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Introduction Consider an finite elastic body Ω ⋆

Γ ⊂ R 3 , externally bounded by the piecewise-smooth closed surface S, characterized by its shear modulus µ, Poisson's ratio ν and mass density ρ, and containing an internal crack idealized by the smooth open surface Γ ⋆ and with traction-free faces Γ ⋆± . Let Ω denote the crack-free solid such that Ω ⋆ Γ = Ω\Γ ⋆ . This Note is concerned with the identification of the crack Γ ⋆ from available measured displacement u obs on a measurement surface S obs ⊂ S resulting from the excitation of Ω ⋆ Γ by known applied timedependent tractions over the boundary S. The misfit between a trial cracked domain Ω Γ = Ω\Γ and the correct crack configuration Ω ⋆ Γ is expressed by means of a cost functional J of the form

J(Ω Γ , T ) = T 0 S obs ϕ[u Γ (ξ, t), ξ, t] dS ξ dt (1) 
where the misfit function ϕ measures the distance between u obs and the displacement u Γ arising for a trial crack Γ. Straightforward adjustments of the formulation to be presented herein allow to consider types of boundary conditions and overdetermined data other than prescribed tractions and measured displacements, respectively. Considering an infinitesimal trial crack Γ ε = x + ε Γ centered at x ∈ Ω with characteristic size ε, whose shape is defined using a normalized open surface Γ, and setting Ω ε = Ω\Γ ε , the topological derivative T of J is defined through the expansion

J(Ω ε , T ) = J(Ω, T ) + η(ε)T(x, T ) + o(η(ε)) (2) 
where the function η(ε), to be determined, vanishes in the limit ε → 0. The topological derivative field T(x, T ) is considered here as a possible crack indicator function. The heuristic of this approach, following and generalizing upon previous investigations on void identification under transient dynamical conditions [START_REF] Bonnet | Topological sensitivity for 3D elastodynamics and acoustic inverse scattering in the time domain[END_REF][START_REF] Dominguez | Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection[END_REF] or crack identification under 2-D static conditions [START_REF] Gallego | Identification of cracks and cavities using the topological sensitivity boundary integral equation[END_REF], consists in seeking the (finite) crack Γ in regions of Ω where T(x, T ) reaches its most negative values, i.e. where J(Ω ε , T ) decreases most for sufficiently small crack size ε. The concept of topological sensitivity is a particular instance of the broader class of asymptotic methods, where unknown defects whose geometry involves a small parameter are sought by means of expansions with respect to that parameter. Relevant references include [START_REF] Ammari | Reconstruction of elastic inclusions of small volume via dynamic measurements[END_REF], where the identification of small elastic inclusions using dynamic data in the time domain is considered, and [START_REF] Ammari | Asymptotic imaging of perfectly conducting cracks[END_REF] where small crack-like perfectly-conducting defects are considered in the framework of the 2-D scalar Helmholtz equation.

Time domain formulation via adjoint field approach.

Under the prescribed dynamical loading over S an elastodynamic state u ε arises that can be conveniently decomposed into u ε = u + ũε with u being the response of the crack-free domain Ω and the scattered field ũε being the solution of div[C :

∇ũ ε ](ξ, t) = ρ üε (ξ, t) (ξ ∈ Ω ε , t 0) t ± [ũ ± ε ](ξ, t) = -t ± [u](ξ, t) (ξ ∈ Γ ± ε , t 0) t[ũ ε ](ξ, t) = 0 (ξ ∈ S, t 0) ũε (ξ, 0) = uε (ξ, 0) = 0 (ξ ∈ Ω ε ) (3) 
where the traction vector t

[w] = C : ∇w • n = σ[w]
• n is associated with a displacement w and the outward normal n through the fourth-order elastic Hooke's tensor C. Moreover, Γ ± ε denote the two faces of the crack, associated with the respective outward normals n ± (such that n + = -n -) and supporting scattered displacements ũ± ε , so that t ± [w ± ] = σ[w ± ] • n ± on Γ ± ε . Then, since the scattered field is expected to vanish for infinitesimal cracks, i.e. lim ε→0 ũε = 0, the topological derivative defined in (2) can be expressed by means of the first order derivative of ϕ through

T(x, T ) = lim ε→0 1 η(ε) T 0 S obs ∂ϕ ∂u [u(ξ, t), ξ, t] • ũε (ξ, t) dS ξ dt (4) 
Following the approach of [START_REF] Bonnet | Topological sensitivity for 3D elastodynamics and acoustic inverse scattering in the time domain[END_REF], define the adjoint solution û in Ω by the following adjoint problem

div[C : ∇û](ξ, t) = ρ ü(ξ, t) (ξ ∈ Ω, 0 t T ) t[û](ξ, t) = ∂ϕ ∂u [u(ξ, T -t), ξ, T -t] (ξ ∈ S obs , 0 t T ) t[û](ξ, t) = 0 (ξ ∈ S\S obs , 0 t T ) û(ξ, 0) = u(ξ, 0) = 0 (ξ ∈ Ω) (5) 
Using the well known dynamical reciprocity identity [START_REF] Achenbach | Reciprocity in elastodynamics[END_REF] between ũε and û and the boundary conditions in problems ( 3) and ( 5) one obtains

T 0 S obs ∂ϕ ∂u [u(ξ, t), ξ, t] • ũε (ξ, t) dS ξ dt = T 0 Γ ε t[û](ξ, T -t) • ũε (ξ, t) dS ξ dt (6) 
on noting ũε = ũ+ εũε the crack opening displacement (COD) through the crack and using notations n -= n and t

[û] = σ[û] • n on Γ ε .

Asymptotic behavior of cost function in the small-crack limit

Leading contributions as ε → 0. The COD associated to problem (3) verifies the integral equation [START_REF] Bonnet | Boundary integral equations methods for solids and fluids[END_REF] 

t ± i [u](ζ, t) = C ijkl n ± j (ζ) t 0 * Γ ε Σ k ab (ζ, ξ, t -τ )D lb ũε a (ξ, τ ) dS ξ + ρ Γ ε U k a (ζ, ξ, t -τ ) üε a (ξ, τ ) dS ξ dτ (ζ ∈ Γ ε , t 0) (7)
where U k (ζ, ξ, t) and Σ k (ζ, ξ, t) are the elastodynamic Green's tensors, i.e. the displacement and stress at ξ and time t due to a unit impulsive point force acting at ζ in the k-th direction and at time t = 0 in R 3 and satisfying a traction-free boundary condition on S, * denotes a Cauchy principal value singular integral, and

D lb (•) = n l (•) ,b -n b (•) ,l defines a curl-like tangential differential operator.
To determine the behavior of the solution ũε on Γ ε in the limit ε → 0, scaled coordinates are introduced according to

ξ ∈ Γ ε ⇒ ξ = (ξ -x)/ε ∈ Γ and hence dS ξ = ε 2 dSξ. ( 8 
)
One then seeks the COD in the asymptotic form

ũε (ξ, t) = ε de V ( ξ, t) + o(ε de ) (ξ ∈ Γ ε , ξ ∈ Γ) (9) 
where the order d e 0 is to be determined. On substituting ( 9) into (7), using scaled coordinates (8), and invoking the following asymptotic properties of the elastodynamic Green's tensor:

t 0 U k (ζ, ξ, t -τ )f (ξ, τ ) dτ = 1 ε U k ( ζ, ξ) • f ( ξ, t) + o(1) t 0 Σ k (ζ, ξ, t -τ )g(ξ, τ ) dτ = 1 ε 2 Σ k ( ζ, ξ) • g( ξ, t) + o(1) ((ζ, ξ) ∈ Γ ε , ( ζ, ξ) ∈ Γ, t 0) ( 10 
)
where U k ( ζ, ξ) and Σ k ( ζ, ξ) are the elastostatic fundamental displacement and stress (Kelvin solution), one obtains:

t ± i [u](x, t) + o(1) = C ijkl n ± j ( ζ) ε de-1 * Γ Σ k ab ( ζ, ξ) Dlb V a ( ξ, t) dSξ +ε de+1 ρ Γ U k a ( ζ, ξ) V a ( ξ, t) dSξ + o ε (de-1) ( ζ ∈ Γ, t 0) (11)
where the tangential differential Dlb is analogous to D lb but defined in terms of scaled coordinates. Then, (11) implies that d e = 1. The COD therefore has the following asymptotic form

ũε (ξ, t) = ε V ( ξ, t) + o(ε) (ξ ∈ Γ ε , ξ ∈ Γ) (12) 
Considering the leading contribution of (11) as ε → 0, the field V is thus found to be determined in terms of six canonical fields

V( ξ, t) = σ kl [u](x, t)V kl ( ξ) ( ξ ∈ R 3 \ Γ, t 0, (k, l) ∈ {1, 2, 3}) (13) 
where the V kl solve exterior elastostatic problems related to the normalized crack Γ embedded in an infinite elastic medium and described by

∇ξ • [C : ∇ξV kl ]( ξ) = 0 ( ξ ∈ R 3 \ Γ) C : ∇ξV kl ( ξ) • n ± = - 1 2 (e k ⊗ e l + e l ⊗ e k ) • n ( ξ ∈ Γ± ) (14) 
Closed form of the topological derivative. Substituting ( 12) and ( 13) into ( 6) one obtains

T 0 Γ ε t[û](ξ, T -t) • ũε (ξ, t) dS ξ dt = ε 3 T 0 Γ n • σ[û]( ξ, T -t) • V ( ξ, t) dSξ dt + o(ε 3 ) = ε 3 T 0 σ ij [û](x, T -t)σ kl [u](x, t) Γ n j V kl i ( ξ) dSξ dt + o(ε 3 ) (15)
Thus, with reference to (4), one obtains η(ε) = ε 3 and

T(x, T ) = T 0 σ[û](x, T -t) : A : σ[u](x, t) dt ( 16 
)
where the fourth-order polarization tensor A is defined by

A ijkl = Γ n j V kl i ( ξ) dSξ (17) 
Through the canonical solutions V kl defined by ( 14), A depends on the assumed crack shape Γ and the material properties synthesized in the elastic tensor C. Equations ( 10) and ( 15), which play a key role in the small-crack asymptotic analysis, rely on the implicit assumption that the probing excitation be sufficiently smooth as a function of time (which e.g. places restrictions on its Fourier content). Specifically, [START_REF] Gallego | Identification of cracks and cavities using the topological sensitivity boundary integral equation[END_REF] and (15) rely on f ( ξ, t), g( ξ, t) being continuous in time and on σ[û]( ξ, Tt) being continuous over Γ ε , respectively. Such issues are addressed in [START_REF] Ammari | Transient anomaly imaging by the acoustic radiation force[END_REF], where the order in ε of the leading perturbation by a small inclusion undergone by the fundamental solution of the transient scalar wave equation is shown to depend on the high-frequency content of the point source.

Canonical solution for circular planar crack. In the case of a circular planar crack (for which Γ is the unit disk with unit normal n), the solutions of the elastic canonical problems (14) are known [START_REF] Bui | Mécanique de la rupture fragile[END_REF] as

V kl ( ξ) = φ kl ( ξ) + 4(1 -ν) πµ σ nn 1 -| ξ| 2 n ( ξ ∈ Γ) ( 18 
)
where σ nn = 1 2 n•(e k ⊗e l +e l ⊗e k )•n = n k n l , and φ kl denotes the in-plane contribution to V kl . Moreover, using integral equation formulations, it can be proved that φ kl is skew-symmetric over Γ, which implies

Γ n j φ kl i ( ξ) dSξ = 0 (19)
Hence, (17) reduces to

A = 8(1 -ν) 3µ (n ⊗ n ⊗ n ⊗ n) (20)

Numerical example

Consider the identification of a penny-shaped crack of radius 0.1 embedded in a unit cubic elastic body (characterized by ν = 0.3) at initial rest, with a unit normal given by n = sin θe 1 +cos θe 3 (with coordinate directions defined as in Figs. 1,2). A FE model with 28976 nodes had been used to produce synthetic data of boundary measurements u obs over the whole domain boundary. The bottom face (x 3 = 0) is clamped, while a uniform and constant compressional loading is applied on the top face during time interval 0 ≤ t ≤ T . The (synthetic) experiment duration T corresponds to the time for a longitudinal wave to travel from the top to the bottom face of the cube. The topological derivative is computed using ( 16) and (20). The cost function is of format (1) with S obs = S and using the least-squares misfit function qualitatively correct identification of the crack, and demonstrate the usefulness of the topological derivative T(x, T ) of the misfit functional J as a crack indicator function. Note that evaluating the field T(x, T ) requires the numerical computation of just two states, namely the free and adjoint solutions, which are both defined on the same, crack-free, reference configuration. This procedure is therefore much faster than a full inversion, which would necessarily require an iterative solution procedure.

ϕ[u, ξ, t] = 1 2 u -u obs (ξ, t) 2

Acoustic topological sensitivity

Framework. In the framework of time-domain acoustics, a "crack" is a rigid thin screen. Under prescribed time-dependent normal velocity on S the scattered acoustic pressure field ũε arising in Ω ε solves the following set of equations

∆ũ ε (ξ, t) = 1 c 2 üε (ξ, t) (ξ ∈ Ω ε , t 0) ∇ũ ± ε (ξ, t) • n ± (ξ) = -∇u(ξ, t) • n ± (ξ) (ξ ∈ Γ ± ε , t 0) ∇ũ ε (ξ, t) • n(ξ) = 0 (ξ ∈ S, t 0) ũε (ξ, 0) = uε (ξ, 0) = 0 (ξ ∈ Ω ε ) ( 21 
)
where c is the acoustic wave velocity and u is the free field arising in Ω under the given excitation on S in the absence of "crack". Defining the adjoint solution û by

∆û(ξ, t) = 1 c 2 ü(ξ, t) (ξ ∈ Ω, 0 t T ) ∇û(ξ, t) • n(ξ) = ∂ϕ ∂u [u(ξ, T -t), ξ, T -t] (ξ ∈ S obs , 0 t T ) ∇û(ξ, t) • n(ξ) = 0 (ξ ∈ S\S obs , 0 t T ) û(ξ, 0) = u(ξ, 0) = 0 (ξ ∈ Ω) (22) 
and using scalar dynamical reciprocity, in the same fashion as in equations ( 4) and ( 6), the topological derivative can be established from

T(x, T ) = lim ε→0 1 η(ε) T 0 Γ ε ∇û(ξ, T -t) • n(ξ) ũε (ξ, t) dS ξ dt (23) 
where ũε = ũ+ εũε denotes the jump of acoustic pressure through the "crack".

Asymptotic analysis and closed form.

In the same fashion than in the elasticity case, a boundary integral formulation can be used to show that the leading behavior of ũε in the limit ε → 0 is given by ũε

(ξ, t) = ε W ( ξ, t) + o(ε) (ξ ∈ Γ ε , ξ ∈ Γ) ( 24 
)
where W is given by

W ( ξ, t) = u ,k (x, t)W k ( ξ) ( ξ ∈ R 3 \ Γ, t 0, k ∈ {1, 2, 3}) (25) 
in terms of solutions W k of the following canonical exterior Laplace problems in R 3 \ Γ:

∆ξW k ( ξ) = 0 ( ξ ∈ R 3 \ Γ) ∇ξW k ( ξ) • n ± = -e k • n ( ξ ∈ Γ± ) (26) 
From ( 24) and ( 25) one has 

T 0 Γ ε ∇û(ξ, T -t)•n(ξ) ũε (ξ,
B ij = Γ n i W j ( ξ, t) dSξ (29) 
In the case of a circular planar small screen, expression (29) takes the following explicit form, identical to that previously established in [START_REF] Amstutz | Topological sensitivity analysis in the context of ultrasonic non-destructive testing[END_REF] under time-harmonic conditions:

B = 8 3 (n ⊗ n) (30) 

Conclusion

In this Note, the time-domain topological derivative method had been formulated to crack identification in linear elasticity and acoustics. The corresponding topological derivatives are given in closed form in terms of the forward and adjoint solutions. They can then be easily implemented using standard numerical methods such as the FEM. Numerical examples show the usefulness of the topological derivative as a crack indicator. Qualitative identification results obtained using this fast, non-iterative approach may for example be used as good initial guesses in subsequent iterative identification algorithms.

  Numerical results for (the negative part of) T(x, T ) and the subset Ω(α) = {x ∈ Ω T(x, T ) ≤ α min ξ∈Ω T(ξ, T )} of Ω over which T(x, T ) is deemed sufficient low (with α = 0.8 here) are shown in Figures 1 (for a horizontal true crack, i.e. θ = 0) and 2 (for an inclined true crack, with θ = π/4). These results all indicate a

Figure 1 .

 1 Figure 1. Identification of a horizontal circular crack (θ = 0): negative part of T(x, T ) (left) and subset Ω(0.8) (right).

Figure 2 .

 2 Figure 2. Identification of an inclined circular crack (θ = π/4): negative part of T(x, T ) (left) and subset Ω(0.8) (right).

t) dS ξ dt = ε 3 T 0 û

 30 ,i (x, T -t)u ,j (x, t) Γ n i W j ( ξ, t) dSξ dt+o(ε 3 ) (27)i.e. η(ε) = ε 3 again, and the topological sensitivity can finally be expressed asT(x, T ) = T 0 ∇û(x, Tt) : B : ∇u(x, t) dt(28)with the polarization tensor B given by