigenvalue of all tNematrices HM,H equalsl.0and all
the otherN-1 eigenvalues are null.

Proof: Let g,, = H"C,Hu, . For then™ matrixM,use (7) andd, = Hu, to
write

K K

H™MH =3 (H'C Huu H C{ H) =>"( q,d,)-
k=1 k=1

Such matrix is a rank-1 projection matrix [11, p6}, thus it has one non-null

eigenvalue. Furthermore, the eigenvalues of a ptioje matrix are either 1.0 or

0 [11, p. 238], which proves the theorem for aryegin. [J
We end up this section with three remarks:

1. Theorems 2.1 to 2.3 above assuime existence of a matrild such that
H'MH=I. Being M symmetric regardless the symmetry ®f such a matrix
always exists iM is positive definite. If this is not the case iffeies to reduce
appropriately the number of columns léf say, keeping only R<N of therit

will be now of dimension NxR while R-dimensiortdiMH=1 will be satisfied.
Finally, U will still be square, but R-dimensional as weliledlly, R should
match the rank ofl. In practice, we shall define R as the numberigdrevalues
of M larger theni,(M)/f, where f is an estimation of the ratio betwdbn
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variance of the signal and the variance of the exglsy default we may set
f=100).

2. The SDIAG algorithm naturally avoids degeneratdutions (see [9]).
Referring to the previous point§y has row-rank BRN. Since at the stationary
point U is orthogonal (theorem 2.2) and multiplication dyonsingular matrix
does not alter rank [12, p. 198/ will have raw-rank R as well. Its pseudo-
inverse, the estimation of the “mixing” matrirn ICA/BSS applications, will
have column-rank R and it will be a right inver§a3b[12, p. 199].

3. The N eigenvectong, (optimal directions) sought at each iteration BASG
can be found in parallel running N threads. Furtiee, they can be found by
power iterations (difference equations) of the fargp+1)=(MM,)u,(p), where

p is the power iteration index [11, p. 359]. To al@onfusion with SDIAG
iterations hereafter we name a power iteration as$py Note that theorem 2.3
ensures the stability of SDIAG, for the eigenvestsought in the optimal
directions step have eigenvalues bounded supetigrly.0 (neutrally stable as
per [11, p. 259]). Now, i, is the largest eigenvalue M, H associated taj,
andi,, is the next largest eigenvalue, power passes t@aweergence factak,,/
n1[11, p. 360]. From theorem 2.3 we see that the egence factor approaches
zero as the SDIAG algorithm converges, thus inptieximity of the solution the
difference equations will convergence with only @aess.

3. Results

We compare our SDIAG algorithm to the well-estdigid FFDIAG
algorithm of [5] and QDIAG of [6]. Referring to (6\ve use the sum of the input
matrices aLC, for QDIAG. We generate square diagonal matriceth wach
diagonal entry distributed as a chi-squares randariable with one degree of
freedom. Each of these matrices, nanidd may represent the error-free
covariance matrix of independent standard Gaugziacesses (zero mean and
unit variance). The noisy input matrices are olgdifollowing the noisy model
in (3) such as

C +N,. C =(ADA). (13)

In (13), symmetric noise matriX has entries randomly distributed as a Gaussian
with zero mean and standard deviation. The parametecontrols the signal to
noise ratio of the input matrices. Two differentues will be considered in the
simulations, of which onedgE0.01) represents a small amount of noise closely
simulating the exact JD case and the otle0(03) simulating the approximate
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(realistic) JD case. Two kinds of mixing matfixare considered in (13). In the
general case mixing matri is obtained as the pseudo-inverse of a matrix with
unit norm row vectors which entries are randomlgtributed as a standard
Gaussian; in this caseéA (non-orthogonal) the mixing matrix may be badly
conditioned and we can evaluate the robustneshieofAtID algorithms with
respect to the conditioning of the mixing matrixeVdlso consider the case in
which A is a random orthogonal matrix; in this case theddtmoning does not
jeopardize the performance of the algorithms and ca@ evaluate their
robustness with respect to noise. As it is wellimnpgiven true mixingd, each
AJD algorithm estimates demixing matr#X, which should approximate the
inverse of actuah out of row scaling (including sign) and permutatidhen,
matrix G= B'A should equal a scaled permutation matrix. At eagretition we
compute the performance index as

2(N-1)> >.Gf
Perfirmance Index = L

2 max(Gy) 421 max &)

» (14)

wherei andj are the row and column index, respectively. Perforce index
(14) is positive and reaches its maximum 1.0Gffhas only one non-null
elements in each row and column, i.e.Bifhas been estimated exactly out of
usual row scaling and permutation arbitrarinesse Theans and standard
deviations obtained across 250 repetitions for r§fut matrices of dimension
10x10 are reported in table 1.

All pair-wise statistical tests between the meariggmance of the three methods
(bi-directional unpaired student-t with 248 degreédreedom) reveal that the
performance of the three algorithms is statistycaljjuivalent in all conditions
but in the case of non-orthogonal mixing and higiise =0.03). In this
condition the performance of FFDIAG is statistigdibwer then both QDIAG
and SDIAG. This indicates that in noisy conditiéiiRDIAG occasionally fails in
estimating correctly the demixing matr& due to the ill-conditioning of the
mixing matrix. In [10] we have performed simulatioaccounting for other kinds
of perturbations of the exact JD model in (2). Tehegmulations showed that
SDIAG is more robust than QDIAG to such violatiolée note by the way that
in [10] the correct criterion and consequent cdrrexmalization for vectorb,
(10) were not identified. Further work is currently progress to study the
convergence properties of SDIAG and an efficierglementation.
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Table 1. Mean and standard deviation (in parenff)esé the
performance index (14) attained by QDIAG [6], FFIAS5] and our
SDIAG algorithm across 250 repetitions of the sitioh with N=10
and K=30. The higher the mean the better the pedoce. See text

for details.
Orthogonal Mixing Non-Orthogonal Mixing
(good conditioning) (variable conditioning)
0=0.01 0=0.03 0=0.01 0=0.03

QDIAG 0.99978693 0.99459649 0.99978692 0.99429150
(0.00014084)  (0.00804553) (0.00014071) (0.00885019)
FEDIAG 0.99977825 0.99555599 0.99568611 0.98832193
(0.00015045)  (0.00628480) (0.02840985)  (0.03840436)
SDIAG 0.99978186 0.99539675 0.99978183 0.99521559
(0.00014960)  (0.00656474) (0.00014947) (0.00704235)
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