
HAL Id: hal-00371596
https://hal.science/hal-00371596

Submitted on 29 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introducing Simulation and Model Animation in the
MDE Topcased Toolkit

Benoit Combemale, Xavier Crégut, Jean-Pierre Giacometti, Pierre Michel,
Marc Pantel

To cite this version:
Benoit Combemale, Xavier Crégut, Jean-Pierre Giacometti, Pierre Michel, Marc Pantel. Introducing
Simulation and Model Animation in the MDE Topcased Toolkit. 4th European Congress EMBEDDED
REAL TIME SOFTWARE (ERTS), Jan 2008, Toulouse, France, France. http://www.erts2008.org/.
�hal-00371596�

https://hal.science/hal-00371596
https://hal.archives-ouvertes.fr

 Page 1/8

Introducing Simulation and Model Animation in the MDE
Topcased1 Toolkit

B. Combemale1, X. Crégut1, J.-P. Giacometti2, P. Michel3, M. Pantel1
1: IRIT- ENSEEIHT, 2 Rue Charles Camichel, 31071 Toulouse

2: Airbus France, 316 Route de Bayonne, BP A0821, 31060 Toulouse Cedex 03
3: ONERA, 2 Avenue Edouard Belin, BP 74025, 31055 Toulouse Cedex 04

1 Topcased is partly funded by the French ministry of industry through the FCE call and by the Midi Pyrénées regional institutions.

Abstract:

The Topcased project aims at developing a modular
and generic CASE environment for model driven
development of safety critical systems. Model
validation is a key feature in this project and model
simulation is a major way for validation.
The purpose of this paper is to present the current
Topcased process for building model simulators and
animators. After introducing the functional
requirements for model simulation and animation, it
is explained how simulation is currently being
integrated in the Topcased environment, presenting
the main components of a simulator: a model
animator, a scenario builder and a simulation engine.
The approach is illustrated by the presentation of the
first simulation experiment conducted in the project:
the UML 2 StateMachines case study.

Keywords: Topcased, model simulation, animation,
Model Driven Engineering, UML 2 StateMachines.

1. Introduction

The work presented here is part of the Topcased
project (“Toolkit In OPen source for Critical Applica-
tions & SystEms Development”) a project of the
French “pôle de compétitivité Aerospace Valley”,
dedicated to aeronautics, space, and embedded
systems. The Topcased project [1] aims at defining
and developing an open-source, Eclipse-based [2],
modular and generic CASE environment. It provides
methods and tools for the developments of safety
critical embedded systems. Such developments will
range from system and architecture specifications to
software and hardware implementation through
equipment definition.
Topcased relies on Model Driven Engineering (MDE)
technologies both for building system models and for
building the CASE environment itself. Model valida-
tion and verification (V&V) is a key feature in
Topcased. For validation purpose, one must be able
to simulate the dynamic behaviour of the system and
to obtain execution traces. For verification purpose,
one must be able to check that a system ensures
correctness properties and if not, to produce an
execution trace which illustrates the fact that the

property is not ensured. The user must then be able
to browse these traces in order to validate the
dynamic behaviour and understand the property
check failures using a model animator.
The MDE technology used in Topcased for defining
and tooling modelling languages is centered around
the Ecore metalanguage (from EMF: the Eclipse
Modeling Framework [3]) and configuration models
[4] which are taken as inputs by generative tools
(e.g. graphical editor generation).

The purpose of this paper is to present and explain
the Topcased process for building model simulators
and animators [5, 6].

Section 2 recalls the three main constituents of
simulations: workload generation (limited here to the
building of scenarios), model execution or animation
and results analysis. Then, it focuses on discrete
event simulations, the kind of simulations that will be
tackled in Topcased, and mentions some existing
tools supporting such simulations.
Section 3 introduces the functional needs for model
simulation and animation in the context of Topcased,
covering the main constituents of simulations.
Section 4 describes the first simulation experiment
conducted in the project, i.e. the UML 2 State
Machines case study, and illustrates it by a small
example.
Section 5 explains how simulation has been
integrated in the Topcased environment. It first
shows what should be defined to complete the
definition of a DSML (Domain Specific Modelling
Language). Then, it presents three main tools, a
model animator, a scenario builder and a simulation
engine which compose the general architecture of
the simulator. Afterward, it presents the currently
available prototype of the UML 2 State Machines
simulator.
Finally, the conclusion section proposes short-term
perpectives on model animation in Topcased.

 Page 2/8

2. Simulation: needs and approaches

2.1 Purpose of a simulation

The purpose of a simulation is to gain understanding
on a system without manipulating the real system,
either because it is not yet defined or available, or
because it cannot be exercised directly due to cost,
time, resource or risk constraints. Simulation is thus
performed on a model of the system.

A simulation is generally defined through three steps
(figure 1). The first one consists in generating a
representation of the workload, i.e. the set of inputs,
to be applied to the studied system. This represen-
tation may be a trace (or scenario) depicting a real
workload or a synthetic workload artificially gene-
rated by heuristics or stochastic functions. The
second step concerns the simulation that is
performed by applying a workload on a model of the
system and producing results. Finally, the third step
consists in analyzing simulation results in order to
acquire a better understanding of the considered
system.

Figure 1: The 3 steps of a simulation

These three steps may be separated and supported
by different tools, like a scenario builder (as a
workload generator), a model execution engine and
result analysis tools. It is also possible to combine in
the same tool two of these steps or even the three of
them. For instance, it is possible to interactively
create a trace while the model is executed. It is also
possible to couple the execution engine and analysis
tools to present, “on the fly” (i.e. during a simulation),
synthetic appropriate results.
Topcased proposes an open source and perennial
alternative to modelling and simulation tools.
Topcased relies on the Eclipse platform [2] and MDE
technologies such as EMF, GEF, GMF [3,4],
Acceleo, ATL, Kermeta, OpenArchitectureWare and
others. Simulation facilities will allow the Topcased
user to execute his models in order to check whether
they conform to his expectations.
Currently, modelling languages considered in
Topcased mainly focus on discrete synchronous or
asynchronous models. A discrete event computation
model can thus be used for the model execution. In
order to see whether the models behave as
expected, the user will run a model animator that

uses the results of the model execution. So, in the
Topcased context, simulation will be mainly a means
to debug models and validate user requirements.

2.2 Discrete Event Simulations

In the simulation of discrete systems, the simulated
time is a discrete virtual time. Two mechanisms are
considered for the evolution of discrete time:
• a clock-based (or periodic, or fixed-increment

time advance) approach: time move forward in
the model in equal time intervals,

• an event-based (or next-event time advance)
approach: the model is only examined and
updated when an event occurs (or when the
system state changes); time moves from event
to event.

The traditional modelling formalisms are based on
mathematical foundations and largely preceded the
advent of computers. Two kinds of representations
have been proposed to model discrete systems [7]:
• The “Discrete Time System Specification”

(DTSS) has been proposed to model systems
that operate on discrete time base, such as
automata. Time evolution is clock-based
(periodic) in this representation.

• The “Discrete Event System Specification”
(DEVS or DE) appeared more recently and was
defined for computer-based simulations. It offers
an event-based approach more easily managed
by an executable program than by a pure
mathematical model.

Thus, we have two main paradigms to model the
dynamics of discrete systems: the discrete periodic
(DTSS, also named “synchronous”) and the discrete
event-based (DEVS or DE, also named “asynchro-
nous”) formalisms.
These formalisms allow to design modular and
hierarchical models. A modular and hierarchical
construction consists in coupling existing models in
order to build larger models of systems. These
formalisms are closed under coupling, which means
that a coupled model can be treated as a basic
component, i.e. reused like a basic component in
other compositions.

2.3 Existing simulation support frameworks

Several tools support Discrete Event simulations. Let
us mention, among the more popular ones:
Matlab/Simulink, Scilab/Scicos, Ptolemy II, Hyper-
formix Workbench, Sildex, StateMate and Uppaal.
The two first ones are mainly dedicated to simulation
of physical systems with continuous time models, but
they offer some capability to support discrete event
features, like the “Stateflow” module in Matlab/
Simulink framework.

Model
execution engine

Workload
generation

Results
 Analysis

Animation
display Results

display

often:
a scenario
(or trace)
builder

 Page 3/8

It is quite difficult to interface these tools with the
Topcased environment, i.e. to directly use one of
these tools to simulate and animate a model defined
with a Topcased editor. Nevertheless, it is interesting
to analyze their main characteristics and to point out
the most useful features for Topcased users.
As first simulation experiments in Topcased are
devoted to the animation of state-transition based
models, we carefully studied the functionalities of
Sildex, StateMate and Uppaal tools in the previous
RNTL COTRE project. These tools, based on simple
or timed automata, provide graphical visualization of
simulations highlighting active states and firable
transitions, coupled with means to visualize and
record execution traces.
Another source of inspiration was the Ptolemy II
framework developed at Berkeley University [8]. This
framework supports heterogeneous modelling,
simulation, and design of concurrent systems.
Simulation models are constructed under models of
computation (or domains) that govern the interaction
of the components in the model. The choice of a
domain depends on the type of model being
constructed. After about 10 years of existence
Ptolemy II is a rich and reasonably mature tool, at
least for the most important domains, among then
the Discrete-Event (DE) domain.
Ptolemy II is component-based and models are
constructed by connecting a set of components and
have them interact under a domain. In the Discrete-
Event domain, components communicate via
sequences of timed events. An event consists in a
value and time stamp. Components can either be
processes that react to events or functions that fire
when new events occur. The DE domain gives a
deterministic semantics to simultaneous events.

The efficiency of a tool during simulations and ability
to integrate it in an industrial process should be an
important criterion when choosing the more
adequate tool. But, as they interpret graphically
designed models, all these tools more or less lack in
efficiency. That point leads to use them as
prototyping tools rather than deploying them in
ultimate simulation solutions. Thus, a simulation tool
is used to quickly and efficiently design a first model
and to conduct simulation experiments to improve
and validate the model. Once confirmed, this model
can be translated in a programming language (e.g. in
Java), and coupled with a kernel supporting Discrete
Event semantics, to perform efficient simulations.

3. User requirements for model animation

In the context of Topcased, simulation aims at
validating high level domain specific models. Thus,
simulation mainly provides a means for the designer
to animate his/her models in order to have a better
understanding of them and to validate with the user

its requirements. The animation may be performed
either interactively or driven by a predefined
scenario. The main requirements are summarized on
the use case diagram of figure 2 and are detailed in
the next paragraphs. Of course requirements are
described from the user viewpoint. Nevertheless, we
have tried to separate concerns. We first describe
how a scenario may be described and used to drive
the model animation. We then explain how the user
may control the animation. Finally, we give
requirements about tools to help the user in
interpreting the animation results either to visualize
effects on the model or to analyse results.

3.1 Scenario builder

A scenario is defined as a sequence of input events
occurrences. An event occurrence is defined by its
occurrence time and its related information that may
include one or several elements of the simulated
model. In the case of the animation of an UML2 state
machine, we have only one kind of user event that
consists in injecting one signal. The target element is
the state machine receiving the signal and the
associated information is the UML2 signal.
The term “scenario builder” describes any tool that
helps building a scenario. The user while animating
the model may build a scenario interactively. A
scenario may also be built before animation starts.
For example, it may be generated from requirements
to validate the model being designed or produced by
dedicated tools such as a random scenario builder, a
model-checker that exhibits a counter-example or a
test generator.

Figure 2: Use case of the simulation

3.2 Model animator

Animating a model consists in interpreting each
event to make the model evolve accordingly. The
effect of one event on the model is defined in the
execution engine that follows the semantics of the
model.

 Page 4/8

Figure 3: Subset of UML2 StateMachines handled in model animator

Defining the semantics of a DSL is the task of the
language designer not of the model designer.
Nevertheless, the model designer may be solicited
during animation in order to resolve some non-
deterministic choices. For example, he should be
able to choose which transition will be fired on a non-
deterministic automaton. Heuristics may also be
defined in order to resolve such non-determinism.
Furthermore, the model designer should be able to
control the animation through a set of commands
similar to those found on a music or video player, or
on a program debugger. During animation, different
views (discussed in the next section) may be
activated and must be updated as the model
evolves. A tool providing this functionality is called a
“model animator” and should allow a user to:
• load a predefined scenario;
• play the scenario step by step (event by event);
• play automatically: the next step is automatically

triggered when an amount of time is elapsed. It
also includes the ability to pause and resume the
animation;

• restart the execution from the beginning or stop
and exit the animator;

• go forward/backward one step, several steps, to
the beginning or the end of the animation or to a
certain point (condition on the model, occurrence
of an event, previously defined break-point, etc).

It may also be useful to be able to inspect the
animated model, either textually or graphically as
discussed in the next section.

Finally, we should note that it is possible to integrate
in the same tool the interactive scenario builder and
the model animator. It thus provides the user with
one unique interface to build his scenario and
inspect the evolution of the model according to the
scenario.

3.3 Simulation visualization

The term “simulation visualization” encompasses
any tool that provides the user with feedbacks on the
execution.
One obvious way to provide the user with feedbacks
on the animated model is to display its current state.
To do that, one needs to represent some additional
dynamic information by extending the graphical
notation (graphical concrete syntax) used to edit or
visualize the model.
The use of colours or classical graphical compo-
nents (such as progress bars, gauges or lights) used
as decoration on the model graphical representation
may be useful to represent the state of model items.
For example, when executing a state machine,
current states and firable transitions may be
emphasised by displaying them with specific colours.
A gauge may indicate the number of received
signals.
To provide the user with a better understanding of
the execution, it may be useful to define specific
panels that aggregate information of the model or to
display the state of some model elements according
to time (e.g. with a chronogram).
Specific visualization may represent a real interface
for the DSL domain. For example, the visualization

 Page 5/8

panel could represent the set of instruments that are
present in the cockpit of a real aircraft.

3.4 Simulation analysis

Simulation analysis looks like execution visualiza-
tion. The main difference is that visualization during
an execution relies on the user to interpret what he
sees, while an analysis tool should provide the user
with an interpreted result. For example, analysis
tools can verify that an output trace is well formed or
that it fulfils some properties.
Simulation analysis tools may be coupled with the
execution engine in order to explore all performed
executions and determine whether some property
holds on the system for these executions.

4. Case study: UML2 state machines

Model animation has first been experimented on
UML2 state machines [9] for models that conform to
the UML2 metamodel used by the Topcased
graphical editor (based on the Eclipse UML2 plugin
[10]). However, for the first version of the animator,
we have targeted only a subset of the UML2 state
machines whose metamodel is shown on figure 3.
This metamodel describes the structural properties
of state machines. In order to clarify their
presentation, we use an example to introduce the
concepts that are taken into account for the
simulation. The example is shown on figure 4. It
consists in a unique state machine because currently
the animator is only able to simulate a single state
machine. The next paragraph describes the example
and points out the UML2 concepts that are handled
in the simulation and thus present on metamodel
(figure 3). These concepts are put in brackets.
The state machine (StateMachine concept) on figu-
re 4 models vehicle flashing lights. It is a concurrent
state machine composed of four regions (Region),
one for the left flashing light, one for the right
flashing light, one for the handle and the last one for
an internal clock. Left and right flashing lights share
the same state machine and could have been

considered as two instances of the same class
FlashingLight describing through a single state-
machine the behaviour of a flashing light. But,
because we do not address classes and their
instances yet, we have to duplicate the state-
machine and rename the signals (Signal) that trigger
(Trigger) the transitions (Transition). So, the Lstart
signal starts the left light and put it in the composite
state called ON. It is composed of exactly one region
that consists in two substates switchedOff and
switchedOn that indicates whether the light is off or
on. The light swaps between these two states accor-
ding to the TOP signal generated by the clock state-
machine. Finally the handle reacts to the user
signals pushUp and pushDown and according to its
position (down, middle or up) starts or stops the left
or the right light.

We only consider local transitions (Transition), i.e.
transitions whose source and target states belong to
the same region. Transitions are triggered by events
(Event) and may execute an activity when they are
fired. Activities (Activity) are decomposed into
actions. The only action (Action) that is currently
handled is the BroadCastSignalAction that broad-
casts a signal. An event is either a SignalEvent that
corresponds to a specific signal or a time event
(TimeEvent) that is related to the time. The transition
in the clock region defines a time event indicating
that the transition will be fired 3 time units after the
state has been entered. The transitions on the
handle region are triggered by a signal (either
pushUp or pushDown) and, when fired, execute an
action that broadcasts the signal that will make the
flashing lights regions evolve.
Nevertheless, all the elements that are not taken into
account for the simulation may be present in the
model but are ignored. An audit using OCL
constraints must be established to warn the user of
the unsupported elements (and the possible failure
in the simulation).

Figure 4: UML2 state machine of vehicle flashing lights

 Page 6/8

5. Integration of simulation into Topcased

In this section, we describe how simulation has been
integrated in Topcased. The main requirement about
simulation is the ability to animate a model that has
been defined using a Topcased generated editor.
The purpose of the simulator is then to animate the
model so that the user may be able to validate it. We
thus favour interactive simulation and a discrete
event model of computation. Despite these choices,
most of our proposition is general enough to be
applied on a non interactive simulation with other
models of computation.
In Topcased, we consider that the starting point is
the definition of the DSL metamodel and the
existence of a graphical editor built using Topcased
facilities. Unfortunately, this information is not
enough to animate a model. So we first describe
what should be defined to complete the definition of
the DSL. Then, we describe the general architecture
of the simulator that relies on three main tools, an
animator, an event and scenario builder and a
simulation engine. Finally we present the prototype
of the UML2 state machine simulator that is currently
available.

5.1 Definition of additional information

When we want to simulate a UML2 state machine,
i.e. execute one of its models, we first have to
understand and define what the interactions
between the model and its environment are. For
example, the user may want to send signals to the
state machine to see how it reacts. These
interactions are modelled as exogenous events in an
event metamodel. For example, the event “inject a
signal” adds a signal to the set of signals received by
the state machine. All possible events are defined in
a specific metamodel (called the event metamodel).
Aside exogenous events, we also need to define
additional properties that are not part of the UML2
metamodel. For example, we need to know the
current state of each active region, we need to be
able to say whether a transition is firable or not and
we have to store the set of events received by the
state machine. These properties are defined in an
additional metamodel that relies on the UML2
metamodel. We call it the dynamic metamodel, the
initial metamodel being called the static metamodel.
Finally, the user should be able to define a scenario
before the start of a simulation or to save the
scenario corresponding to an interactive simulation.
We have defined a trace metamodel in that purpose.
It defines a scenario as a sequence of events.
So, when defining an executable DSL for dynamic
systems, several aspects have to be dealt with. They
can be captured in the following metamodels (whose
relationships are shown on figure 5):

• The static (or structural) metamodel MMs is the
classical modelling language metamodel. It is
required for any language in Topcased.

• The dynamic metamodel MMd extends MMs
with the attributes, relations and elements
required in order to execute a model.

• The event metamodel MMe defines on one hand
the events that drive the execution of the model
and on the other hand the events which are
produced by the execution of the model, that is
exogenous and endogenous events.

• The trace metamodel MMt records all external
and internal events that occur during the
execution of the model. A trace that only
contains external events defines a scenario.

The metamodel of a DSL, that is its abstract syntax,
may be formalised as the following tuple:

MM = < MMs, MMd, MMe, MMt >.

In the previous definition, we have not yet expressed
the semantics itself, that is the way the model
evolves according to the input events in the
scenario. It will be presented in the next sections as
part of the simulation engine.

Figure 5: Metamodels dependencies

5.2 Model animator

The animator allows the user to control the
animation through a player-like control panel. The
main part of the window shows the model being
animated. As the designer has defined his model
using the Topcased editor, it may be intuitive to
reuse the graphical representation of the model
provided by the editor to show the current state of
the model during animation. Dynamic properties are
thus displayed on the graphical representation of the
model. For example, current states are displayed as
red rectangles the firable transitions as green edges.
This is achieved thanks to simulation components
that spy the changes of dynamic properties defined
in the dynamic metamodel and update accordingly
the graphical view of the model. The main benefit of
this approach is that no modification is required on
the editor configurators that were defined during the
construction of the graphical editors. Animation is
only built atop the editor and takes advantage of the

 Page 7/8

ability to change graphical properties of the editor
widgets and to extend them with decorations.
The animated model may also be inspected in detail
by using the properties view of the Eclipse platform
that is automatically activated when the Topcased
perspective is selected.
Other visualization tools may be started from the
animator but they are not yet implemented.

5.3 Scenario builder

The event metamodel defines the types of event that
may occur during a simulation. It is specific to a
given DSL. For example, for state machines, one
external event consists in injecting a new signal into
the state machine.
A graphical event editor may be useful to trigger
events while animation is running. One possibility is
to replace or complete the editing palette of the
editor by an event builder palette that allows to inject
new events to the execution.
The ability to define a specific graphical user
interface to generate events is certainly a strong
point as discussed in section 3.3. A metamodel of
the graphical components and a link to the triggered
event could be defined in the same way the
Topcased editor generator is done. It has not been
implemented yet and should be specifically designed
for any new DSL.
The event or scenario builder aims to inject events
that will drive the simulation. An interactive event
generator is defined on the main window of the
animator. When the user clicks on the play button,
he is asked for the UML2 signals to inject in the state
machine. The user can save the scenario of all the
events he has interactively injected.
When the animator is started, the user may decide to
load a predefined scenario, for example the one
saved during a previous execution or defined thanks
to a scenario generator.

5.4 Simulation engine

The simulation engine is in charge of updating the
dynamic properties of the animated model according
to one event occurrence. It consists of two main
components. The first one is a generic discrete event
based engine that manages an agenda of all the
identified events ordered according to their
occurrence time. It only relies on the trace
metamodel and thus does not require to be changed
to handle a new DSL. The second component is
specific to the considered DSL. It provides the
execution semantics of the DSL. More precisely, it
defines how the model, in fact dynamic properties,
should be updated according to one event
occurrence. For our current state machines, only two
external events have to be dealt with. The first one is
“inject a signal”. It consists in adding the

corresponding signal to the list of signals received by
the state machine. The second one is “run”. It asks
the state machine to treat the received signals and
thus to evaluate firable transitions and change
current states according to the fired transitions.
The Topcased toolkit relies on the Eclipse
environment. As Eclipse is implemented using the
Java language, Java is the most appropriate solution
for development. EMF provides the required libraries
to read, create and modify models conforming to
Ecore. EMF also provides a code generator (based
on JET templates) that produces Java classes
respecting the Ecore definition of the meta-model.
We have decided to define an ad-hoc simulation
engine. It consists in an Eclipse plugin for the
generic discrete event agenda. A Java interface
defines a method for each exogenous event defined
in the event metamodel of the DSL. This design
decision allows to easily define several semantics for
a given DSL by defining a new implementation of
this interface. Furthermore, it may be used as a way
to take into account semantic variation point that are
generally part of the definition of modelling
languages like UML.
This approach is the most efficient one in term of
memory footprint, running time and initial
development time. However, it produces code that is
very hard to reuse for executing another kind of
model. The modelling language semantics is defined
in a very pragmatic way closely tied to the syntax
and it is very hard to extract a formal representation
suitable to formal proof of correctness for the tools.
Other approaches have been identified in [5] that will
be further investigated.

5.5 Tools interactions

The different models (static, event, trace and
dynamic models) are represented using EMF
(Eclipse Modelling Framework) [3], and stored, either
in memory as Java objects instances of the classes
generated by EMF (or created by the dynamic
reflexive API), or serialized as XMI or XML files.
Topcased relies on a model bus in order to facilitate
the relation between components. The available bus
requires the use of the serialisation approach.
However, this approach is quite costly. So,
communication between the animator, the event
builder and the execution engine is achieved through
the shared in-memory EMF-representation of the
model and relies on EMF-generated observers to
keep a low coupling between those different tools.

5.6 Current prototype

A prototype of the UML2 StateMachines simulator
has been developed. A screenshot of the simulator
running the flashing lights is shown on Figure 6. It
reuses the visualization of the model created while
building the model with the Topcased graphical

 Page 8/8

editor. During simulation, it is possible to inspect the
dynamic information of the model thanks to the
dynamic simulation view. It is especially useful for
the properties that are not graphically presented. A
control view allows to control a simulation with a start
button, a stop button and a step by step button. At
the moment, the simulation is either interactive or
driven by a scenario chosen and loaded when the
simulator is started. A batch mode is also possible.
This mode is useful for scenario driven simulation as
it automatically makes the model evolve according to
the scenario with a short delay between steps so
that the user can see what happens.

Figure 6. Snapshot of the current prototype.

6. Conclusion and Perspectives

Model Driven Engineering is becoming a tool of
choice for the design of critical embedded systems
as it allows to integrate smoothly several modelling
languages, thus providing a better way to manage
the numerous concerns involved in such systems.
The Topcased toolkit aims at providing a framework
integrating existing tools for easily defining new
Domain Specific Modelling Languages (DSML) for
safety critical embedded systems. One key point is
the validation and verification of the produced
systems. For this purpose, simulation and model
animation allows the user to validate his
requirements and the designer to verify that his
model satisfies these requirements. It is therefore of
uttermost importance to ease the integration of
simulators and model animators in the toolkit.
This contribution presents the preliminary results of
the integration of these kinds of tools for the UML2
StateMachines in Topcased. We have presented
discrete event simulation used for developing critical
embedded systems, the proposed simulation archi-
tecture, and insights on how it could be integrated in
a MDE way. The simulation architecture involves
scenarios generation or interactive construction,

model execution, and simulation result exploitation
(either in or off line). This lead to the development of
the first version of the tools that will be integrated in
the next Topcased release synchronised with
Eclipse Ganymede in July 2008.
The next step in the simulation of UML2 State
Machines will be to handle classes and their
instances. An instance will then run the state
machine of its class. In the flashing lights example,
the left and the right lights are both instances of the
same FlashingLight class. We will then be able to
handle states of instances that will be updated

according to the corresponding UML2
actions (used in the activities associated to
transitions). The state of instances will also
be used in transition guards.
The process proposed in this paper to add
simulation to a DSML is currently used to
provide animation capabilities for the SAM
language (a component and automata
based language) and an executable
extension of the SPEM process description
language defined by the OMG. These
experiments should point out generic
components (like the discrete event
simulation engine or the trace metamodel).
We will also provide tools to automate the
generation of simulators as it is already
done for the construction of graphical
editors thus allowing a model driven
engineering approach to the integration of

simulators.

7. References

[1] Topcased project, 2007 http://www.topcased.org/
[2] Eclipse website, 2007. http://www.eclipse.org/.
[3] EMFT (Eclipse Modeling Framework Technology)

project, 2007. http://www.eclipse.org/modeling/emft/.
[4] GMT (Generative Modeling Technologies) project,

2007. http://www.eclipse.org/gmt/.
[5] CNRS-IRIT and ONERA-CERT. Synthesis on

Simulation Needs. Technical report D01 , WP2,
Topcased project, 2006.

[6] CNRS-IRIT and ONERA-CERT. Synthesis on Methods
and Tools for Simulation. Technical report D02, WP2,
Topcased project, WP2, 2006.

[7] B. Ziegler, H. Prahofer, and T. Kim. Theory of Modeling
and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. 2nd Edition,
Academic Press, 2000.

[8] Ptolemy II Heterogeneous Modelling and Design, 2007.
/http://ptolemy.berkeley.edu/ptolemyII/.

[9] Object Management Group, Inc. Unified Modeling Lan-
guage (UML) 2.1.1 Superstructure Specification, Feb.
2007. http://www.omg.org/docs/formal/07-02-05.pdf.

[10] Eclipse UML2 plugin website, march 2007.
http://www.eclipse.org/uml2/.

