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Time-dependent delta-interactions for 1D Schrödinger

Hamiltonians.

T. Hmidi ∗, A. Mantile †, F. Nier ‡

Abstract

The non autonomous Cauchy problem i∂tu = −∂
2

xxu+α(t)δ0u with ut=0 = u0 is considered
in L

2(R) . The regularity assumptions for α are accurately analyzed and show that the general
results for non autonomous linear evolution equations in Banach spaces are far from being
optimal. In the mean time, this article shows an unexpected application of paraproduct
techniques, initiated by J.M. Bony for nonlinear partial differential equations, to a classical
linear problem.

MSC (2000): 37B55, 35B65, 35B30, 35Q45,
keywords: Point interactions, solvable models in Quantum Mechanics, non autonomous Cauchy
problems.

1 Introduction

This work is concerned with the dynamics generated by the particular class of non-autonomous

quantum Hamiltonians: Hα(t) = − d2

dx2 +α(t)δ, defining the time dependent delta shaped perurba-
tions of the 1D Laplacian. Quantum hamiltonians with point interactions were first introduced by
physicists as a computational tool to study the scattering of quantum particles with small range
forces. Since then, the subject has been widely developed both in the theoretical framework as
well as in the applications (we refer to [2] for an extensive presentation). For real values of the

coupling parameter α, the rigorous definition of: Hα = − d2

dx2 +αδ arises from the Krein’s theory of
selfadjoint extentions. In particular, Hα identifies with the selfadjoint extension of the symmetric

operator: H0 = − d2

dx2 , D(H0) = C∞
0 (R\ {0}) defined through the boundary conditions

{
ψ′(0+) − ψ′(0−) = αψ(0)
ψ(0+) − ψ(0−) = 0

(1.1)

ψ(0±) denoting the right and left limit values of ψ(x) as x→ 0 [2]. Explicitely, one has

D(Hα) =
{
ψ ∈ H2(R\ {0}) ∩H1(R)

∣∣ψ′(0+) − ψ′(0−) = αψ(0)
}

(1.2)

Hαψ = − d2

dx2
ψ in R\ {0} . (1.3)

When α(t) is assigned as a real valued function of time, the domain D(Hα(t)) changes in time with
the boundary condition (1.1), while the form domain is given by H1(R). The quantum evolution
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associated to the family of operators
{
Hα(t)

}
is defined by the solutions to the equation

{
i d
dtu = Hα(t)u
u|t=0 = u0 .

(1.4)

The mild solutions are the solutions to the associated integral equation

u(t) = eit∆u0 − i

∫ t

0

ei(t−s)∆q(s)δ0 ds (1.5)

with q(s) = α(s)u(s, 0) . The questions are about:

• the regularity assumptions on t→ α(t) for which (1.4) defines a unitary strongly continuous
dynamical system on L2(R)

• the meaning of the differential equation (1.4), according to the regularity of t→ α(t) .

General conditions for the solution of this class of problems have been long time investigated.
In the framework of evolution equations in Banach spaces, Kato was the first who obtained a result
for the Cauchy problem {

d
dtu = A(t)u
ut=0 = u0

, (1.6)

when t → A(t) is an unbounded operator valued function [6]. This result, which applies to the
quantum dynamical case for A(t) = −iH(t), requires the strong differentiability of the function
t → A(t) and the time independence of the domain D(A(t)). Afterwards, a huge literature was
devoted to this problem in the main attempt of relaxing the above conditions (e.g. in [11] and
[9]; a rather large bibliography and an extensive presentation of the subject are also given in [5]).
In particular, the time dependent domain case was explicitely treated in [8] by Kisyński using
coercivity assumptions and C2

loc-regularity of t → A(t). The regularity conditions in time were
substantially relaxed into a later work of Kato [7] who proves weak and strong existence results, for
the solutions to (1.6), when {A(t)} forms a stable (a notion defined in [7]-Definition 2.1 expressing
uniform bounds for the norms of resolvents) family of generators of contraction semigroups leaving
invariant a dense set Y of the Banach space X , and the map t → A(t) is norm-continuous in
L(Y,X) .

Due to the particular structure, point interaction Hamiltonians allows rather explicitely energy
and resolvent estimates, so that most of the techniques employed in the analysis of non-autonomous
Hamiltonians can be used to deal with the equation (1.4), provided that α(t) is regular enough. At
this concern, the Yafaev’s works [12], [13] and [10] (with M. Sayapova) on the scattering problems
for time dependent delta interactions in the 3D setting are to be recalled: There the condition
α ∈ C2

loc(t0,+∞) is used to ensure the existence of a strongly differentiable time propagator for
the quantum evolution. Such a condition, however, could be considerably relaxed. In our case,
for instance, a first appraoch consist in adapting the strategy of [8] by constructing a family of
unitary maps Vt,t0 such that: Vt,t0Hα(t)V

∗
t,t0 has a constant domain; then, it is possible to solve

the evolution problem for the deformed operator by using results from [7]. To fix the idea, let yt

be the time dependent vector field defined by

{
ẏt = g(yt, t)
yt0 = x

(1.7)

with g(·, t) ∈ C0 (0, T ; C∞
0 (R)), supp g(·, t) ⊂ (−1, 1), and g(0, t) = 0 for each t. Under these

assumptions, (1.7) allows an unique solution depending continuously from time and Cauchy data
{t0, x}. Using the notation: yt = F (t, t0, x), one has

∂xF (t, t0, x) = e
R

t
t0

∂1g(ys,s)ds
> 0 ∀x ∈ R , (1.8)
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∂1g(·, s) denoting the derivative w.r.t. the first variable. This condition allows to consider the
map of x→ F (t, t0, x) as a time-dependent local dilation and one can construct the family of time
dependent unitary transformation associated to it

{
(Vt0,tu) (x) = (∂xF (t, t0, x))

1
2 u(F (t, t0, x))

Vt,t0 = V −1
t0,t

Under the action of Vt,t0 , the equation (1.4) reads as

{
i d

dtv = Vt,t0Hα(t)Vt0,tv − i
(

1
2 [∂yg](y, t) + g(y, t)∂y

)
v

vt=0 = u0

(1.9)

with
Vt,t0Hα(t)Vt0,t = −∂yb

2∂y + a2 − (∂yab) + b0α(t)δ

b(y, t) = e
R t

t0
∂1g(F (s,t,y),s) ds

; b0 = b(0, t)

a(y, t) =
1

2

∫ t

t0

∂2
1g (F (s, t, y), s) e

R t
t0

∂1g(F (s′,t,y),s′) ds′

ds

and Vt,t0u = v. Set: A(t) = iVt,t0Hα(t)Vt0,t +
(

1
2∂yg(y, t) + g(y, t)∂y

)
, the domain D(A(t)) is the

subspace of H2(R\ {0}) ∩H1(R) identified by the boundary condition

b(0, t)
[
u′(0+) − u′(0−)

]
= α(t)u(0)

For α ∈ W 1,1(0, T ) and sign(α(t)) = const., one can determine (infinitely many) g(y, t) such
that: 1

k b(0, t) = α(t) for a fixed constant k. With this choice, the operator’s domain is constant,
D(A(t)) = Y . Moreover, under the same conditions on α, one can shows that A(t) defines a stable
family of skew-adjoint operators t-continuous in L(H1, H−1)-operator norm. Thus, one can use
the Theorem 5.2 and Remark 5.3 in [7] to get strongly solutions for the related evolution problem.
This is summarized in the following Proposition.

Proposition 1.1 Let α ∈ W 1,1(0, T ), sign(α(t)) = const. and u0 ∈ D(Hα(0)). There exists an
unique solution ut of the problem (1.4), with: ut ∈ D(Hα(t)) for each t and u′t ∈ C0(0, T ; L2(R)).

In spite of those improved results with already known general tools, our aim is to prove that they
are far from being optimal. An additional structure can lead to the same conclusions with weaker
regularity assumptions. This is the question that we propose to explore with one dimensional
δ-interactions which allow direct and explicit computations. The main result of this paper is the
following.

Theorem 1.2 1) Assume α ∈ H
1
4

loc(R) , then for any u0 ∈ H1(R) the integral equation (1.5)
admits a unique solution u ∈ C(R;H1(R)) with i∂tu − α(t)u(t, 0)δ0 ∈ C(R;H−1(R)) and (1.4) is
weakly well-posed.
2) With the same assumption, (1.5) defines a unitary strongly continuous dynamical system U(t, s)
on L2(R) .

3) If additionally α ∈ H
3/4
loc (R), then for any u0 ∈ D(Hα(0)) the solution u of (1.5) belongs to the

space C1(R;L2(R)), with u(t) ∈ D(Hα(t)) for every t ∈ R.

Remark. The problem of defining the quantum evolution for 1D time dependent delta interactions
has also been considered in a nonlinear setting [1] where α is assigned as a function of the particle’s

state, in our notation: α(t) = γ |ut(0)|2σ, with γ ∈ R, σ ∈ R+. In this framework, the authors
prove that solutions to the nonlinear evolution problem exist locally in time for u0 ∈ Hρ with ρ > 1

2
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and: U(t, s)u0(0) ∈ H
ρ
2 + 1

4

loc as a function of time. This corresponds to the condition: α ∈ Hν
loc

with ν > 1
2 . Although a linear problem is considered here, the result of Theorem 1.2 improves

significantly the regularity condition: α ∈ H
1/4
loc (R) is weaker than a continuity assumption.

In what follows, Dx denotes 1
i ∂x = F−1 ◦(ξ×)◦F , where F is the Fourier transform in position

(or in time) normalized according to

Fϕ(ξ) =

∫

R

e−iξxϕ(x) dx .

The Sobolev spaces are denoted by Hs(R), s ∈ R, their local version by Hs
loc(R). The notation

u ∈ Hs+0(R) means that there exists ε > 0 such that u ∈ Hs+ε(R) (inductive limit) and its local
version u ∈ Hs+0

loc (R) allows εR > 0 to depend on R > 0 while considering the interval [−R,R].
More generally the Besov spaces are defined through dyadic decomposition: For (p, r) ∈ [1,+∞]2

and s ∈ R, the space Bs
p,r is the set of tempered distributions u such that

‖u‖Bs
p,r

:=
(
2qs‖∆qu‖Lp

)

ℓr
< +∞ ,

where ∆q = ϕ(2−qD), q ∈ N, is a cut-off in the Fourier variable supported in C−12q ≤ |ξ| ≤ C2q .
Details are given in Appendix A. Finally, the notation ’.’, appearing in many of the following
proofs, denotes the inequality: ’≤ C’, being C a suitable positive constant.

2 Proof of Theorem 1.2

This theorem is a consequence of simple remarks, explicit calculations and standard applications
of paraproduct estimates in 1D Sobolev spaces. Let us start with some elementary rewriting of
the Cauchy problem (1.4).

2.1 Preliminary remarks

• First of all equation (1.4) or its integral version (1.5) are local problems in time so that t0 = 0,
t ∈ [−T, T ] for some T > 0 and even supp α ⊂ [−T/2, T/2] can be assumed after replacing
α with αT (s) = α(s)χ( s

T ) for some fixed χ ∈ C ∞
0 ((−1/2, 1/2)) and χ ≡ 1 near s = 0. The

dependence of Hs-norms of αT with respect to T will be discussed when necessary.

• The equation (1.4) or its integral version (1.5) makes sense in S′(Rx) as soon as u(t, 0) is
well defined for almost all t ∈ [−T, T ] and q(t) = αT (t)u(t, 0) is locally integrable. Then it
can be written after applying the Fourier transform as a local problem in ξ ∈ R

{
i∂tû(t, ξ) = |ξ|2û(t, ξ) + q(t)
û(0, ξ) = û0(ξ)

(2.1)

with q(t) = αT (t)u(t, 0) = αT (t)

∫

R

û(t, ξ) dξ . (2.2)

This is equivalent to the integral form

û(t, ξ) = e−it|ξ|2 û0(ξ) − i

∫ t

0

e−i(t−s)|ξ|2q(s) ds (2.3)

with q(t) = q0(t) − iαT (t)

∫ t

0

∫

R

e−i(t−s)|ξ|2q(s) dsdξ (2.4)

by setting q0(t) = αT (t)[eit∆u0](0) . The assumption u0 ∈ Hs(R), s > 1/2, (resp. u0 ∈
L1(R)) ensures that [eit∆u0](0) ∈ C0([−T, T ]) (resp. t1/2[eit∆u0](0) ∈ C0([−T, T ])). Such
an assumption as well as looking for u(t) ∈ H1(R) ensures that the quantities q0(t) and q(t)
make sense for almost all t ∈ [−T, T ].
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• With the support assumption supp αT ⊂ [−T/2, T/2], the convolution equation (2.3) can be
written

q(t) = q0(t) − iαT (t)

∫ t

0

∫

R

1[−T,T ](t− s)e−i(t−s)|ξ|21[−T,T ](s)q(s) dsdξ in D′(R)

:= q0(t) − iαT (t)Lq(t) := q0(t) + Lαq(t) . (2.5)

• Once q is known after solving (2.5), equation (2.3) with t ∈ R reads simply

û(t, ξ) = e−it|ξ|2 û0(ξ) − ie−it|ξ|2F
[
q1[0,t]

]
(−|ξ|2) . (2.6)

• When u0 and q are regular enough the time-derivative of the quantity (2.3) gives

i∂t(∂tû)(t, ξ) = |ξ|2∂tû(t, ξ) + q′(t).

By Duhamel formula, this implies

∂tû(t, ξ) = e−it|ξ|2∂tû(0, ξ) − i

∫ t

0

e−i(t−s)|ξ|2q′(s)ds ,

while (2.1) says for t = 0
∂tû(0, ξ) = −i|ξ|2û0(ξ) − iq(0) .

Therefore we obtain for t ∈ R

i∂tû(t, ξ) = e−it|ξ|2 [|ξ|2û0(ξ) + q(0)
]
+ e−it|ξ|2F

[
(∂sq)1[0,t]

]
(−|ξ|2) . (2.7)

2.2 Reduced scalar equation for q

Let us now study the equation (2.5) written:

q = q0 + Lαq

with

Lαq := −iαT (t)Lq = −iαT (t)

∫ t

0

∫

R

1[−T,T ](t− s)e−i(t−s)|ξ|21[−T,T ](s)q(s) dsdξ .

Solving this fixed point equation relies on the next result.

Proposition 2.1 The estimate

‖Lq‖Hs . T
1
2 ‖1[−1,1](Dt)q‖L2 + T

1
2−θ
(
‖q 1[0,T ]‖Hs−θ + ‖q 1[−T,0]‖Hs−θ

)

holds for every s ∈ R and θ ∈ [0, 1
2 ] .

Proof: Owing to
∫

R
e±iλ|ξ|2 dξ

2π = e±i π
4√

4πλ
for λ > 0, Lq writes as

1√
π
Lq(t) = e−i π

4

∫

R

1[0,T ](s)q(s)
1[0,T ](t− s)

(t− s)
1
2

ds+ ei π
4

∫

R

1[−T,0](s)q(s)
1[−T,0](t− s)

(s− t)
1
2

ds

Passing to the Fourier transform, we get

1√
π
L̂q(τ) = e−i π

4

(∫ T

0

e−itτ

√
t

dt

)
F(1[0,T ]q)(τ) + ei π

4

(∫ T

0

eitτ

√
t
dt

)
F(1[−T,0]q)(τ)

5



One easily checks ∣∣∣∣∣

∫ T

0

e±itτ

√
t
dt

∣∣∣∣∣ ≤ 2
√
T and

∣∣∣∣∣

∫ T

0

e±itτ

√
t
dt

∣∣∣∣∣ . |τ |− 1
2 .

This yields for every θ ∈ [0, 1
2 ], τ ∈ R

∣∣∣∣∣

∫ T

0

e±itτ

√
t
dt

∣∣∣∣∣ . T
1
2 1[−1,1](τ) + T

1
2−θ|τ |−θ1{R\[−1,1]}(τ).

Thus we get for every s ∈ R, θ ∈ [0, 1
2 ],

‖Lq‖Hs . T
1
2 ‖1[−1,1](Dt)q‖L2 + T

1
2−θ
(
‖1[0,T ]q‖Hs−θ + ‖1[−T,0]q‖Hs−θ

)
.

�

Proposition 2.2 1. Let u0 ∈ Hs(Rx) with s > 1/2 and let α ∈ H
1
4

loc(Rt) . Then the equation

(2.5) has a unique solution q ∈ H
1
4

loc(Rt). Moreover, for a fixed u0 ∈ Hs(Rx) with s > 1/2,

the map α 7→ q is locally Lipschitzian from H
1
4 (Rt) to H

1
4 (Rt) .

2. Let u0 ∈ H1(Rx) and let α ∈ H
3
4

loc(Rt) . Then the equation (2.5) has a unique solution

q ∈ H
3
4

loc(Rt). Moreover, for a fixed u0 ∈ H1(Rx) the map α 7→ q is locally Lipschitzian from

H
3
4 (Rt) to H

3
4 (Rt).

3. Let u0 ∈ H1+2ε(Rx) and let α ∈ H
3
4+ε

loc (Rt) , for some ε > 0. Then the equation (2.5) has a

unique solution q ∈ H
3
4+ε

loc (Rt).

Proof: 1) Let us first prove that q0 ∈ H
1
4 when u0 ∈ H

1
2+ε . Write first

(eit∆u0)(0) =

∫ 1

−1

e−it|ξ|2 û0(ξ)
dξ

2π
+

∫ +∞

1

e−itτ
[
û0(

√
τ ) + û0(−

√
τ )
] dτ

2π
√
τ

= I(t) + II(t) .

The first term I(t) defines a C∞ function with

‖I‖Bs
∞,∞

. ‖u0‖L2 ,

for every s ∈ R . On the other hand, the Fourier transform of II equals

ÎI(−τ) = 1[1,∞[(τ)
(
û0(

√
τ) + û0(−

√
τ )
) 1√

τ
.

The Sobolev regularity of the second term, II, is given by:

‖II‖2
Hν .

∫ +∞

1

τ2ν

∣∣∣∣
û0(

√
τ )√
τ

∣∣∣∣
2

dτ

. ‖u0‖2
H2ν−1/2 , (2.8)

for any ν ∈ R . Now, write
q0(t) = αT (t)I(t) + αT (t)II(t).
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Lemma A.2-b) applied to the first term, implies

‖αT I‖
H

1
4

. ‖αT ‖
H

1
4
‖I‖Bs+ε

∞,∞

. ‖αT ‖
H

1
4
‖u0‖L2 .

For the second term, use Lemma A.2-a), Sobolev embeddings and (2.8)

‖αT II‖
H

1
4

. ‖αT ‖
H

1
4
‖II‖

B
1
2
2,∞∩L∞

. ‖αT ‖
H

1
4
‖II‖

H
1
2
+ ε

2

. ‖αT ‖
H

1
4
‖u0‖

H
1
2
+ε .

By combining these estimates, we get

‖q0‖
H

1
4

. ‖αT ‖
H

1
4
‖u0‖

H
1
2
+ε .

It remains to estimate αT . Let χ̃ ∈ D(R) with χ̃ ≡ 1 in [−1, 1] and set α̃(t) = χ̃(t)α(t) . By using
again Lemma A.2-a), we get for 0 ≤ T ≤ 1

‖αT ‖
H

1
4

. ‖α̃‖
H

1
4

∥∥χ(T−1·)
∥∥

B
1
2
2,∞∩L∞

.

A change of variable in the Fourier transform F
[
χ(T−1.)

]
(τ) = T χ̂(Tτ) leads to

∥∥χ(T−1.)
∥∥

Hµ ≤ T
1
2−µ ‖χ‖Hµ and

∥∥χ(T−1.)
∥∥

Bµ
2,∞

. T
1
2−µ ‖χ‖Bµ

2,∞
, (2.9)

for µ ≥ 0 and T ≤ 1. Hence we get

‖αT ‖
H

1
4

. ‖α̃‖
H

1
4
.

and
‖q0‖

H
1
4

. ‖α̃‖
H

1
4
‖u0‖

H
1
2
+ε (2.10)

In order to estimate the the operator L, use Lemma A.2-a)

‖Lαq‖
H

1
4

. ‖αT ‖
H

1
4
‖Lq‖

B
1
2
2,∞∩L∞

. ‖α̃‖
H

1
4
‖Lq‖

H
1
2
+ε ,

while Proposition 2.1 says

‖Lq‖
H

1
2
+ε . T

1
2 ‖q‖L2 + T

1
4−ε
(
‖1[0,T ]q‖H

1
4

+ ‖1[−T,0]q‖H
1
4

)
.

Hence we get for 0 ≤ T ≤ 1 and by Lemma A.2-a)

‖Lq‖
H

1
2
+ε . T

1
4−ε‖q‖

H
1
4

This yields
‖Lαq‖

H
1
4

. ‖α̃‖
H

1
4
T

1
4−ε ‖q‖

H
1
4
. (2.11)

This proves that L is a contracting map in H
1
4 for sufficiently small time T . The time T depends

only on ‖α̃‖
H

1
4

and then we can construct globally a unique solution q ∈ H
1
4

loc(R) for the linear

problem (2.5).
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It remains to prove the continuity dependence of q with respect to α. Let α, ᾱ ∈ H
1
4

loc and q, q̄ the
corresponding solutions then we have

q(t) − q̄(t) = αT (t)Lq(t) − ᾱT (t)Lq̄(t), with ᾱT (t) = ᾱ(t)χ(t/T ).

Since L is linear on q then

q(t) − q̄(t) = αT (t)L(q − q̄)(t) + (αT − ᾱT )(t)Lq̄(t)
= Lα(q − q̄)(t) + Lα−ᾱq̄(t).

To estimate the terms of the r.h.s we use (2.11)

‖Lα(q − q̄)‖
H

1
4

. ‖α̃‖
H

1
4
T

1
4−ε ‖q − q̄‖

H
1
4
,

‖Lα−ᾱq̄‖
H

1
4

.
∥∥α̃− ˜̄α

∥∥
H

1
4
T

1
4−ε ‖q̄‖

H
1
4
.

With the choice of T done above we get

‖q − q̄‖
H

1
4

.
∥∥α̃− ˜̄α

∥∥
H

1
4
‖q̄‖

H
1
4
.

This achieves the proof of the continuity.
2) Write again q0(t) = αT (t)I(t) + αT (t)II(t). Lemma A.2-b) implies

‖αT I‖
H

3
4

. ‖αT ‖
H

3
4
‖I‖

B
3
4
+ε

∞,∞

. ‖αT ‖
H

3
4
‖u0‖L2 .

Since H
3
4 is an algebra the inequality

‖αT ‖
H

3
4

. ‖χ(T−1·)‖
H

3
4
‖α̃‖

H
3
4

. T− 1
4 ‖α̃‖

H
3
4

holds for T ∈ [0, 1], owing to (2.9).
It follows

‖αT I‖
H

3
4

. T−1
4 ‖α̃‖

H
3
4
‖u0‖L2.

The second term is estimated with (2.8):

‖αT II‖
H

3
4

. ‖αT ‖
H

3
4
‖II‖

H
3
4

. T− 1
4 ‖α̃‖

H
3
4
‖u0‖H1 .

Finally we get for T ∈ [0, 1]

‖q0‖
H

3
4

. T− 1
4 ‖α̃‖

H
3
4
‖u0‖H1 .

Using Lemma A.2-a)-d), Sobolev embeddings and Proposition 2.1 (with θ = 5
12 and θ = 1

6 ), gives

‖Lαq‖
H

3
4

. ‖αT ‖L∞‖Lq‖
H

3
4

+ ‖αT ‖
H

3
4
‖Lq‖L∞

. ‖α̃‖L∞T
1
12

(
‖q1[0,T ]‖H

1
3

+ ‖q1[−T,0]‖H
1
3

)
+ T− 1

4 ‖α̃‖
H

3
4
‖Lq‖

H
1
2
+ε

. ‖α̃‖
H

3
4
T

1
12 ‖q‖

H
1
3

+ T− 1
4 ‖α̃‖

H
3
4
T

1
3 ‖q‖

H
1
3
+ε . (2.12)

Thus we get for 0 ≤ T ≤ 1,
‖Lαq‖

H
3
4

. ‖α̃‖
H

3
4
T

1
12 ‖q‖

H
3
4
.
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This proves that L is a contracting map in H
3
4 for sufficiently small time T . The time T depends

only on ‖α̃‖
H

3
4

and then we can construct globally a unique solution q ∈ H
3
4

loc(R) for the linear

problem.
For the locally Lipschitz dependence with respect to α, the proof is left to the reader: it can

be done easily done like for the case α ∈ H
1
4 .

3) Like in the proof of the second point 2) we get

‖q0‖
H

3
4
+ε . ‖αT ‖

H
3
4
+ε

(
‖u0‖L2 + ‖II‖

H
3
4
+ε

)

. T− 1
4−ε‖u0‖H1+2ε .

Reproducing the same computation as (2.12) leads to

‖Lαq‖
H

3
4
+ε . ‖αT ‖L∞‖Lq‖

H
3
4
+ε + ‖αT ‖

H
3
4
+ε‖Lq‖L∞

. ‖α̃‖L∞T
1
12

(
‖q1[0,T ]‖H

1
3
+ε + ‖q1[−T,0]‖H

1
3
+ε

)
+ T− 1

4−ε‖α̃‖
H

3
4
+ε‖Lq‖H

1
2
+ε

. ‖α̃‖L∞T
1
12 ‖q‖

H
1
3
+ε + T− 1

4−ε‖α̃‖
H

3
4
+εT

1
3+ε‖q‖

H
1
3
+2ε

. T
1
12 ‖α̃‖

H
3
4
+ε‖q‖H

3
4
+ε .

With the fixed point argument we can conclude the proof. �

2.3 Regularity of u

We start with the following result.

Lemma 2.3 For s ∈ R, let Hs
T be the closed subset of Hs(Rt)

Hs
T = {u ∈ Hs(Rt), supp u ⊂ [−T, T ]} ,

endowed with the norm ‖ ‖Hs . For any T > 0 and any s ∈ R, there is a constant CT,s such that

∀f ∈ H
2s−1

4

T ,
∥∥F−1

[
Ff(−|ξ|2)

]∥∥
Hs ≤ CT,s ‖f‖

H
2s−1

4
.

Proof: It suffices to compute

∫

R

(1 + |ξ|2)s
∣∣∣f̂(−|ξ|2)

∣∣∣
2

dξ =

∫ +∞

0

(1 + τ)s

2τ1/2

∣∣∣f̂(−τ)
∣∣∣
2

dτ

≤ max
τ∈[0,1]

∣∣∣f̂(−τ)
∣∣∣
2

+

∫ ∞

1

(1 + τ)
s−1/2

∣∣∣f̂(−τ)
∣∣∣
2

dτ

≤ max
τ∈[0,1]

∣∣∣f̂(−τ)
∣∣∣
2

+ ‖f‖2

H
s
2
− 1

4
,

where f̂(τ) = 〈eiτxχ̃(x) , f〉 with χ̃ ∈ D(R) with value 1 in [−T, T ]. By duality we have for ν ∈ R

sup
0≤τ≤1

|f̂(τ)| ≤ ‖f‖Hν sup
0≤τ≤1

‖eiτ ·χ̃(·)‖H−ν

≤ C1
T,ν‖f‖Hν .

�
The main result of this section is the following.

Proposition 2.4 1. Let u0 ∈ H1(Rx), α ∈ H
1
4

loc(Rt), then the equation (1.5) has a unique
solution u ∈ C(R;H1(R)) .
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2. Let u0 ∈ D(Hα(0)), α ∈ H
3
4

loc(Rt), then the equation (1.5) has a unique solution u belonging
to the space C1(R;L2(R)), with u(t) ∈ D(Hα(t)) for all t ∈ R .

Proof: 1) The solution of (1.5) is obtained via the equation (2.6)

û(t, ξ) = e−it|ξ|2 û0(ξ) − ie−it|ξ|2F
[
q1[0,t]

]
(−|ξ|2) .

Let us check that we have the required regularity for u. Applying Lemma 2.3 to (2.6) implies

‖u(t)‖H1 ≤ ‖u0‖H1 + C‖q1[0,t]‖H
1
4
. (2.13)

Lemma A.2-a) and Lemma B.1 yield

‖q1[0,t]‖H
1
4

. ‖q‖
H

1
4
‖1[0,t]‖

B
1
2
2,∞∩L∞

≤ Ct‖q‖
H

1
4
.

This proves that u ∈ L∞
loc(R;H1). It remains to prove the continuity in time of u. First notice that

we need for this purpose to prove only the continuity in time of v(t) := u(t)− eit∆u0. This will be

done in two steps. In the first one we deal with the case α ∈ H
3
4

loc . In the second one, we go back

to the case α ∈ H
1
4

loc.

• Case α ∈ H
3
4

loc. Remark that according to Proposition 2.2-2) we can construct a unique solution

q ∈ H
3
4

loc for the problem (2.5). An easy computation gives for t, t′ ∈ R

‖v(t) − v(t′)‖2
H1 .

∫

R

sin2
(
(t− t′2/2)

)
(1 + |ξ|2)

∣∣F
[
q1[0,t]

]
(−|ξ|2)

∣∣2dξ

+ ‖q(1[0,t] − 1[0,t′])‖2

H
1
4
.

Using the fact sin2 x ≤ |x|ε, ∀ε ∈ [0, 1], and Lemma 2.3 gives
∫

R

sin2
(
(t− t′2/2)

)
(1 + |ξ|2)

∣∣F
[
q1[0,t]

]
(−|ξ|2)

∣∣2dξ . |t− t′ε‖q1[0,t]‖H
1
4
+ ε

2
.

It suffices now to use Lemma A.2-a)
∫

R

sin2
(
(t− t′2/2)

)
(1 + |ξ|2)

∣∣F
[
q1[0,t]

]
(−|ξ|2)

∣∣2dξ . |t− t′ε‖q‖
H

1
4
+ ε

2
.

For the second term we use again Lemma A.2-c) combined with the proof of Lemma B.1

‖q(1[0,t] − 1[0,t′])‖H
1
4

. ‖q‖
H

1
4
+ε‖1[0,t] − 1[0,t′]‖H

1
2
−ε

. ‖q‖
H

1
4
+ε |t− t′ε

This concludes the proof of the time continuity of u when α ∈ H
3
4

loc.

• Case α ∈ H
1
4

loc. We smooth out the function α leading to a sequence of smooth functions αn that

converges strongly to α in H
1
4

loc. To each αn we associate the unique solutions qn and un. From
the first step un belongs to C(R;H1). Similarly to (2.13) we get for n,m ∈ N

‖un − um‖L∞
[−T,T ]

H1 ≤ CT ‖qn − qm‖
H

1
4
.

By Proposition 2.2-a), {qn} is a Cauchy sequence in H
1
4 and thus {un} converges uniformly to u

in L∞
T H

1. This gives that u ∈ C([−T, T ], H1), for every T > 0.
2) Recall from (2.7) that

i∂tû(t, ξ) = e−it|ξ|2F(Hα(0)u0)(ξ) + e−it|ξ|2F
[
(∂sq)1[0,t]

]
(−|ξ|2) .
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Since u0 ∈ D(Hα(0)) then the first term of the r.h.s belongs to C(R;L2). On the other hand we

have D(Hα(0) ⊂ H
3
2−d for any d > 0. It follows from Proposition 2.4-1) that we can construct a

unique solution q ∈ H
3
4 . Now, let w(t) := i∂tu− eit∆Hα(0)u0. Then Lemma 2.3 yields

‖w(t)‖L2 . ‖q′ 1[0,t]‖H− 1
4
.

Lemma A.2-a) and Lemma B.1 imply

‖q′ 1[0,t]‖H− 1
4

. ‖q′‖
H− 1

4
‖1[0,t]‖

B
1
2
2,∞∩L∞

≤ CT ‖q‖
H

3
4
.

Thus we get for every t ∈ [−T, T ]

‖w(t)‖L2 ≤ CT ‖q‖
H

3
4
. (2.14)

It follows that w ∈ L∞
loc(R;L2). To prove the continuity in time of w we use the same argument as

for the first point of this proposition. We start with a smooth function α, that is α ∈ H
3
4+ε

loc . This

gives according to Proposition 2.2-3) a unique solution q ∈ H
3
4+ε. We have the following estimate,

obtained similarly to case α ∈ H
3
4

loc discussed above,

‖w(t) − w(t′)‖L2 . |t− t′|ε‖q′1[0,t]‖H− 1
4
+ ε

2
+ ‖q′(1[0,t] − 1[0,t′])‖H− 1

4
.

Using Lemma A.2-a) with s = − 1
4 + ε

2 gives

‖q′1[0,t]‖H− 1
4
+ ε

2
. ‖q‖

H
3
4
+ε .

For the second term of the r.h.s we use Lemma A.2-c- with s = − 1
4 + ε, s′ = 1

2 − ε and Lemma B.1

‖q′(1[0,t] − 1[0,t′])‖H− 1
4

. |t− t′|ε‖q‖
H

3
4
+ε .

This achieves the proof of the continuity of w in time for α ∈ H
3
4+ε

loc . Now for α ∈ H
3
4

loc we do
like the first point of the proposition: we smooth out α and we use the continuity dependence of
q with respect to α stated in Proposition 2.2-2) combined with the estimate (2.14). By writing
i∂tu = Hα(t)u(t) we get that for every t ∈ R, u(t) ∈ D(Hα(t)). �

A Paraproducts and product laws

The aim of this section is to prove some product laws used in the proof of the main results. For this
purpose we first recall some basic ingredients of the paradifferential calculus. Start with the dyadic
partition of the unity: there exists two radial positive functions χ ∈ D(R) and ϕ ∈ D(R\{0}) such
that

χ(ξ) +
∑

q≥0

ϕ(2−qξ) = 1, ∀ξ ∈ R.

For every tempered distribution v ∈ S′, set

∆−1v = χ(D)v ; ∀q ∈ N, ∆qv = ϕ(2−qD)v and Sq =

q−1∑

j=−1

∆j .

For more details see for instance [4][3]. Then Bony’s decomposition of the product uv is given by

uv = Tuv + Tvu+R(u, v),
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with
Tuv =

∑

q

Sq−1u∆qv and R(u, v) =
∑

|q′−q|≤1

∆qu∆q′v .

Let us now recall the definition of Besov spaces through dyadic decomposition. For (p, r) ∈ [1,+∞]2

and s ∈ R, the space Bs
p,r is the set of tempered distribution u such that

‖u‖Bs
p,r

:=
(
2qs‖∆qu‖Lp

)

ℓr
< +∞.

This definition does not depend on the choice of the dyadic decomposition. One can further
remark that the Sobolev space Hs coincides with Bs

2,2. Below is the Bernstein lemma that will
be used for the proof of product laws and which is a straightforward application of convolution
estimates and Fourier localization.

Lemma A.1 There exists a constant C such that for q, k ∈ N, 1 ≤ a ≤ b and for f ∈ La(R),

sup
|α|=k

‖∂αSqf‖Lb ≤ Ck 2q(k+ 1
a− 1

b )‖Sqf‖La,

C−k2qk‖∆qf‖La ≤ sup
|α|=k

‖∂α∆qf‖La ≤ Ck2qk‖∆qf‖La.

The following product laws have been used intensively in the proof of our main result.

Lemma A.2 In dimension d = 1 the product (u, v) 7→ uv is bilinear continuous

a) from Hs × (B
1
2
2,∞ ∩ L∞) to Hs as soon as |s| < 1

2 ;

b) from Hs ×Bs+ε
∞,∞ to Hs as soon as s ≥ 0 and ε > 0.

c) from Hs ×Hs′

to Hs+s′− 1
2 as soon as s, s′ < 1

2 and s+ s′ > 0.

d) For s ≥ 0, Hs ∩ L∞ is an algebra. For s > 1
2 , Hs is an algebra.

Proof: a) Using the definition and Bernstein lemma we obtain

‖Tuv‖2
Hs .

∑

q

22qs‖Sq−1u‖2
L∞‖∆qv‖2

L2

. ‖v‖2

B
1
2
2,∞

∑

q

22q(s− 1
2 )‖Sq−1u‖2

L∞

. ‖v‖2

B
1
2
2,∞

∑

q

( ∑

p≤q−1

2q(s− 1
2 )2

p
2 ‖∆pu‖L2

)2

. ‖v‖2

B
1
2
2,∞

∑

q

( ∑

p≤q−1

2(q−p)(s− 1
2 )(2ps‖∆pu‖L2)

)2

. ‖v‖2

B
1
2
2,∞

‖u‖2
Hs .

We have used in the last line the convolution law ℓ1 ⋆ ℓ2 → ℓ2.
For the second term Tvu we use the fact that Sq−1 maps L∞ to itself uniformly with respect to q.

‖Tvu‖2
Hs .

∑

q

22qs‖Sq−1v‖2
L∞‖∆qu‖2

L2

. ‖v‖2
L∞‖u‖2

Hs .
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To estimate the remainder term we use the fact

∆qR(u, v) =
∑

j≥q−4

|j−j′ |≤1

∆q(∆ju∆j′v).

According to Bernstein lemma one gets

2qs‖∆q(R(u, v))‖L2 . 2q(s+ 1
2 )

∑

j≥q−4

|j−j′ |≤1

‖∆ju‖L2‖∆j′v‖L2

.
∑

j≥q−4

|j−j′ |≤1

2(q−j)(s+ 1
2 )2js‖∆ju‖L22j′ 1

2 ‖∆j′v‖L2

. ‖v‖
B

1
2
2,∞

∑

j≥q−4

2(q−j)(s+ 1
2 )2js‖∆ju‖L2.

It suffices now to apply the convolution inequalities.
b) First remark that the case s = 0 is obvious: L2×L∞ → L2 and Bε

∞,∞ →֒ L∞. Hereafter we
consider s > 0 . To estimate the first paraproduct, use the embedding Bs+ε

∞,∞ →֒ Bs
∞,2, for ε > 0.

‖Tuv‖2
Hs .

∑

q

22qs‖Sq−1u‖2
L2‖∆qv‖2

L∞

. ‖u‖L2‖v‖Bs
∞,2

. ‖u‖L2‖v‖Bs+ǫ
∞,∞

For the second term we use the result obtained in the part a):

‖Tvu‖2
Hs .

∑

q

22qs‖Sq−1v‖2
L∞‖∆qu‖2

L2

. ‖v‖2
L∞‖u‖2

Hs

. ‖v‖2
Bs+ǫ

∞,∞
‖u‖2

Hs

To estimate the remainder term we write

2qs‖∆q(R(u, v))‖L2 . 2qs
∑

j≥q−4

|j−j′ |≤1

‖∆ju‖L2‖∆j′v‖L∞

. ‖v‖L∞

∑

j≥q−4

|j−j′ |≤1

2(q−j)s2js‖∆ju‖L2.

Since s > 0 then we obtain by using the convolution inequalities

‖R(u, v)‖Hs ≤ ‖v‖L∞‖u‖Hs .

c), d) These results are standard, see for example [4].
�

B Sobolev and Besov regularity of cut-offs

Lemma B.1 1. For any ν < 1/2, t 7→ 1[0,t](s) belongs to C(R+;Hν(R)) . More precisely we
have for |t− t′| ≤ 1

‖1[0,t] − 1[0,t′]‖Hν . |t− t′| 12−ν .
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2. The map t 7→ 1[0,t](s) belongs to L∞(R+;B
1
2
2,∞(R)).

Proof: 1) The Fourier transform of 1[0,t](s) equals F(1[0,t])(τ) = e−iτt−1
−iτ . One gets for ν ∈

[0, 1/2)

∫

R

(1 + τ2)ν
∣∣F(1[0,t1]) −F(1[0,t2])

∣∣2 (τ) dτ = 4

∫

R

(1 + τ2)ν |sin(τ |t2 − t1|/2)|2
τ2

dτ := I.

Let λ > 1 then

I . |t2 − t1|2
∫ λ

0

τ2νdτ +

∫ +∞

λ

τ2ν−2dτ

. |t2 − t1|2λ2ν+1 + λ2ν−1.

Choosing judiciously λ then we obtain for |t2 − t1| ≤ 1

∥∥1[0,t1] − 1[0,t2]

∥∥
Hν ≤ Cν |t2 − t1|1/2−ν

.

2) We set ft(s) := 1[0,t](s), then have

‖ft‖2

B
1
2
2,∞

≤ ‖f‖2
L2 + max

q∈N

2q

∫

2q≤|τ |≤2q+1

|f̂t(τ)|2dτ

. |t| + max
q∈N

2q

∫

2q≤|τ |≤2q+1

|τ |−2dτ

. |t| + 1.

�
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