Pierre Castéran
email: casteran@labri.fr

Vincent Filou
email: filou@labri.fr

Mohamed Mosbah
email: mosbah@labri.fr

Formal Proofs of Local Computation Systems 1

This paper describes the structure of a library for certifying distributed algorithms, contributed by Pierre Castéran and Vincent Filou. We formalize in the Coq proof assistant the behaviour of a subclass of local computation systems, namely the LC0 graph relabeling systems. We show how this formalization allows not only to build certified LC0 systems, but also study the limitations of their control structure.

Introduction

Local computations on graphs, and particularly graph relabeling systems, have been introduced in [START_REF] Billaud | Graph rewriting systems with priorities[END_REF] as a suitable tool for encoding distributed algorithms, for proving their correctness and for understanding their power. In this model, a network is represented by a graph whose vertices denote processors, and edges denote communication links. The local state of a processor (resp. link) is encoded by the label attached to the corresponding vertex (resp. edge). A relabeling rule is a rewriting rule which has the same underlying fixed graph for its left-hand side and its right-hand side, but with an update of the labels. According to its own state and to the states of its neighbours, each vertex may decide to realize an elementary computation step. After this step, the states of this vertex, of its neighbours and of the corresponding edges may change according to some specific computation rules.

In the Visidia [START_REF] Visidia | [END_REF] research project, we are interested in formal specification and formal proof of local computation systems. This activity consists in giving a formal semantics to these systems, develop tools for the certification of such algorithms : proof of invariants, proof of termination, and also compare the computational power of various subclasses of local computation systems or other kinds of distributed computation paradigms. The Coq proof assistant [START_REF]The Coq Proof Assistant Reference Manual[END_REF][START_REF] Bertot | Interactive Theorem Proving and Program Development. Coq'Art: The Calculus of Inductive Constructions[END_REF] has been chosen for this task.

In this paper, we focus on a particular class of computation rules: LC0 rules. An LC0-rule performs a computation on two adjacent nodes of the network. It corresponds to a rendez-vous [START_REF] Bauderon | From local computations to asynchronous message passing systems[END_REF][START_REF] Litovsky | Different local controls for graph relabelling systems[END_REF][START_REF] Litovsky | Graph relabelling systems and distributed algorithms[END_REF] between two nodes. This class of computation corresponds to the client-server model employed in most network applications. This paper describes a first modelization in Coq of LC0-relabeling systems. Section 3 presents the fundamental notions on graph Relabeling systems, illustrated by two simple examples : the distributed computation of a connected graph's spanning tree, then an election algorithm working on any tree. Section 4 shows how Coq's type system has been used to represent LC0-relabeling systems, and a brief overview of proof techniques. Section 5 presents some properties shared by all LC0 systems, which allow to prove some specifications are not realizable by such systems without some initial knowledge (section 6). Section 7 shows briefly the present structure of our Coq libraries. Finally, the directions or future work are sketched in section 8.

Related Work

The certification of distributed algorithms using a theorem prover has been the subject of a quantity of studies. Closest to our study, the work of Ching-Tsung Chou [START_REF] Chou | Mechanical verification of distributed algorithms in higher-order logic[END_REF] aims at mechanicaly proving properties of distributed algorithms using Higher-Order Logic. In this work, the author uses a notion of simulation to carry out the proof of correctness of an algorithm propagating information through a network. Qiao Heiyan has been working on a methodology for proving distributed algorithms in type theory, using the Agda theorem prover [START_REF] Haiyan | Testing and proving distributed algorithms in constructive type theory[END_REF]. The UNITY language has also been used [START_REF] Thirioux | Etude comparative de deux techniques de preuves de programmes unity[END_REF] to prove the security properties of distributed algorithm in Coq. Bezem, Bol and Groote [START_REF] Bezem | Formalizing process algebraic verifications in the calculus of constructions[END_REF] used the Coq proof assistant for proving equalities between terms of a process algebra. Leu also cite the work of Gascard and Pierre [START_REF] Gascard | Formal proof of applicatons distributed in symmetric interconnexion networks[END_REF] on formal proofs of parallel programs on symmetric interaction networks.

In [START_REF] Cansell | Logics of Specification Languages[END_REF], Cansell and Méry show how to get local computation systems from their specification through a sequence of refinements. They use for this purpose the Event-B method and the Rodin tool [START_REF]Event-B and the Rodin Platform[END_REF]. The specification is encoded by an abstract machine which computes in one big step a final state which satisfies the specification, the distributed algorithm being obtained as the last step of the refinement chain. The class of algorithms addressed in their work is exactly the same as ours. Examples of developed algorithms using this approach can be found in [START_REF] Tounsi | A Refinement Approach for Proving Distributed Algorithms : Examples of Spanning Tree Problems[END_REF]. In a few words, one could say that their approach is a kind of top-down development methodology, whilst ours tries to get properties from the language used to program local computation systems.

Graph Relabeling Systems for Encoding Distributed Algorithms

In this section, we give a few definitions of local computations, and particularly of graph relabeling systems. As usual, a network is represented by a graph whose vertices stand for processors and edges for (bidirectional) links between processors. At every time, each vertex and each edge is in some particular state and this state will be encoded by a vertex or an edge label.

According to its own state and to the states of its neighbours, each vertex may decide to realize an elementary computation step. After this step, the states of this vertex, of its neighbours and of the corresponding edges may have changed according to some specific computation rules. Let us recall that graph relabeling systems satisfy the following requirements:

(C1) they do not change the underlying graph but only the labeling of its components (edges and/or vertices), the final labeling being the result, (C2) they are local, that is, each relabeling changes only a connected subgraph of a fixed size in the underlying graph, (C3) they are locally generated, that is, the applicability condition of the relabeling only depends on the local context of the relabeled subgraph.

For such systems, the distributed aspect comes from the fact that several relabeling steps can be performed simultaneously on "far enough" subgraphs, giving the same result as a sequential realization of them, in any order. A large family of classical distributed algorithms encoded by graph relabeling systems is given in [START_REF] Bauderon | From local computations to asynchronous message passing systems[END_REF]. This approach has proved itself very well suited to obtain theoretical results on the impact of the geography of a network on algorithms [START_REF] Mazurkiewicz | Distributed enumeration[END_REF][START_REF] Godard | A characterization of families of graphs in which election is possible[END_REF][START_REF] Godard | Characterizations of classes of graphs recognizable by local computations[END_REF].

In order to make the definitions easy to read, we give in the following an example of a graph relabeling system for computing a spanning tree, and an example of a graph relabeling system to elect a node in a tree. Then, the formal definitions of local computations will be presented.

Distributed computation of a spanning tree

Let us first illustrate graph relabeling systems by considering a simple distributed algorithm which computes a spanning tree of a network. Assume that a unique given processor is in an "active" state (encoded by the label A), all other processors being in some "neutral" state (label N) and that all links are in some "passive" state, represented by the boolean f . The tree initially contains the unique active vertex. At any step of the computation, an active vertex may activate one of its neutral neighbours and mark the corresponding link which gets the label t. This computation stops as soon as all the processors have been activated. The spanning tree is then obtained by considering all the links with label t.

An elementary step in this computation may be depicted as a relabeling step by means of the relabeling rule R, given in Figure 1, which describes the corresponding label modifications (remember that labels describe processor status):

f t R : A N A A Figure 1:
The relabeling rule R Whenever an A-labeled node is linked by a f -labeled edge to an N-labeled node, then the corresponding subgraph may rewrite itself according to the rule.

A sample computation using this rule is given in Figure 2. Relabeling steps may occur concurrently on disjoint parts on the graph. When the graph is irreducible, i.e no rule can be applied, a spanning tree, consisting of t-edges labeled edges, is computed.

A A A A f f f f t t t N N A A A A A A f f t t t t t A N N N N N A A f t f f f f f f f f f f f f N N N N A A A f f f f t t N N A A A A A f f t t t t N f f N Figure 2:
Distributed computation of a Spanning Tree

Vertex Election in a Tree

The aim of an election in a graph is to choose exactly one vertex among the set of all its vertices. This vertex becomes elected and is called the leader of the graph. In our framework, this problem can be formalized in the following way. We say that a relabeling system (as will defined formally in the following section) solves the election problem for a class C of graphs if it is noetherian and if the following conditions hold :

• Any vertex of G may know if it is already elected or beaten, or still ignores this result

• Once a vertex is beaten or elected, its situation cannot change anymore,

• There is at most one elected vertex in the graph

• When no rule can be applied, all vertices are either beaten or elected Let us present a graph relabeling system allowing to elect a vertex in a tree (see Figure 3).

The alphabet for labeling the vertices is the set of natural numbers N augmented with a new element called "N". Intuitively we interpret N as "beaten", 0 as "elected", and any strictly positive integer d as "still ignoring the result". We do not label the graph's edges.

Initially, each vertex v is labeled with its degree in the graph. The set of rules we consider is the union of all replacements depicted in figure 3 for any d ∈ N.

The intuitive behaviour of our election system can be described as follows : let us associate to any state s the subgraph G s determined by the N-labeled vertices of G. In fact any computation step reduces to erasing some "pendant" edge (i.e. having at least an extremity of degree 1 w.r.t. G s) from G s .

We prove two invariants of the system :

• in any reachable state s, any N-labeled vertex measures the degree of v with respect to G s ,

• in any reachable state s, G s is a tree.

From the invariant above, we infer that in a reachable state where no rule can be more applied (an irreducible state), there exists a unique vertex labeled 0 (hence elected) whilst other vertices of G are N-labeled (hence beaten).

N d d+1

R :

Figure 3: Rules for the election of a node in a tree

Formal Definitions of Graph Relabeling Systems

We consider only connected graphs whose vertices [resp. edges] are labeled with labels from a possibly infinite alphabet L v [resp. L e]. We call state (or labeling) any pair s of two functions λ s :

V (G) → L v and ρ s : E(G) → L e .
Now we introduce the formal definition of a graph relabeling rule.

Definition A (graph) relabeling rule is a triple r = (G r , s r , s ′ r) such that (G r , s r) and (G r , s ′ r) are two labeled graphs. The labeled graph (G r , s r) is the left-hand side and the labeled graph (G r , s ′ r) is the right-hand side of r.

If the graph G r is isomorphic to the graph k2 (which consists of two vertices connected by an edge), we say that the relabeling rule is of type LC0.

The intuitive notion of computation step will then correspond to the notion of relabeling step: Definition A r-relabeling step is a 5-tuple (G, s, r, ϕ, s ′) where r is a relabeling rule and ϕ is both an occurrence of (G r , s r) in (G, s) and an occurrence of (G r , s ′ r) in (G, s ′).

Intuitively speaking, the labeling s ′ of G is obtained from s by modifying all the labels of the elements of ϕ(G r , s r) according to the labeling s ′ r . Such a relabeling step will be denoted by (G, s)→ r,ϕ (G, s ′).

This notation can be generalized to (G, s)→ R (G, s ′) (making abstraction of the occurrence φ and the rule r ∈ R), and to (G, s)→ * R (G, s ′) (reflexive and transitive closure of → R). This last notation expresses the notion of finite computation according to the considered set R of rules.

The computation stops when the graph is labeled in such a way that no relabeling rule can be applied:

Definition A labeled graph (G, s) is said to be R-irreducible if there exists no occurrence of (G R , s R) in (G, s) for every relabeling rule R in P .
Definition Finally, a graph relabeling system is a tuple S gathering the following information :

• Two alphabets for labeling vertices and edges (respectively L v and L e),

• A set R of relabeling rules,

• A class C of graphs, the system is assumed to work on,

• A function I which associates to each graph G in C a set I G of initial states

We will use the abbreviation (G, s)→ * S (G, s ′) for (G, s)→ * R (G, s ′). We will say that s ′ is reachable from s. If i ∈ I G and (G, i)→ * R (G, s ′), we will simply say that s ′ is reachable.

In this paper, we consider only rules of type LC0; in fact there are other types (see [START_REF] Bauderon | From local computations to asynchronous message passing systems[END_REF][START_REF] Litovsky | Graph relabelling systems and distributed algorithms[END_REF]) considered in our future developments, mainly LC1 and LC2. Both of them are defined when G r is isomorphic to a star graph (called also a ball of radius one). Roughly speaking, in an LC1 computation step, the label attached to the center of the star is modified according to some rules depending on the labels of the star, labels of the leaves are not modified. In an LC2 computation step, labels attached to the center and to the leaves of the star may be modified according to some rules depending on the labels of the star.

Types for Representing Graph Relabeling Systems

We show how the rich type system of Coq [START_REF]The Coq Proof Assistant Reference Manual[END_REF][START_REF] Bertot | Interactive Theorem Proving and Program Development. Coq'Art: The Calculus of Inductive Constructions[END_REF] allow us to represent graph relabeling systems and their specification, and some proofs about the LC0 class.

Labeled Graphs

Non-oriented graphs are encoded with the help of the FSets library, contributed by Pierre Letouzey for Coq's standard library. Let us call Pregraph any pair G of a finite set of vertices V (G) and a finite sets of edges E(G).

The FSets library is compatible with Coq's setoid feature, thus we consider as equivalent any pair of edges (v, v ′) and (v ′ , v). Some predicates defined on PreGraph define the set of graphs (pregraphs which satisfy the proposition) (E(G) ⊆ V (G) × V (G)), of simple graphs (self-loop free), acyclic, connected graphs, etc.

We do not provide a type for representing directly labeled graphs. For simplicity's sake, we define some types for labelings as follows :

• We consider two non empty types L v (for vertices' labels) and L v (for edges' labels). In the spanning-tree example of section 3.1, we use an inductive type AN with two constructors A and N for vertex-labeling and the pre-built type bool for edge-labeling. Notice that any type with decidable equality is well suited for labels.

• A state s is any pair of a vertex-labeling λ s and an edge-labeling ρ s , where λ s is finite map from the type of vertices to L v (similarly for ρ s). In general we consider only states where the functions λ s and ρ s are total (we say that "s covers G ".)

• Finally, a labeled graph is any pair (G, s) where s is a state for G.

In our Coq development, we denote by " state L v L e " the type of states using the alphabets L v and L e .

Graph Relabeling Relations

A Graph relabeling relation for a graph G is any binary relation → between states,such that if s covers G and s → s ′ , then s ′ covers G. Notice that this condition corresponds to the C1 requirement of section 3. Graph relabeling relations inhabit the dependent type " GR L v L e G "1 for graph relabelings operating on G. Notice that G is in last position, so we cannot define types for labeling knowing already the graph G. The task of building a distributed algorithm using graph relabeling amounts to choose two types is building some term of type L v and L e , then build a term S inhabiting the dependent product " ∀ G, GR L v L e G ".

Let us consider for instance an algorithm S of spanning-tree computation. Its correctness can be expressed as follows :

Let G be any simple, connected graph; for any initial state i,

• any rewriting sequence starting from i terminates, and

• any irreducible state s reachable from i determines a spanning tree of G

The graph G is the parameter of S. The predicate " to be a simple, connected graph" characterizes the class of graphs it is supposed to work on. Notice that this "specification" is still informal ; we must make precise the notion of initial state, and the verb "determines". For the latter, the meaning is simply "get a function r from labeled graphs to graphs, such that if s is any irreducible, reachable state w.r.t. S(G), then r(G, s) is a spanning tree of G."

LC0 Systems

We present a formal representation of a LC0 System; throughout this section, the non empty types L v and L e are fixed; we will use the notation Σ as an abbreviation for the type " state L v L e ".

LC0 Rules

As said in section 3.3, LC0 relabeling rules can be represented as a relabeling relation on the graph k2. Such a relation can be represented as a binary relation R on the product type

L v × L e × L v .
To be more precise, we encode any LC0 set of rules as a 6-ary predicate whose arguments as are follows: By convention, we name the vertices of k2 as c (for "center") and v (for "voisin", french translation of "neighbour").

Embedding into a Graph Relabeling Relation

Let R be a set of LC0-rules over the types L v and L e . It is easy to embed R into a relabeling relation over any graph G : Let s and s ′ be two states covering G; (G, s)→ R (G, s ′) if there exists two adjacent vertices c and v of G, such that

• the proposition R(λ s (c), λ s (v), ρ s (c, v), λ s ′ (c), λ s ′ (v), ρ s ′ (c, v)) holds,

and

• s and s ′ coincide everywhere except on the vertices c,v and the edge (c, v)

Graph Classes and Initial States

A LC0 relabeling system is supposed to perform some computations on some class C of graphs, starting from some initial state. In section 4.2 we presented a graph class as any predicate P defined on graphs.

In additon to its sets of rules, a graph relabeling system must determine a set of possible initial states for any graph G which belongs to C.

A Type for LC0 Systems

Putting all this information together, we can define a type LC0 for LC0systems as a dependent structure containing the following fields :

• Two non empty types L v and L e ,

• A graph class C : PreGraph→Prop,

• A family of sets of initial states I : PreGraph→(Σ→Prop)

• A LC0-set of rules R : L v →L e →L v →L v →L e →L v →Prop.

Proof Techniques for LC0 Systems

Let S be a LC0-system described as above. There are a few kinds of statement one may have to prove about S.

Invariants

An invariant of S is any relation I on states such that (G, i)→ * R (G, s) implies I i s for any graph G of the considered class C, any initial state i ∈ I G .

Let us consider for instance the invariants of the spanning tree algorithm: For writing these invariants, we need an auxiliary definition : Let G be a graph, and s be some state, then G A (s) is the subgraph of G containing all the vertices of G such that λ s (v) = A and the edges of G such that ρ s (e) = t.

Thus the invariants we prove are the following ones :

edge inv: For each edge of e of G, if at least one of e's extremities is labeled by N in the state s, then ρ s (e) = f,

tree inv: G A (s)

is a tree,

ExA: There exists at least some vertex v of G such that λ s (v) = A.

Proof techniques for invariants are quite usual : we prove that they are satisfied by any initial state, and preserved by the relation → R . The proof of this preservation is helped by specialized inversion tactics, which infer from some hypothesis (G, s) → R (G, s ′) the equalities of section 4.3.2.

Termination

The usual proof technique for termination can be very simplified when dealing with LC0-systems. If we associate to any label l of L v and L e some value µ(l) in a well-founded domain (D, <) , and if + is an associative, commutative and monotone operation on D, then it is enough to check the inequality µ(x ′) + µ(y ′) + µ(z ′) < µ(x) + µ(y) + µ(z), whenever R x y z x ′ y ′ z ′ holds. For instance, if we associate 1 to the label N, and 0 to any other label, the proof of termination of the spanning-tree computation is simply a proof of 0 < 1.

Properties Shared by all LC0 Systems

It is important to consider generic properties of the LC0 class of local computation systems. This is made possible by Coq's type system, which allows to quantify on the types for labeling, on the function which builds initial states, and the sets of LC0-rules.

First, LC0-systems are consistent w.r.t. the theoretical model by Godard and Métivier [START_REF] Godard | A characterization of classes of graphs recognizable by local computations with initial knowledge[END_REF] : If two labeled graphs (G, s) and (G ′ , s ′) are isomorphic, then any LC0-system S has the same behaviour on both labeled graphs.

Other properties implement a common scheme : from some computation on a labeled graph (G, s), build a computation for another appropriate labeled graph (G 1 , s 1) (with respect to the same relabeling system).

Extending a Computation to a Bigger Graph

The first case (lemma LC0:extends_computation), deals with the case where (G, s) is a labeled subgraph of (G 1 , s 1) (intuitively (G 1 , s 1) is obtained from (G, s) by adding some labeled vertices and edges). Then for any computation (G, s) → R (G, s ′) there exists a computation (G

1 , s 1) → R (G 1 , s ′ 1) where (G, s ′) is a labeled subgraph of (G 1 , s ′ 1)
. In other words, the LC0system S can "ignore" the extra edges and vertices and perform the same computations in G and G 1 .

This property is used in Section 6.1 for proving that no LC0-system can be used to compute the degree of the underlying graph's vertices.

Notice that this property is clearly false for LC1 and LC2-systems, since their rules' guards explore the neighbourhood of any vertex. It is then possible to consider some LC1 or LC2-guard which becomes false if some new neighbour is added to some vertex.

Composing Computations

Let (G, s) be a labeled graph. Let us consider two disjoint labeled-subgraphs of G : (G 1 , s 1) and (G 2 , s 2), and two computations (

G 1 , s 1) → R (G 1 , s ′ 1) and (G 2 , s 2) → R (G 2 , s ′
2). Then we can build a computation (G, s) → R (G, s ′) where (G 1 , s ′ 1) and (G 2 , s ′ 2) are labeled subgraphs of (G, s ′). This property is used in the proof of 6.2. When we extend this property to LC1 or LC2 systems, we will have to consider some stronger constraints than "G 1 and G 2 are disjoint" : if we allow some edge (v 1 , v 2) to link G 1 and G 2 , any state change in v 1 can affect rule guards in G 2 . Thus G 1 and G 2 will have to be "distant enough".

Computational Power of LC0 Systems

LC0 algorithms form only a subfamily of local computation systems. It is thus interesting to consider the limitations of this class of algorithms. In this section, we present two examples of specifications, which cannot be realized by any LC0-system under some "reasonable" conditions (a term that will be explicited below).

Computing the Vertices' Degree

Let us consider for instance the following statement :

No LC0 algorithm can compute the degree of the underlying graph's vertices

We have to make this statement more precise in order to prove it : There exists no types L v and L e , no function f : L v →option N, no set of LC0-rules, no "reasonable" family of set of initial states I, such that for any graph G, :

• for any reachable state s, any vertex v of G, if f (λ s (v)) = Some d, then the degree of v in G is d,

• for any initial state i, there exists some state s reachable from i, such that f (λ s (v)) = Some d, for some d.

It remains to make more precise which sets of initial states we have to consider. We say that a family I of type " PreGraph→(Σ→Prop) " is extendable if for any pair of graphs G and G 1 such that G is a subgraph of G 1 , then any state i in I G can be extended in a state i 1 ∈ I G ′ .

Intuitively, any initial state for a graph G can be built incrementally. This is a the case of randomly built initial states, or initial states which attribute a constant label to each vertex [resp. edge]. The proof is done by contradiction. Suppose that some LC0-system allows to compute the degree of any vertex of any graph, with an extendable family I of sets of initial states. Let us consider the graphs G and G 1 as in figure 4. Then there exists some computation starting from some initial state i ∈ I G , reaching some state s, where f (λ s (0) = Some(deg G (0)). Then there exists some initial state i 1 for G 1 which extends i, and, by the property 5, some state s 1 which extends s and is reachable from i 1 . The following equalities show that our hypotheses lead to a contradiction.

Some 2 = Some(deg G 1 (0)) = λ s 1 (0) = λ s (0) = Some(deg G 1 (0)) = Some 1 6.1.1 Important Remark
Notice that the statement we proved deals with a local knowledge of the each vertex's degree at any time of the computation. Let us consider the following change of our specification :

• for any irreducible reachable state s, any vertex v of G, if f (λ s (v)) = Some d, then the degree of v in G is d,

• for any initial state i, there exists some state s reachable from i, such that f (λ s (v)) = Some d, for some d.

We can easily build a LC0-algorithm for computing the degree of each vertex.

• Vertices are labeled by a natural number (initially 0), and edges by booleans (initially f),

• The unique rule applies to any edge labeled by f , increments its extremities, and relabels this edge with t.

Notice that this example doesn't contradict at all the result shown in section 6.1. There is a big difference between a local knowledge of a vertex's degree, and using a global knowledge about irreducibility of all the graph's state.

Initial States for an Election Algorithm

In section 3.2, we presented a LC0 election algorithm. Its correction relies on the fact that its initial states encode every vertex's degree in the graph.

A very natural question is : "is this initial knowledge necessary" ? A partial answer is given if we determine some properties of the function I which associates to any tree T the set of initial states allowed for starting the computation.

Let I be a family of set of initial states allowing to build a configuration like in section 5.2, where s, [resp. s 1 , s 2] are initial states taken in I G [resp.

I G 1 , I G 2 .
Let us assume that some LC0 election algorithm S works for, say, trees, using such a family I. Consider the graph P 4 , decomposed in two disjoints Figure 5: A graph with two disjoint subgraphs subgraphs isomorphic to P 2 linked by an edge (fig 5). Applying the property in section 5.2, we can easily reach a state where two vertices are elected, which contradicts the election specification.

Among the families I we can consider for that purpose, we can cite :

• Any state defined over the types L v and L e can be an initial state

• There are some constants l v : L v and l e : L e such that every vertex [resp. edge] is labeled l v [resp. l e].

• Any state where no vertex is elected or beaten yet.

About the Development in Coq

The libraries on graph relabeling systems work with the version 8.2 of the Coq proof assistant, and can be downloaded at www.labri.fr/∼casteran/Penda. These libraries are still in development, and some definitions, theorem statements and specialized tactics will be subject to change. Some proofs are very long and will be shortened too. The present (March 2009) representation of unordered edges led to very long proofs. It will be replaced in the next release by another representation relying on reflection.

We present briefly the structure of this library, which will be quite stable, and will be extended to wider classes of local computation systems. The library is divided in four parts :

Library Prelude

This part contains some additional definitions and lemmas, extending Coq's standard library.

We mainly extend Letouzey's FSets and FMaps libraries . The module AccP is a slight extension to Wellfounded, dealing with relations of the form P a ∧ R a b ∧ P b.

Finally, Monoids defines the structure of [commutative] monoid on a setoid.

Library Graphs

In our development, we consider unoriented finite graphs, represented with finite sets of vertices and edges. Usual notions such as pathes, cycles, connexity are also defined. Since mechanizing graph theory is not the main purpose of our work, we often use in our proofs of algorithms some folklore lemmas which will be proven when there are more time or people to do it. At present the module Graph_Admitted contains only two lemmas, used in the proof of the election algorithm:

• Acyclic_leaf : Any non empty, acyclic graph G has at least a vertex of degree 0 or 1,

• remove_leaf_tree : Let G be a tree, x and y two adjacent vertices of G, where x is a leaf of G. Then removing the edge (x, y) from G results in a tree.

The module GraphLabeling defines the notion of labeled graph.

Library GRS (Graph Relabeling Systems

The sublibrary GRS contain general definitions about Graph Relabeling relationsé: invariants, termination, etc. A specialized module LC0 is devoted to the LC0 class of graph relabeling systems, and contains specialized tactics, as well as the proofs of the theorems presented in section 5.

Library Examples

The Examples directory contains some cases studies. Two of them are examples of algorithm certification through invariant proofs.

Spanning Tree Computation

The module SpanningTree_Specification contains a formal specification of any graph relabeling system in which any irreducible states allows to get a spanning tree of the input graph.

The module SpanningTree_LC0 contains a certified implementation of this specification, which works on any simple and connected input graph.

Vertex Election

The module Election_Specification contains a formal specification of any election algorithm. It is the formal translation of the informal presentation of section 3.2.

The correction of the algorithm of election in a tree is in the module Election_Tree_LC0.

Limitations of LC0 Rules

The module No_Degree_LC0 contains the formal proof presented in section 6.1 and No_Election_LC0 the proof presented in section 6.2.

Conclusion and Future Work

This works shows how to design a framework for reasoning on a wide class of local computation systems. Such a framework allows two kinds of activities :

• Formal proofs of particular distributed algorithms,

• Proofs of properties of entire classes of such systems, allowing expressive power comparison, including some proofs of the impossibility to realize a given specification within a given class of systems. This work will be continued in the following directions :

• Automation of parts of the proofs, including termination [START_REF] Contéjean | Mechanically proving termination using polynomial interpretations[END_REF], proof by reflection,

• Extension to more classes of local computation systems, more generally to other formalisms for distributed algorithmics,

• Use of the Why [START_REF] Filliâtre | The Why/Krakatoa/Caduceus platform for deductive program verification[END_REF] technology for generating proof obligations,

• Taking into account algorithm composition, probabilistic algorithms, etc.

 λ s (c) old label of the center c λ s (v) old label of the neighbour v ρ s (c, v) old label of the edge (c, v) λ s ′ (c) new label for the center c λ s ′ (v) new label for the neighbour v ρ s ′ (c, v)) new label for the edge (c, v) In other terms, we describe a kind of before/after relation describing the state change on k2. Let us take for instance the spanning tree rule : It is represented by an inductive predicate : Inductive R : AN → AN → bool → AN → AN → bool → Prop := R_intro : R A N false A A true.

Figure 4 :

 4 Figure 4: The degree of 0 in G is not equal to the degree of 0 in G 1

defined in the module GRS/GraphRelabeling

Acknowledgement We thank Yves Bertot, Dominique Cansell, Pierre Letouzey, Dominique Méry, Yves Métivier and Xavier Urbain for the helpful discussions and for many ideas used in this work.

* partly supported by ANR A3PAT ANR-05-BLAN-0146 and RIMEL ANR-06-SETIN-015 † partly supported by ANR A3PAT ANR-05-BLAN-0146 and RIMEL ANR-06-SETIN-015