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Abstract

The topological sensitivity analysis, based on the asymptotic behaviour of a cost functional associated with the

creation of a small trial flaw in a defect-free solid, provides a computationally-fast, non-iterative approach for

identifying flaws embedded in solids. This concept is here considered for crack identification using time-dependent

measurements on the external boundary. The topological derivative of a cost function under the nucleation of a

crack of infinitesimal size is established, in the framework of time-domain elasticity or acoustics. The simplicity and

efficiency of the proposed formulation is enhanced by the recourse to an adjoint solution. Numerical results obtained

on a 3-D elastodynamic example using the conventional FEM demonstrate the usefulness of the topological

derivative as a crack indicator function. To cite this article: C. Bellis, M. Bonnet, C. R. Mecanique 337 (2009).

Résumé

Identification de fissures par sensibilité topologique dynamique en élasticité ou acoustique tridi-

mensionnelle. L’analyse de sensibilité topologique, reposant sur le comportement asymptotique d’une fonction

coût associée à la création d’un défaut virtuel infinitésimal dans un solide sain, fournit une méthode de cal-

cul rapide et non itératif de construction d’une fonction indicatrice de défauts. Dans cette Note, consacrée à

l’identification de fissures, le gradient topologique d’une fonctionnelle coût quelconque par rapport à l’apparition

d’une fissure de taille infinitésimale est établi pour l’élastodynamique lineaire et l’acoustique. Les développements

présentés reposent sur l’utilisation d’un état adjoint pour plus de simplicité et d’efficacité. Un exemple numérique

en élastodynamique tridimensionnelle, basé sur une méthode d’éléments finis standard, valide l’intérêt de l’ap-

proche proposée. Pour citer cet article : C. Bellis, M. Bonnet, C. R. Mecanique 337 (2009).
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Introduction
Consider an finite elastic body Ω⋆

Γ ⊂ R3, externally bounded by the piecewise-smooth closed surface
S, characterized by its shear modulus µ, Poisson’s ratio ν and mass density ρ, and containing an internal
crack idealized by the smooth open surface Γ⋆ and with traction-free faces Γ⋆±. Let Ω denote the crack-free
solid such that Ω⋆

Γ = Ω\Γ⋆.
This Note is concerned with the identification of the crack Γ⋆ from available measured displacement

uobs on a measurement surface Sobs ⊂ S resulting from the excitation of Ω⋆
Γ by known applied time-

dependent tractions over the boundary S. The misfit between a trial cracked domain ΩΓ = Ω\Γ and the
correct crack configuration Ω⋆

Γ is expressed by means of a cost functional J of the form

J(ΩΓ, T ) =

∫ T

0

∫

Sobs

ϕ[uΓ(ξ, t), ξ, t] dSξ dt (1) cost

where the misfit function ϕ measures the distance between uobs and the displacement uΓ arising for a
trial crack Γ. Straightforward adjustments of the formulation to be presented herein allow to consider
types of boundary conditions and overdetermined data other than prescribed tractions and measured
displacements, respectively.

Considering an infinitesimal trial crack Γε = x + εΓ̄ centered at x ∈ Ω with characteristic size ε, whose
shape is defined using a normalized open surface Γ̄, and setting Ωε = Ω\Γε, the topological derivative T

of J is defined through the expansion

J(Ωε, T ) = J(Ω, T ) + η(ε)T(x, T ) + o(η(ε)) (2) defTD

where the function η(ε), to be determined, vanishes in the limit ε → 0.
The topological derivative field T(x, T ) is considered here as a possible crack indicator function. The

heuristic of this approach, following and generalizing upon previous investigations on void identification
under transient dynamical conditions [7,9] or crack identification under 2-D static conditions [10], consists
in seeking the (finite) crack Γ in regions of Ω where T(x, T ) reaches its most negative values, i.e. where
J(Ωε, T ) decreases most for sufficiently small crack size ε. The concept of topological sensitivity is a
particular instance of the broader class of asymptotic methods, where unknown defects whose geometry
involves a small parameter are sought by means of expansions with respect to that parameter. Relevant
references include [3], where the identification of small elastic inclusions using dynamic data in the time
domain is considered, and [4] where small crack-like perfectly-conducting defects are considered in the
framework of the 2-D scalar Helmholtz equation.

1. Time domain formulation via adjoint field approach.

Under the prescribed dynamical loading over S an elastodynamic state uε arises that can be conve-
niently decomposed into uε = u + ũε with u being the response of the crack-free domain Ω and the
scattered field ũε being the solution of

div[C : ∇ũε](ξ, t) = ρ¨̃uε(ξ, t) (ξ ∈ Ωε, t > 0)

t±[ũ±
ε ](ξ, t) = −t±[u](ξ, t) (ξ ∈ Γ±

ε , t > 0)

t[ũε](ξ, t) = 0 (ξ ∈ S, t > 0)

ũε(ξ, 0) = ˙̃uε(ξ, 0) = 0 (ξ ∈ Ωε)

(3) eqelas
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where the traction vector t[w] = C : ∇w · n = σ[w] · n is associated with a displacement w and the
outward normal n through the fourth-order elastic Hooke’s tensor C. Moreover, Γ±

ε denote the two faces
of the crack, associated with the respective outward normals n± (such that n+ = −n−) and supporting
scattered displacements ũ±

ε , so that t±[w±] = σ[w±] · n± on Γ±
ε .

Then, since the scattered field is expected to vanish for infinitesimal cracks, i.e. limε→0 ‖ũε‖ = 0, the
topological derivative defined in (2) can be expressed by means of the first order derivative of ϕ through

T(x, T ) = lim
ε→0

1

η(ε)

∫ T

0

∫

Sobs

∂ϕ

∂u
[u(ξ, t), ξ, t] · ũε(ξ, t) dSξ dt (4) taylorelas

Following the approach of [7], define the adjoint solution û in Ω by the following adjoint problem

div[C : ∇û](ξ, t) = ρ¨̂u(ξ, t) (ξ ∈ Ω, 0 6 t 6 T )

t[û](ξ, t) =
∂ϕ

∂u
[u(ξ, T − t), ξ, T − t] (ξ ∈ Sobs, 0 6 t 6 T )

t[û](ξ, t) = 0 (ξ ∈ S\Sobs, 0 6 t 6 T )

û(ξ, 0) = ˙̂u(ξ, 0) = 0 (ξ ∈ Ω)

(5) adjoint

Using the well known dynamical reciprocity identity [1] between ũε and û and the boundary conditions
in problems (3) and (5) one obtains

∫ T

0

∫

Sobs

∂ϕ

∂u
[u(ξ, t), ξ, t] · ũε(ξ, t) dSξ dt =

∫ T

0

∫

Γε

t[û](ξ, T − t) · JũεK(ξ, t) dSξ dt (6) topoelas

on noting JũεK = ũ+
ε − ũ−

ε the crack opening displacement (COD) through the crack and using notations
n− = n and t[û] = σ[û] · n on Γε.

2. Asymptotic behavior of cost function in the small-crack limit

Leading contributions as ε → 0. The COD associated to problem (3) verifies the integral equation [6]

t±i [u](ζ, t) = Cijkln
±

j (ζ)

∫ t

0

{
∫ ∗

Γε

Σk
ab(ζ, ξ, t − τ)DlbJũεKa(ξ, τ) dSξ + ρ

∫

Γε

Uk
a(ζ, ξ, t − τ)J¨̃uεKa(ξ, τ) dSξ

}

dτ

(ζ ∈ Γε, t > 0) (7) intrepelas

where Uk(ζ, ξ, t) and Σk(ζ, ξ, t) are the elastodynamic Green’s tensors, i.e. the displacement and stress
at ξ and time t due to a unit impulsive point force acting at ζ in the k-th direction and at time t = 0 in
R3 and satisfying a traction-free boundary condition on S,

∫ ∗
denotes a Cauchy principal value singular

integral, and Dlb(·) = nl(·),b − nb(·),l defines a curl-like tangential differential operator.
To determine the behavior of the solution JũεK on Γε in the limit ε → 0, scaled coordinates are introduced

according to

ξ ∈ Γε ⇒ ξ̄ = (ξ − x)/ε ∈ Γ̄ and hence dSξ = ε2 dSξ̄. (8) asympint

One then seeks the COD in the asymptotic form

JũεK(ξ, t) = εdeJVK(ξ̄, t) + o(εde) (ξ ∈ Γε, ξ̄ ∈ Γ̄) (9) asympelas

where the order de > 0 is to be determined. On substituting (9) into (7), using scaled coordinates (8),
and invoking the following asymptotic properties of the elastodynamic Green’s tensor:
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∫ t

0

Uk(ζ, ξ, t − τ)f(ξ, τ) dτ =
1

ε
Uk(ζ̄, ξ̄) · f(ξ̄, t) + o(1)

∫ t

0

Σk(ζ, ξ, t − τ)g(ξ, τ) dτ =
1

ε2
Σk(ζ̄, ξ̄) · g(ξ̄, t) + o(1)

((ζ, ξ) ∈ Γε, (ζ̄, ξ̄) ∈ Γ̄, t > 0) (10) expand:U

where Uk(ζ̄, ξ̄) and Σk(ζ̄, ξ̄) are the elastostatic fundamental displacement and stress (Kelvin solution),
one obtains:

t±i [u](x, t) + o(1) = Cijkln
±

j (ζ̄)

{

εde−1

∫ ∗

¯̄Γ

Σk
ab(ζ̄, ξ̄)D̄lbJVKa(ξ̄, t) dSξ̄

+εde+1ρ

∫

¯̄Γ

Uk
a(ζ̄, ξ̄)JV̈Ka(ξ̄, t) dSξ̄

}

+ o
(

ε(de−1)
)

(ζ̄ ∈ Γ, t > 0) (11) asympintrepelas

where the tangential differential D̄lb is analogous to Dlb but defined in terms of scaled coordinates. Then,
(11) implies that de = 1. The COD therefore has the following asymptotic form

JũεK(ξ, t) = εJVK(ξ̄, t) + o(ε) (ξ ∈ Γε, ξ̄ ∈ Γ̄) (12) asympelas2

Considering the leading contribution of (11) as ε → 0, the field V is thus found to be determined in
terms of six canonical fields

V(ξ̄, t) = σkl[u](x, t)Vkl(ξ̄) (ξ̄ ∈ R
3\Γ̄, t > 0, (k, l) ∈ {1, 2, 3}) (13) Vcandef

where the V
kl solve exterior elastostatic problems related to the normalized crack Γ̄ embedded in an

infinite elastic medium and described by

∇ξ̄ · [C : ∇ξ̄V
kl](ξ̄) = 0 (ξ̄ ∈ R

3\Γ)
[

C : ∇ξ̄V
kl

]

(ξ̄) · n± = −
1

2
(ek ⊗ el + el ⊗ ek) · n (ξ̄ ∈ Γ̄±)

(14) Vcan

Closed form of the topological derivative. Substituting (12) and (13) into (6) one obtains
∫ T

0

∫

Γε

t[û](ξ, T − t) · JũεK(ξ, t) dSξ dt = ε3

∫ T

0

∫

¯̄Γ

n · σ[û](ξ̄, T − t) · JVK(ξ̄, t) dSξ̄ dt + o(ε3)

= ε3

∫ T

0

σij [û](x, T − t)σkl[u](x, t)

∫

¯̄Γ

njJV
klK(ξ̄) dSξ̄ dt + o(ε3) (15) expand

Thus, with reference to (4), one obtains η(ε) = ε3 and

T(x, T ) =

∫ T

0

σ[û](x, T − t) : A : σ[u](x, t) dt (16) TSpola

where the fourth-order polarization tensor A is defined by

Aijkl =

∫

¯̄Γ

njJV
kl
i K(ξ̄) dSξ̄ (17) pola

Through the canonical solutions V
kl defined by (14), A depends on the assumed crack shape Γ̄ and the

material properties synthesized in the elastic tensor C.
Equations (10) and (15), which play a key role in the small-crack asymptotic analysis, rely on the

implicit assumption that the probing excitation be sufficiently smooth as a function of time (which e.g.
places restrictions on its Fourier content). Specifically, (10) and (15) rely on f(ξ̄, t),g(ξ̄, t) being continuous
in time and on σ[û](ξ̄, T −t) being continuous over Γε, respectively. Such issues are addressed in [2], where
the order in ε of the leading perturbation by a small inclusion undergone by the fundamental solution of
the transient scalar wave equation is shown to depend on the high-frequency content of the point source.
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Canonical solution for circular planar crack. In the case of a circular planar crack (for which Γ̄ is the
unit disk with unit normal n), the solutions of the elastic canonical problems (14) are known [8] as

JVklK(ξ̄) = φkl(ξ̄) +
4(1 − ν)

πµ
σnn

√

1 − |ξ̄|2n (ξ̄ ∈ Γ) (18) Vcanexp

where σnn = 1
2n ·(ek⊗el+el⊗ek)·n = nknl, and φkl denotes the in-plane contribution to V

kl. Moreover,

using integral equation formulations, it can be proved that φkl is skew-symmetric over Γ̄, which implies
∫

¯̄Γ

njφ
kl
i (ξ̄) dSξ̄ = 0 (19)

Hence, (17) reduces to

A =
8(1 − ν)

3µ
(n⊗ n ⊗ n⊗ n) (20) TScirc

3. Numerical example

Consider the identification of a penny-shaped crack of radius 0.1 embedded in a unit cubic elastic body
(characterized by ν = 0.3) at initial rest, with a unit normal given by n = sin θe1+cos θe3 (with coordinate
directions defined as in Figs. 1, 2). A FE model with 28976 nodes had been used to produce synthetic
data of boundary measurements uobs over the whole domain boundary. The bottom face (x3 = 0) is
clamped, while a uniform and constant compressional loading is applied on the top face during time
interval 0 ≤ t ≤ T . The (synthetic) experiment duration T corresponds to the time for a longitudinal
wave to travel from the top to the bottom face of the cube. The topological derivative is computed using
(16) and (20). The cost function is of format (1) with Sobs = S and using the least-squares misfit function

ϕ[u, ξ, t] =
1

2
‖u− uobs(ξ, t)‖2

Numerical results for (the negative part of) T(x, T ) and the subset Ω(α)={x∈Ω
∣

∣ T(x, T )≤α minξ∈Ω T(ξ, T )}
of Ω over which T(x, T ) is deemed sufficient low (with α =0.8 here) are shown in Figures 1 (for a hori-
zontal true crack, i.e. θ =0) and 2 (for an inclined true crack, with θ =π/4). These results all indicate a
qualitatively correct identification of the crack, and demonstrate the usefulness of the topological deriva-
tive T(x, T ) of the misfit functional J as a crack indicator function. Note that evaluating the field T(x, T )

Figure 1. Identification of a horizontal circular crack (θ = 0): negative part of T(x, T ) (left) and subset Ω(0.8) (right). theta=0
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Figure 2. Identification of an inclined circular crack (θ = π/4): negative part of T(x, T ) (left) and subset Ω(0.8) (right). theta=45

requires the numerical computation of just two states, namely the free and adjoint solutions, which are
both defined on the same, crack-free, reference configuration. This procedure is therefore much faster
than a full inversion, which would necessarily require an iterative solution procedure.

4. Acoustic topological sensitivity

Framework. In the framework of time-domain acoustics, a “crack” is a rigid thin screen. Under pre-
scribed time-dependent normal velocity on S the scattered acoustic pressure field ũε arising in Ωε solves
the following set of equations

∆ũε(ξ, t) =
1

c2
¨̃uε(ξ, t) (ξ ∈ Ωε, t > 0)

∇ũ±
ε (ξ, t) · n±(ξ) = −∇u(ξ, t) · n±(ξ) (ξ ∈ Γ±

ε , t > 0)

∇ũε(ξ, t) · n(ξ) = 0 (ξ ∈ S, t > 0)

ũε(ξ, 0) = ˙̃uε(ξ, 0) = 0 (ξ ∈ Ω)

(21) eqac

where c is the acoustic wave velocity and u is the free field arising in Ω under the given excitation on S
in the absence of ”crack”. Defining the adjoint solution û by

∆û(ξ, t) =
1

c2
¨̂u(ξ, t) (ξ ∈ Ω, 0 6 t 6 T )

∇û(ξ, t) · n(ξ) =
∂ϕ

∂u
[u(ξ, T − t), ξ, T − t] (ξ ∈ Sobs, 0 6 t 6 T )

∇û(ξ, t) · n(ξ) = 0 (ξ ∈ S\Sobs, 0 6 t 6 T )

û(ξ, 0) = ˙̂u(ξ, 0) = 0 (ξ ∈ Ω)

(22) adjointac

and using scalar dynamical reciprocity, in the same fashion as in equations (4) and (6), the topological
derivative can be established from

T(x, T ) = lim
ε→0

1

η(ε)

∫ T

0

∫

Γε

∇û(ξ, T − t) · n(ξ)JũεK(ξ, t) dSξ dt (23) topoac

where JũεK = ũ+
ε − ũ−

ε denotes the jump of acoustic pressure through the ”crack”.
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Asymptotic analysis and closed form.
In the same fashion than in the elasticity case, a boundary integral formulation can be used to show

that the leading behavior of ũε in the limit ε → 0 is given by

JũεK(ξ, t) = εJW K(ξ̄, t) + o(ε) (ξ ∈ Γε, ξ̄ ∈ Γ̄) (24) asympac

where W is given by

W (ξ̄, t) = u,k(x, t)Wk(ξ̄) (ξ̄ ∈ R
3\Γ̄, t > 0, k ∈ {1, 2, 3}) (25) Wcandef

in terms of solutions Wk of the following canonical exterior Laplace problems in R3\Γ̄:

∆ξ̄W
k(ξ̄) = 0 (ξ̄ ∈ R

3\Γ̄)

∇ξ̄W
k(ξ̄) · n± = −ek · n (ξ̄ ∈ Γ̄±)

(26) Wcan

From (24) and (25) one has
∫ T

0

∫

Γε

∇û(ξ, T −t)·n(ξ)JũεK(ξ, t) dSξ dt = ε3

∫ T

0

û,i(x, T −t)u,j(x, t)

∫

¯̄Γ

niJW
jK(ξ̄, t) dSξ̄ dt+o(ε3) (27)

i.e. η(ε) = ε3 again, and the topological sensitivity can finally be expressed as

T(x, T ) =

∫ T

0

∇û(x, T − t) : B : ∇u(x, t) dt (28) TSpolaAC

with the polarization tensor B given by

Bij =

∫

¯̄Γ

niJW
jK(ξ̄, t) dSξ̄ (29) polaAC

In the case of a circular planar small screen, expression (29) takes the following explicit form, identical
to that previously established in [5] under time-harmonic conditions:

B =
8

3
(n ⊗ n) (30)

Conclusion
In this Note, the time-domain topological derivative method had been formulated to crack identification

in linear elasticity and acoustics. The corresponding topological derivatives are given in closed form in
terms of the forward and adjoint solutions. They can then be easily implemented using standard numerical
methods such as the FEM. Numerical examples show the usefulness of the topological derivative as a
crack indicator. Qualitative identification results obtained using this fast, non-iterative approach may for
example be used as good initial guesses in subsequent iterative identification algorithms.
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