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Abstract

This paper describes the structure of a library for certifying dis-
tributed algorithms, contributed by Pierre Castéran and Vincent Filou.
We formalize in the Coq proof assistant| the behaviour of a subclass of
local computation systems, namely the LCO graph relabeling systems.
We show how this formalization allows not only to build certified LCO
systems, but also study the limitations of their control structure.
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1 Introduction

Local computations on graphs, and particularly graph relabeling systems,
have been introduced in [5] as a suitable tool for encoding distributed al-
gorithms, for proving their correctness and for understanding their power.
In this model, a network is represented by a graph whose vertices denote
processors, and edges denote communication links. The local state of a pro-
cessor (resp. link) is encoded by the label attached to the corresponding
vertex (resp. edge). A relabeling rule is a rewriting rule which has the same
underlying fixed graph for its left-hand side and its right-hand side, but
with an update of the labels. According to its own state and to the states
of its neighbours, each vertex may decide to realize an elementary computa-
tion step. After this step, the states of this vertex, of its neighbours and of
the corresponding edges may change according to some specific computation
rules.

In the Visidia [21] research project, we are interested in formal specifi-
cation and formal proof of local computation systems. This activity consists
in giving a formal semantics to these systems, develop tools for the certi-
fication of such algorithms : proof of invariants, proof of termination, and
also compare the computational power of various subclasses of local compu-
tation systems or other kinds of distributed computation paradigms. The
Coq proof assistant [I8, [3] has been chosen for this task.

In this paper, we focus on a particular class of computation rules: LCO
rules. An LCO-rule performs a computation on two adjacent nodes of the
network. It corresponds to a rendez-vous [2] (15, [16] between two nodes.
This class of computation corresponds to the client-server model employed
in most network applications.



This paper describes a first modelization in Coq of LCO-relabeling sys-
tems. Section [3] presents the fundamental notions on graph Relabeling sys-
tems, illustrated by two simple examples : the distributed computation of
a connected graph’s spanning tree, then an election algorithm working on
any tree. Section [d]shows how Cog’s type system has been used to represent
LCO0-relabeling systems, and a brief overview of proof techniques. Section
presents some properties shared by all LCO systems, which allow to prove
some specifications are not realizable by such systems without some initial
knowledge (section @ Section [7| shows briefly the present structure of our
Coq libraries. Finally, the directions or future work are sketched in section[§

2 Related Work

The certification of distributed algorithms using a theorem prover has been
the subject of a quantity of studies. Closest to our study, the work of Ching-
Tsung Chou [7] aims at mechanicaly proving properties of distributed algo-
rithms using Higher-Order Logic. In this work, the author uses a notion
of simulation to carry out the proof of correctness of an algorithm propa-
gating information through a network. Qiao Heiyan has been working on
a methodology for proving distributed algorithms in type theory, using the
Agda theorem prover [14].

The UNITY language has also been used [19] to prove the security proper-
ties of distributed algorithm in Cogq. Bezem, Bol and Groote [4] used the
Coq proof assistant for proving equalities between terms of a process alge-
bra. Leu also cite the work of Gascard and Pierre [10] on formal proofs of
parallel programs on symmetric interaction networks.

In [6], Cansell and Méry show how to get local computation systems
from their specification through a sequence of refinements. They use for this
purpose the Event-B method and the Rodin tool [I]. The specification is
encoded by an abstract machine which computes in one big step a final state
which satisfies the specification, the distributed algorithm being obtained as
the last step of the refinement chain. The class of algorithms addressed in
their work is exactly the same as ours. Examples of developed algorithms
using this approach can be found in [20]. In a few words, one could say that
their approach is a kind of top-down development methodology, whilst ours
tries to get properties from the language used to program local computation
systems.



3 Graph Relabeling Systems for Encoding Distributed
Algorithms

In this section, we give a few definitions of local computations, and partic-
ularly of graph relabeling systems. As usual, a network is represented by a
graph whose vertices stand for processors and edges for (bidirectional) links
between processors. At every time, each vertex and each edge is in some
particular state and this state will be encoded by a vertex or an edge label.
According to its own state and to the states of its neighbours, each vertex
may decide to realize an elementary computation step. After this step, the
states of this vertex, of its neighbours and of the corresponding edges may
have changed according to some specific computation rules. Let us recall
that graph relabeling systems satisfy the following requirements:

(C1) they do not change the underlying graph but only the labeling of its
components (edges and/or vertices), the final labeling being the result,

(C2) they are local, that is, each relabeling changes only a connected sub-
graph of a fixed size in the underlying graph,

(C3) they are locally generated, that is, the applicability condition of the
relabeling only depends on the local context of the relabeled subgraph.

For such systems, the distributed aspect comes from the fact that several
relabeling steps can be performed simultaneously on “far enough” subgraphs,
giving the same result as a sequential realization of them, in any order. A
large family of classical distributed algorithms encoded by graph relabeling
systems is given in [2]. This approach has proved itself very well suited to
obtain theoretical results on the impact of the geography of a network on
algorithms[17, 12} [13].

In order to make the definitions easy to read, we give in the following an
example of a graph relabeling system for computing a spanning tree, and an
example of a graph relabeling system to elect a node in a tree. Then, the
formal definitions of local computations will be presented.

3.1 Distributed computation of a spanning tree

Let us first illustrate graph relabeling systems by considering a simple dis-
tributed algorithm which computes a spanning tree of a network. Assume
that a unique given processor is in an “active” state (encoded by the label
A), all other processors being in some “neutral” state (label N) and that



all links are in some “passive” state, represented by the boolean f. The tree
initially contains the unique active vertex. At any step of the computation,
an active vertex may activate one of its neutral neighbours and mark the
corresponding link which gets the label t. This computation stops as soon as
all the processors have been activated. The spanning tree is then obtained
by considering all the links with label t.

An elementary step in this computation may be depicted as a relabeling
step by means of the relabeling rule R, given in Figure[l] which describes the
corresponding label modifications (remember that labels describe processor
status):

A N A A
R: e e — e——e

Figure 1: The relabeling rule R

Whenever an A-labeled node is linked by a f-labeled edge to an N-labeled
node, then the corresponding subgraph may rewrite itself according to the
rule.

A sample computation using this rule is given in Figure 2] Relabeling
steps may occur concurrently on disjoint parts on the graph. When the
graph is irreducible, i.e no rule can be applied, a spanning tree, consisting
of t-edges labeled edges, is computed.

Figure 2: Distributed computation of a Spanning Tree



3.2 Vertex Election in a Tree

The aim of an election in a graph is to choose exactly one vertex among
the set of all its vertices. This vertex becomes elected and is called the
leader of the graph. In our framework, this problem can be formalized in
the following way. We say that a relabeling system (as will defined formally
in the following section) solves the election problem for a class C of graphs
if it is noetherian and if the following conditions hold :

e Any vertex of G may know if it is already elected or beaten, or still
ignores this result

e Once a vertex is beaten or elected, its situation cannot change any-
more,

e There is at most one elected vertex in the graph

e When no rule can be applied, all vertices are either beaten or elected

Let us present a graph relabeling system allowing to elect a vertex in a
tree (see Figure [3]).

The alphabet for labeling the vertices is the set of natural numbers N aug-
mented with a new element called “N”. Intuitively we interpret N as “beaten”,
0 as “elected”, and any strictly positive integer d as “still ignoring the result”.
We do not label the graph’s edges.

Initially, each vertex v is labeled with its degree in the graph. The set
of rules we consider is the union of all replacements depicted in figure [3| for
any d € N.

The intuitive behaviour of our election system can be described as fol-
lows : let us associate to any state s the subgraph G4 determined by the
N-labeled vertices of G. In fact any computation step reduces to erasing
some “pendant” edge (i.e. having at least an extremity of degree 1 w.r.t.
Gs) from Gg.

We prove two invariants of the system :

e in any reachable state s, any N-labeled vertex measures the degree of
v with respect to G,

e in any reachable state s, G; is a tree.

From the invariant above, we infer that in a reachable state where no
rule can be more applied (an irreducible state), there exists a unique vertex
labeled 0 (hence elected) whilst other vertices of G are N-labeled (hence
beaten).



d+1 1 d N
R: ¢ 0 ¢ )

Figure 3: Rules for the election of a node in a tree

3.3 Formal Definitions of Graph Relabeling Systems

We consider only connected graphs whose vertices [resp. edges] are labeled

with labels from a possibly infinite alphabet L, [resp. L.|. We call state (or

labeling) any pair s of two functions Ag: V(G) — L, and ps: E(G) — Le.
Now we introduce the formal definition of a graph relabeling rule.

Definition A (graph) relabeling rule is a triple r = (G, sy, s..) such that
(Gr, sy) and (G, s..) are two labeled graphs. The labeled graph (G, s,) is
the left-hand side and the labeled graph (G, s.) is the right-hand side of r.

If the graph G, is isomorphic to the graph k2 (which consists of two
vertices connected by an edge), we say that the relabeling rule is of type
LCo.

The intuitive notion of computation step will then correspond to the
notion of relabeling step:

Definition A r-relabeling step is a 5-tuple (G, s, 7, ¢, s') where r is a relabel-
ing rule and ¢ is both an occurrence of (G, s,) in (G, s) and an occurrence
of (Gy,s)) in (G, ).

Intuitively speaking, the labeling s’ of G is obtained from s by modifying
all the labels of the elements of (G, s,) according to the labeling s/.. Such
a relabeling step will be denoted by (G, s)—.,(G, s').

This notation can be generalized to (G, s)—x (G, s') (making abstraction
of the occurrence ¢ and the rule r € R), and to (G, s)—5%(G,s") (reflexive
and transitive closure of —x). This last notation expresses the notion of
finite computation according to the considered set R of rules.

The computation stops when the graph is labeled in such a way that no
relabeling rule can be applied:

Definition A labeled graph (G, s) is said to be R—irreducible if there exists
no occurrence of (Gg, sgr) in (G, s) for every relabeling rule R in P.

Definition Finally, a graph relabeling system is a tuple S gathering the
following information :



Two alphabets for labeling vertices and edges (respectively L, and
Le),

A set R of relabeling rules,

A class C of graphs, the system is assumed to work on,

A function Z which associates to each graph G in C a set Zg of initial
states

We will use the abbreviation (G,s)—%(G,s) for (G, s)—%(G,s"). We
will say that s is reachable from s. If i € ZIg and (G,i)—% (G, '), we will
simply say that s is reachable.

In this paper, we consider only rules of type LCO; in fact there are
other types (see [2,[16]) considered in our future developments, mainly LC1
and LC2. Both of them are defined when G, is isomorphic to a star graph
(called also a ball of radius one). Roughly speaking, in an LC1 computation
step, the label attached to the center of the star is modified according to
some rules depending on the labels of the star, labels of the leaves are not
modified. In an LC2 computation step, labels attached to the center and
to the leaves of the star may be modified according to some rules depending
on the labels of the star.

4 Types for Representing Graph Relabeling Sys-
tems

We show how the rich type system of Cog [18,[3] allow us to represent graph
relabeling systems and their specification, and some proofs about the LCO
class.

4.1 Labeled Graphs

Non-oriented graphs are encoded with the help of the FSets library, con-
tributed by Pierre Letouzey for Cog’s standard library. Let us call Pregraph
any pair G of a finite set of vertices V(G) and a finite sets of edges E(G).
The FSets library is compatible with Coq’s setoid feature, thus we consider
as equivalent any pair of edges (v,v") and (v/,v).

Some predicates defined on PreGraph define the set of graphs (pregraphs
which satisfy the proposition) (E(G) C V(G) x V(G)), of simple graphs
(self-loop free), acyclic, connected graphs, etc.



We do not provide a type for representing directly labeled graphs. For
simplicity’s sake, we define some types for labelings as follows :

e We consider two non empty types L, (for vertices’ labels) and L, (for
edges’ labels). In the spanning-tree example of section we use an
inductive type AN with two constructors A and N for vertex-labeling
and the pre-built type bool for edge-labeling. Notice that any type
with decidable equality is well suited for labels.

o A state s is any pair of a vertex-labeling A; and an edge-labeling p;,
where \g is finite map from the type of vertices to L, (similarly for
ps). In general we consider only states where the functions s and ps
are total (we say that “s covers G”.)

e Finally, a labeled graph is any pair (G, s) where s is a state for G.

In our Cog development, we denote by “state L, L.” the type of states
using the alphabets L, and L.

4.2 Graph Relabeling Relations

A Graph relabeling relation for a graph G is any binary relation — between
states,such that if s covers G and s — s’, then s’ covers G. Notice that this
condition corresponds to the C1 requirement of section |3} Graph relabeling
relations inhabit the dependent type “GR L, L. G” E|for graph relabelings
operating on GG. Notice that G is in last position, so we cannot define types
for labeling knowing already the graph G. The task of building a distributed
algorithm using graph relabeling amounts to choose two types is building
some term of type L, and L., then build a term S inhabiting the dependent
product “V G, GR L, L. G”.

Let us consider for instance an algorithm S of spanning-tree computa-
tion. Its correctness can be expressed as follows :

Let G be any simple, connected graph; for any initial state i,

e any rewriting sequence starting from % terminates, and

e any irreducible state s reachable from ¢ determines a span-
ning tree of G

!defined in the module GRS/GraphRelabeling

10



The graph G is the parameter of S. The predicate “ to be a simple, connected
graph” characterizes the class of graphs it is supposed to work on. Notice
that this “specification” is still informal ; we must make precise the notion
of initial state, and the verb “determines”. For the latter, the meaning is
simply “get a function r from labeled graphs to graphs, such that if s is any
irreducible, reachable state w.r.t. S(G), then r(G, s) is a spanning tree of
G

4.3 LCO Systems

We present a formal representation of a LCO System; throughout this sec-
tion, the non empty types L, and L. are fixed; we will use the notation X
as an abbreviation for the type “state L, L.”.

4.3.1 LCO Rules

As said in section [3.3], LCO relabeling rules can be represented as a relabeling
relation on the graph k2. Such a relation can be represented as a binary
relation R on the product type L, X L¢ X Ly,.

To be more precise, we encode any LCO set of rules as a 6-ary predicate
whose arguments as are follows: By convention, we name the vertices of k2
as ¢ (for “center”) and v (for “voisin”, french translation of “neighbour”).

) old label of the center ¢

) old label of the neighbour v
ps(c,v)  old label of the edge (¢, v)

) new label for the center ¢

) new label for the neighbour v

)

new label for the edge (¢, v)

In other terms, we describe a kind of before/after relation describing the
state change on k2.

Let us take for instance the spanning tree rule : It is represented by an
inductive predicate :

Inductive R : AN — AN — bool — AN — AN — bool — Prop :=
R_intro : R A N false A A true.

11



4.3.2 Embedding into a Graph Relabeling Relation

Let R be a set of LCO-rules over the types L, and L.. It is easy to embed
R into a relabeling relation over any graph G :

Let s and s’ be two states covering G; (G, s)—r (G, §') if there exists two
adjacent vertices ¢ and v of G, such that

e the proposition R(\s(c), As(v), ps(c,v), Ag(¢), Ag/(v), ps(c,v)) holds, and
e s and s’ coincide everywhere except on the vertices c¢,v and the edge
(c,v)
4.3.3 Graph Classes and Initial States

A LCO relabeling system is supposed to perform some computations on
some class C of graphs, starting from some initial state. In section we
presented a graph class as any predicate P defined on graphs.

In additon to its sets of rules, a graph relabeling system must determine
a set of possible initial states for any graph G which belongs to C.
4.4 A Type for LCO Systems

Putting all this information together, we can define a type LCO for LCO-
systems as a dependent structure containing the following fields :

e Two non empty types L, and L.,
e A graph class C : PreGraph—Prop,
e A family of sets of initial states Z : PreGraph— (¥ —Prop)

e A LCO-set of rules R : L,—L,—L,—L,— Le— L,—Prop.

4.5 Proof Techniques for LCO Systems

Let S be a LCO-system described as above. There are a few kinds of state-
ment one may have to prove about S.

4.5.1 Invariants

An invariant of S is any relation I on states such that (G,i)—% (G, s) implies
Iis for any graph G of the considered class C, any initial state ¢ € Zg.

Let us consider for instance the invariants of the spanning tree algorithm:
For writing these invariants, we need an auxiliary definition : Let G be a

12



graph, and s be some state, then G 4(s) is the subgraph of G containing all
the vertices of G such that As(v) = A and the edges of G such that ps(e) = t.
Thus the invariants we prove are the following ones :

edge_inv: For each edge of e of G, if at least one of e’s extremities is labeled
by N in the state s, then ps(e) = £,

tree_inv: G4(s) is a tree,
ExA: There exists at least some vertex v of G such that A\s(v) = A.

Proof techniques for invariants are quite usual : we prove that they are
satisfied by any initial state, and preserved by the relation —%. The proof
of this preservation is helped by specialized inversion tactics, which infer
from some hypothesis (G, s) —x (G, s') the equalities of section [4.3.2]

4.5.2 Termination

The usual proof technique for termination can be very simplified when deal-
ing with LCO-systems. If we associate to any label [ of L, and L. some value
p(l) in a well-founded domain (D, <) , and if + is an associative, commuta-
tive and monotone operation on D, then it is enough to check the inequality
p(@") + p(y") + p(2') < pw(x) + p(y) + p(z), whenever Rz y z 2’ y' 2’ holds.
For instance, if we associate 1 to the label N, and 0 to any other label, the
proof of termination of the spanning-tree computation is simply a proof of
0<1.

5 Properties Shared by all LCO Systems

It is important to consider generic properties of the LCO class of local
computation systems. This is made possible by Cog’s type system, which
allows to quantify on the types for labeling, on the function which builds
initial states, and the sets of LCO-rules.

First, LCO-systems are consistent w.r.t. the theoretical model by Go-
dard and Métivier [I1] : If two labeled graphs (G,s) and (G',s’) are iso-
morphic, then any LCO-system S has the same behaviour on both labeled
graphs.

Other properties implement a common scheme : from some computa-
tion on a labeled graph (G, s), build a computation for another appropriate
labeled graph (G1, s1) (with respect to the same relabeling system).

13



5.1 Extending a Computation to a Bigger Graph

The first case (lemma LCO:extends_computation), deals with the case
where (G, s) is a labeled subgraph of (G, s1) (intuitively (G, s1) is obtained
from (G, s) by adding some labeled vertices and edges). Then for any com-
putation (G, s) —r (G, s) there exists a computation (Gi,s1) —r (G1,s))
where (G,s’) is a labeled subgraph of (G1,s}). In other words, the LCO-
system S can “ignore” the extra edges and vertices and perform the same
computations in G and Gj.

This property is used in Section for proving that no LCO-system can
be used to compute the degree of the underlying graph’s vertices.

Notice that this property is clearly false for LC1 and LC2-systems,
since their rules’ guards explore the neighbourhood of any vertex. It is then
possible to consider some LC1 or LC2-guard which becomes false if some
new neighbour is added to some vertex.

5.2 Composing Computations

Let (G, s) be a labeled graph. Let us consider two disjoint labeled-subgraphs
of G : (G, s1) and (Ga, s2), and two computations (G1,s1) —r (G1, s}) and
(G2, 82) —Rr (Go,s5). Then we can build a computation (G, s) —r (G,s)
where (G1,s]) and (Ga, s5) are labeled subgraphs of (G, s').

This property is used in the proof of [6.2]

When we extend this property to LC1 or LC2 systems, we will have
to consider some stronger constraints than “G; and Go are disjoint” : if we
allow some edge (v1,v2) to link G; and Go, any state change in vy can affect
rule guards in Go. Thus G and G9 will have to be “distant enough”.

6 Computational Power of LCO Systems

LCO algorithms form only a subfamily of local computation systems. It is
thus interesting to consider the limitations of this class of algorithms. In this
section, we present two examples of specifications, which cannot be realized
by any LCO-system under some “reasonable” conditions (a term that will
be explicited below).

6.1 Computing the Vertices’ Degree

Let us consider for instance the following statement :

14



No LCO algorithm can compute the degree of the underlying
graph’s vertices

We have to make this statement more precise in order to prove it :

There exists no types L, and L., no function f : L,—option N,
no set of LCO-rules, no “reasonable” family of set of initial states
Z, such that for any graph G, :

o for any reachable state s, any vertex v of G, if f(As(v)) =
Some d, then the degree of v in G is d,

e for any initial state i, there exists some state s reachable
from ¢, such that f(As(v)) = Some d, for some d.

It remains to make more precise which sets of initial states we have
to consider. We say that a family Z of type “PreGraph— (X—Prop)” is
extendable if for any pair of graphs G and G such that G is a subgraph of
(G1, then any state ¢ in Z¢ can be extended in a state i1 € Z¢v.

Intuitively, any initial state for a graph G can be built incrementally.
This is a the case of randomly built initial states, or initial states which
attribute a constant label to each vertex [resp. edge].

G G,

Figure 4: The degree of 0 in G is not equal to the degree of 0 in G

The proof is done by contradiction. Suppose that some LCO-system
allows to compute the degree of any vertex of any graph, with an extendable
family I of sets of initial states. Let us consider the graphs G and G; as
in figure [ Then there exists some computation starting from some initial
state i € Zg, reaching some state s, where f(As(0) = Some(deg(0)). Then
there exists some initial state 71 for G1 which extends i, and, by the property

15



some state s; which extends s and is reachable from ¢;. The following
equalities show that our hypotheses lead to a contradiction.

Some 2 = Some(degg,(0))
As1(0) = As(0)
= Some(degg,(0)) = Some 1

6.1.1 Important Remark

Notice that the statement we proved deals with a local knowledge of the
each vertex’s degree at any time of the computation. Let us consider the
following change of our specification :

e for any irreducible reachable state s, any vertex v of G, if
f(As(v)) = Some d, then the degree of v in G is d,

e for any initial state ¢, there exists some state s reachable
from 14, such that f(As(v)) = Some d, for some d.

We can easily build a LCO-algorithm for computing the degree of each
vertex.

e Vertices are labeled by a natural number (initially 0), and edges by
booleans (initially f),

e The unique rule applies to any edge labeled by f, increments its ex-
tremities, and relabels this edge with t.

Notice that this example doesn’t contradict at all the result shown in sec-
tion [6.1} There is a big difference between a local knowledge of a vertex’s
degree, and using a global knowledge about irreducibility of all the graph’s
state.

6.2 Initial States for an Election Algorithm

In section we presented a LCO election algorithm. Its correction relies
on the fact that its initial states encode every vertex’s degree in the graph.

A very natural question is : “is this initial knowledge necessary” 7 A
partial answer is given if we determine some properties of the function 7
which associates to any tree 1" the set of initial states allowed for starting
the computation.
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Let Z be a family of set of initial states allowing to build a configuration
like in section where s, [resp. s1, so] are initial states taken in Zg [resp.
Icy, Ia,.

Let us assume that some LCO election algorithm S works for, say, trees,
using such a family Z. Consider the graph P,, decomposed in two disjoints

——— —o- —9
\_,_V___J \/Y\J
G, G,

Figure 5: A graph with two disjoint subgraphs

subgraphs isomorphic to P linked by an edge (ﬁg. Applying the property
in section we can easily reach a state where two vertices are elected,
which contradicts the election specification.

Among the families 7 we can consider for that purpose, we can cite :

e Any state defined over the types L, and L. can be an initial state

e There are some constants [, : L, and [, : L. such that every vertex
[resp. edge] is labeled [, [resp. l].

e Any state where no vertex is elected or beaten yet.

7 About the Development in Coq

The libraries on graph relabeling systems work with the version 8.2 of the
Coq proof assistant, and can be downloaded at www.labri.fr /~casteran/Pendal.
These libraries are still in development, and some definitions, theorem state-
ments and specialized tactics will be subject to change. Some proofs are very
long and will be shortened too. The present (March 2009) representation
of unordered edges led to very long proofs. It will be replaced in the next
release by another representation relying on reflection.
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We present briefly the structure of this library, which will be quite stable,
and will be extended to wider classes of local computation systems. The
library is divided in four parts :

7.1 Library Prelude

This part contains some additional definitions and lemmas, extending Cog’s
standard library.

We mainly extend Letouzey’s FSets and FMaps libraries . The module
AccP is a slight extension to Wellfounded, dealing with relations of the form
Pa AN Rab N Pb.

Finally, Monoids defines the structure of [commutative] monoid on a
setoid.

7.2 Library Graphs

In our development, we consider unoriented finite graphs, represented with
finite sets of vertices and edges. Usual notions such as pathes, cycles, con-
nexity are also defined. Since mechanizing graph theory is not the main
purpose of our work, we often use in our proofs of algorithms some folklore
lemmas which will be proven when there are more time or people to do it.
At present the module Graph_Admitted contains only two lemmas, used in
the proof of the election algorithm:

e Acyclic_leaf : Any non empty, acyclic graph G has at least a vertex
of degree 0 or 1,

e remove_leaf_tree : Let G be a tree, x and y two adjacent vertices
of G, where z is a leaf of G. Then removing the edge (x,y) from G
results in a tree.

The module GraphLabeling defines the notion of labeled graph.

7.3 Library GRS (Graph Relabeling Systems

The sublibrary GRS contain general definitions about Graph Relabeling re-
lationsé: invariants, termination, etc.

A specialized module LCO is devoted to the LCO class of graph relabel-
ing systems, and contains specialized tactics, as well as the proofs of the
theorems presented in section
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7.4 Library FExamples

The Examples directory contains some cases studies. Two of them are ex-
amples of algorithm certification through invariant proofs.

7.4.1 Spanning Tree Computation

The module SpanningTree_Specification contains a formal specification
of any graph relabeling system in which any irreducible states allows to get
a spanning tree of the input graph.

The module SpanningTree_LCO contains a certified implementation of
this specification, which works on any simple and connected input graph.

7.4.2 Vertex Election

The module Election_Specification contains a formal specification of any
election algorithm. It is the formal translation of the informal presentation
of section [3.21

The correction of the algorithm of election in a tree is in the module
Election_Tree_LCO.

7.4.3 Limitations of LCO Rules

The module No_Degree_LCO contains the formal proof presented in sec-
tion [6.1] and No_Election_LCO the proof presented in section [6.2

8 Conclusion and Future Work

This works shows how to design a framework for reasoning on a wide class of
local computation systems. Such a framework allows two kinds of activities :

e Formal proofs of particular distributed algorithms,

e Proofs of properties of entire classes of such systems, allowing expres-
sive power comparison, including some proofs of the impossibility to
realize a given specification within a given class of systems.

This work will be continued in the following directions :

e Automation of parts of the proofs, including termination [8], proof by
reflection,
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e Extension to more classes of local computation systems, more generally
to other formalisms for distributed algorithmics,

e Use of the Why [9] technology for generating proof obligations,

e Taking into account algorithm composition, probabilistic algorithms,
etc.
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