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A typical proliferating human cell divides on average every 24 h. This division timing allows cells to synchronize with other physiological processes and with the environment. The circadian clock, which orchestrates daily rhythms, directly regulates the cell division cycle and is a major synchronizing factor. There is, however, no evidence that the circadian clock is able to entrain the cell cycle to a 24 h period. We show here, using a computational model for the cell cycle, that cells under circadian control that have an interdivision time close to multiples of 24 h proliferate faster. Moreover, growth of cell populations with a markedly dierent cell cycle time is impaired. We propose that this resonance eect in cell proliferation has a role to play in ecient normal cell proliferation and suppression of tumor growth.

Introduction

A fast proliferating human cell divides on average every 24 h. Given that many physiological processes such as activity, psychophysical performance, blood pressure, and liver metabolism show daily variation, it is not surprising that cells cycle in a circadian fashion. The circadian clock, which orchestrates these daily rhythms, consists of a set of genes showing self-sustained rhythmicity in expression with a period of approximately 24 h [START_REF] Schibler | Cellular oscillators: Rhythmic gene expression and metabolism[END_REF]. On a cell population level, the circadian clock regulates DNA synthesis and mitotic activity [START_REF] Bjarnason | Circadian variation in the expression of cell-cycle proteins in human oral epithelium[END_REF][START_REF] Potten | Cell kinetic studies in the murine ventral tongue epithelium: thymidine metabolism studies and circadian rhythm determination[END_REF][START_REF] Smaaland | DNA synthesis in human bone marrow is circadian stage dependent[END_REF], and on a genetic level, tumor suppression [START_REF] Fu | The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo[END_REF], liver regeneration [START_REF] Matsuo | Control mechanism of the circadian clock for timing of cell division in vivo[END_REF], and DNA damage control [START_REF] Gery | circadian gene Per1 plays an important role in cell growth and DNA damage control in human cancer cells[END_REF]. The kinetics of the cell cycle has been studied using cell population-based models [START_REF] Bernard | Analysis of cell kinetics using a cell division marker: Mathematical modeling of experimental data[END_REF][START_REF] Mackey | Unied hypothesis of the origin of aplastic anemia and periodic hematopoiesis[END_REF], and molecular-based models [START_REF] Csikasz-Nagy | Analysis of a Generic Model of Eukaryotic Cell-Cycle Regulation[END_REF]. In this paper, we look at how an external periodic force, the circadian clock, inuences the cell cycle kinetics. We show, using a computational model, that cells with an division time close to multiples of 24 h proliferate faster. Circadian variation of the cell cycle kinetics interacts with the cell division clock and the cell death program to create a resonance eect that promotes certain cell division times. This phenomenon contributes to the emergence of cells with specic cell cycle durations. The selectivity of cell cycle times could play a role in the suppression of tumor development by slowing down the growth of cells that have a perturbed cell cycle.

Model

We use a population-based model for the human cell cycle [START_REF] Bernard | Analysis of cell kinetics using a cell division marker: Mathematical modeling of experimental data[END_REF][START_REF] Burns | On the existence of a G phase in the cell cycle[END_REF][START_REF] Mackey | Unied hypothesis of the origin of aplastic anemia and periodic hematopoiesis[END_REF][START_REF] Smith | Do cells cycle?[END_REF] (Figure 1). To mimic the eect of the circadian clock, we allow the kinetic parameters to vary with a circadian period. We rst describe the model as a stochastic system, where cell fate|death, arrest or division|are random events. We then formulate the model as a deterministic system, valid when the cell population is large.

Cells go successively through four phases: G1, S, G2, and M, at the end of which cells divide and reenter G1 phase. Most of the variability in duration of the cell cycle comes from dierences in length of G1 phase. Durations of S phase (8{12 h), G2 (2{4 h), and M (1 h) are relatively constant under normal conditions. The G1 phase has a minimal duration, during which cells are in G1d phase, with an average duration of 9{11 h. The G1d, S, G2, and M phases have a xed total duration , between 12 and 25 h in human cells [START_REF] Alberts | Molecular Biology of the Cell[END_REF], and constitute the proliferative phase of the cell cycle. The variable part of the G1 phase (called G1s) has a duration exponentially distributed with parameter + . G1s phase cells go in proliferative phase with probability =( + ), or leave the cell cycle by programmed cell death or cell cycle arrest with probability =( + ). Cell progressing in the proliferative phase have constant probability 1 exp( ) to undergo programmed cell death, or apoptosis. The time a cells spend in proliferative phase is exponentially distributed with parameter when a < and otherwise. At time after entering G1s phase, surviving cells divide and go back in the G1s cell pool.

When the cell population is large, stochastic uctuations can be neglected and only the average population needs to be considered. This leads to the deterministic version of the model [START_REF] Bernard | Analysis of cell kinetics using a cell division marker: Mathematical modeling of experimental data[END_REF][START_REF] Mackey | Unied hypothesis of the origin of aplastic anemia and periodic hematopoiesis[END_REF]. The population in G1s phase at time t, N(t), is sucient to describe the dynamics of cell proliferation. Cells in G1s phase leave the cell cycle at a rate and enter the proliferative phase at a rate . Cells in proliferative phase die at a rate , and surviving cells divide a time after entering G1d phase. The G1s population is described by a delay dierential equation with periodic coecients, dN(t

) dt = [ + (t)]N(t) + 2(t)(t )N(t ): (1) 
The fraction of cells surviving the active phase is

(t) = exp Z t t (u)du ; 0 (t) 1: (2) 
Two cell cycle kinetic parameters, the G1s!G1d transition rate and the apoptosis rate , are subject to circadian uctuation. A variation in the G1s!G1d transition rate is motivated by the periodic expression of proliferation promoting genes such as c-Myc and cyclin D1 [START_REF] Fu | The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo[END_REF]. The variation of the apoptosis rate is relevant in the context of periodic, or chronomodulated cancer therapy [START_REF] Mormont | Cancer chronotherapy: Principles, applications, and perspectives[END_REF]. Detailed molecular models of the mammalian circadian clock [START_REF] Leloup | Toward a detailed computational model for the mammalian circadian clock[END_REF] and the mammalian cell cycle [START_REF] Csikasz-Nagy | Analysis of a Generic Model of Eukaryotic Cell-Cycle Regulation[END_REF] exist, but a link between them has not been made. We therefore consider the circadian clock input as a sine wave. The G1s!G1d transition rate has the form (t) = (1 + A sin(2t=T )); 0 A 1:

(3) For the apoptosis in the proliferative phase, we allow either the apoptosis rate or the survival fraction to vary sinusoidally, (A) Exponential growth of populations N(t). For A = 0 (dashed lines), cells are rapidly desynchronized and the population grows exponentially. For A = 1 (solid lines), cells are synchronized and the population oscillates with a 24 h period in addition to the exponential growth. The initial population N(t) = 1 for t 0. (B)

Average population growth rate as a function of the proliferative phase duration . For A = 0 (dashed line), the growth rate decreases monotonically with respect to . For A = 1 (solid line), the growth rate peaks approximately every 12 h. For C = 0:2 (dotted line), the resonance is also present, albeit in a weaker form. The growth rate is not aected by a periodic (B > 0, same as A = 0). In every case, the circadian variation of parameters does not aect the growth rate for = nT . Parameters are = 0:1 h , = 0:2 h , = 0:8. The coupling coecients A, B, and C are zero unless specied. (C) Growth rate for = 0 and A = 1. or (t) = (1 + C sin(2t=T )); 0 C 1= 1:

(5)

The circadian coupling coecients, A, B, and C, control the strength of the circadian clock on the cell cycle parameters. The parameter C is limited by the constraint that the survival fraction (t) must be between 0 and 1. The period T is xed to 24 h. We simulated the stochastic model with a Gillespie algorithm adapted for delay equations and the deterministic model with the delay equation solver dde23 (Matlab).

Results

Because equation 1 is linear, one would expect an exponential growth for the G1s population, N = K(t) exp( t). With constant coecients, N(t) indeed grows exponentially, with K(t) rapidly converging to a constant (Figure 2 (A), A = 0, dashed lines). The growth rate is slightly larger for = 15 h than for = 22 h (thin and thick dashed lines, respectively). For periodic coecients, the average growth is also exponential, but the population oscillates periodically, with K(t) converging to a T -periodic function. In contrast to the constant case, the growth rate increases as varies from 15 to 22 h when the G1s!G1d transition rate is periodic (Figure 2 (A), A = 1, solid lines). For = 15 (solid thin line), cell deaths outnumber cell births and the population decays. When is increased to 22 h (solid thick line), the population grows faster than any other, despite the longer cell cycle time. This suggests that a rhythmic interacts with the successive waves of cell divisions. The proliferation phase duration is the key parameter that determines the population growth under circadian control.

The population dynamics with respect to behave dierently depending on the values taken by the circadian coupling strengths A, B, and C (Figure 2 (B)). For A = 0 (dashed line), the growth rate decreases monotonically with respect to . For A = 1 (solid line), the growth rate peaks every 12 h approximately, with main peaks at 22.1 and 46.2 h, and secondary peaks at 33.6 and 57.6 h. The maximal growth rate, at = 22 h, is twice as large as for A = 0. When the fraction of cells surviving the proliferative phase is periodic, the growth rate peaks every 24 h, without showing secondary peaks (C = 0:2, dotted line). The situation is dierent for periodic apoptosis. A periodic parameter (B > 0) does not aect the growth rate [START_REF] Clairambault | A mathematical model of the cell cycle and its circadian control[END_REF]. That is, the growth rate has the same values as in the constant case. This is because a periodic rate pushes up the average survival fraction, h per i const , in a -dependent manner, preventing direct analogy between the eects of B > 0 and C > 0. When = nT , the growth rate is independent of A, B, and C (see the intersections of the three lines at = 24 and 48 h in Figure 2 (B)). If is negligible, the resonance eect becomes weaker (Figure 2 (C)). All these results show that cell populations under periodic conditions grow faster for specic proliferation phase durations. The resonance eect relies on the cell death or arrest rate .

For arbitrary ratio between and T , the growth rate is best determined by numerical methods. Some analytical treatment, however, is possible for particular cases. The population growth rate of N is the largest (real) root determined by the eigenvalue problem

dK(t) dt = [ + + (t)]K(t) + 2(t)(t )e K(t ); (6) 
where K(t) must be a T -periodic solution. When all the coecients are constant, the eigenproblem reduces to the equation + + = 2e . For periodic coecients, the eigenproblem can be approached by spectral methods [START_REF] Just | On the eigenvalue spectrum for time-delayed Floquet problems[END_REF] or by trying a reduction to a system of ordinary dierential equations. If the proliferative phase duration is an integer multiple of the period T , the latter method leads to the case of constant coecients.

The sensitivity of the growth rate on for periodic coecients is reminiscent of resonance eects in physical systems. In a periodically forced damped oscillator, the amplitude is maximal when the intrinsic and the forcing frequencies coincide. For constant coecients, the fraction of G1s cells, X = N=(N + P ) (where P represents the proliferative population) is a nonlinear damped oscillator. Its intrinsic frequency can be related to the average interdivision time, with the variance in G1s duration slowly desynchronizing the cells and damping out X. If the interdivision time were such that cells minimized their residence times in G1s, a smaller fraction would die or arrest due to the term . Consequently, a larger fraction would reenter the proliferative phase. This is enough to compensate the longer needed to achieve this eect. Together, the probability of a G1s cell to enter the proliferative phase eventually, the rate of entry, and the length of the proliferative phase determine the growth rate. The stochastic formulation of the cell cycle model is best suited to determine the G1 residence times and the probability to enter the proliferative phase.

With the stochastic version of the cell cycle model, cells can be tracked individually. Time courses of the model for = 15 and 22 h have a dynamics similar to the deterministic simulations (Figure 3 (A), (B)). The average population growth rate shows a resonance eect as in the deterministic version of the model (Figure 3 (C)). To understand this, we looked at the average time cells spent in G1 phase before entering S phase (Figure 3 (D)). The mean G1s residence time is 5.0 h for = 15 h and 2.4 h for = 22 h. Shorter residence time for = 22 h means that fewer cells go to apoptosis. The probability of G1s cells to transit to proliferative phase is 0.54 for = 15 h and 0.74 for = 22 h. The dierence is due to the presence of a \shoulder" in the residence time distribution for = 15 h. G1s cell death or arrest () plays an important role and is the major factor shaping of the growth rate resonance. For vanishing , the resonance eect is still present but becomes much weaker (Figure 2 (C)).

Discussion

Molecular evidence points to an important role of the circadian rhythm for ecient cell proliferation and reduction of tumor growth. This can be demonstrated using knock out mice without essential clock genes such as Cry or Per2. Free-running rhythmicity is abolished in Cry -decient mice. After partial hepatectomy, liver regeneration in these mice is slower compared to wild type mice [START_REF] Matsuo | Control mechanism of the circadian clock for timing of cell division in vivo[END_REF]. Cells showed a normal entry to S phase but a marked reduction in mitotic fraction compared to wild type. This implies that a functional circadian clock is necessary for ecient cell proliferation.

Following -radiation, mPer2 null mice developed spontaneous salivary gland hyperplasia and teratomas faster than the wild type mice [START_REF] Fu | The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo[END_REF]. Moreover, epidemiological studies support the idea that circadian rhythms contribute to slowing down tumor growth. Patients with colorectal cancers exhibiting normal daily rhythms had longer survival times than those with disrupted circadian rhythms [START_REF] Mormont | Cancer chronotherapy: Principles, applications, and perspectives[END_REF]. Nevertheless, a direct link between circadian rhythm and development of cancer has not been established. Arrhythmic mice do not systematically display increased sensitivity to cancer, as shown in a Cry1 = Cry2 = mouse model [START_REF] Gauger | Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer[END_REF]. Individual components of the circadian clock might have roles to play that are independent of the circadian rhythm. We suggest here that the presence of a circadian rhythm in cell cycle helps cells that have a normal cell cycle length, in addition to possible eects of individual clock genes.

Circadian regulation of the cell cycle orchestrates normal tissue regeneration and protects cells from oncogenic mutations. We propose that this is done by slowing down the cell cycle. Without circadian regulation, oncogenic mutations would be doubly damaging, because of the proliferative advantage and the possibly reduced anti-tumor mechanisms a short cell cycle length would allow. By shifting the proliferative advantage to slowly dividing cells, the circadian clock hence acts as a tumor suppressor. Slower cells have more time to detect and to repair genetic damages; mutations shortening the cell cycle are thus rendered unfavorable.

Our simulations show that only cells with a proliferative phase slightly shorter than 24 h (20 to 24 h) proliferate faster in presence of a circadian clock. This also holds for cells with between 44 and 48 h, to a lesser degree. The stochastic simulations allow the calculation of the average G1 residence time. For between 20 and 24 h, the G1s phase average residence time ranges from 3.3 to 2.3 h, for a total average cell cycle time between 23.3 and 26.3 h.

In two transplantable mice tumor models, Glasgow osteosarcoma and Pancreatic adenocarcinoma, disruption of circadian rhythmicity accelerated malignant growth [START_REF] Filipski | Disruption of circadian coordination and malignant growth[END_REF]. Ablating the suprachiasmatic nuclei, center of the circadian pacemaker, or subjecting the mice to chronic jet lag resulted in the suppression of sleep-wake rhythms and altered body temperature and lymphocyte count rhythms. Our model provides a simple explanation for the accelerated tumor growth: if tumor cells have a deregulated cycle length (i.e. 20 h), the mere loss of circadian rhythmicity is sucient to increase the tumor growth rate, every other quantities being equal (see Figure 2 (B), for = 12 h, A = 1 and A = 0, for instance).

Other computational models have shown similar resonance eects. Clairambault et al. [START_REF] Clairambault | Circadian rhythm and tumour growth[END_REF] recently studied tumor growth in an age-structured model with periodic parameters, and also found that the growth rate is signicantly inuenced by the ratio between the G1 and the proliferative phase durations. Battogtokh and Tyson [START_REF] Battogtokh | Periodic forcing of a mathematical model of the eukaryotic cell cycle[END_REF] used a simplied molecular model of the eukaryotic cell cycle to show that periodic change of parameters is able to synchronize a population initially randomly distributed over the cell cycle. Using their formalism and adding random cell death, we showed a similar resonance eect for dierent lengths of the cell cycle (Figure 4 in Appendix).

The molecular role of the circadian clock in cell cycle regulation has been claried in recent studies [START_REF] Fu | The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo[END_REF][START_REF] Gauger | Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer[END_REF][START_REF] Gery | circadian gene Per1 plays an important role in cell growth and DNA damage control in human cancer cells[END_REF][START_REF] Matsuo | Control mechanism of the circadian clock for timing of cell division in vivo[END_REF]. Its impact on normal and tumor cell growth, however, can only be assessed when other regulatory mechanisms are taken into account. One of those, programmed cell death, is dicult to quantify because cells undergoing apoptosis are rapidly cleared from the organism, thus the apoptosis rate is generally underestimated [START_REF] Danial | Cell death: Critical control points[END_REF][START_REF] Jacobson | Programmed cell death in animal development[END_REF]. In addition to its role in tissue development and maintenance, it might act together with the circadian clock to coordinate cell proliferation. Programmed cell death, as it is, might nally promote normal cell growth and helps this way to suppress tumor development. A cell division occurs when X crosses downwards the threshold X thresh = 0:05, and at this point the cell mass m is divided equally between the two daughter cells (see [START_REF] Battogtokh | Periodic forcing of a mathematical model of the eukaryotic cell cycle[END_REF] for more details). We introduced random cell death or cell cycle arrest in the G1 phase by calculating the net increase b in proliferative cell number after each cell division (0 b 2). When cells are in G1 phase, cells exit the cell cycle at a rate d, so that the survival fraction after division is b = 2 exp( d t G ), where t G is the time cells spent in G1 (dened as cells having a mass less than 1.2). The external period, T = 88:88 min, was set to be equal to the unperturbed cell cycle length, and we varied the cell cycle length from 40 to 200 min. To change the cell cycle length, the time was rescaled between t ! T =200t and T =40t. The growth rates with or without external forcing were similar except for cell cycle lengths T C = k=2T , k = 1; :::; 4 (Figure 4), where the growth rate under periodic forcing showed a resonance similar to what is seen in the population-based model.
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 1 Figure 1: Model for the human cell cycle.
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 2 Figure 2: Resonance eect for periodic G1sG1d transition rate (t) and proliferative phase apoptosis (t).(A) Exponential growth of populations N(t). For A = 0 (dashed lines), cells are rapidly desynchronized and the population grows exponentially. For A = 1 (solid lines), cells are synchronized and the population oscillates

Figure 3 :

 3 Figure 3: Stochastic simulations for periodic G1sG1d transition rate . (A{B) Ten stochastic time series for = 15 and 22 h are shown with their respective deterministic simulations (thick black line). Parameters are = 0:1h , = 0:2h , = 0:01h , initial number of G1s cells for each run n = 100, duration of G1d phase 6 h, A = 1, B = C = 0. (C) Resonance eect in the stochastic model. The mean growth rate was estimated from 20 stochastic runs for each , for A = 0 (thin line) or A = 1 (thick line), the error bars show the standard deviation for dierent runs. (D) Average residence time in the stochastic part of G1 (G1s) of cells entering the S-phase for A = 1.

Figure 4 :

 4 Figure 4: Resonance eect in a molecular-based cell cycle model. Average growth rate of the cell population.Death, or cell cycle arrest, was introduced at the beginning of the cell cycle, corresponding to the G1 phase (d = 0:04). In absence of periodic forcing, the growth rate is inversely proportional to the cell cycle length (dashed line). In presence of periodic forcing, the growth rate shows signicant resonance eect for cell cycle lengths T + = k=2T , k = 1; :::; 4 (solid line). The default cell cycle parameters are A = 0:52, B = 0:52, = 0:005776, k = 0:002, k = 0:0795, k ! = 0:01, k " = 2, k # = 0:05, k $ = 0:04, k % = 1:5, k & = 0:19, k ' = 0:64, k = 0:0025, k = 0:07, k = 0:08, P = 0:15, J = 0:05, f = 2=T , and T = 88:88.
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