An Alternative Strategy for Microtooling for Replication Processes
Résumé
Microproduction is one of the fastest-growing fields in industry, with new demands from the market increasing every day. This work presents an alternative microtooling strategy, which was applied to a microfluidic device case study. This original strategy for a replication process, like hot embossing or injection molding, is based on the combination of the micro-electro-discharge machining (MEDM) process and an electrode machined with water-jet technology (WJ). The final tool was tested with a hot-embossing process by making some test parts in polymers. The process is considered in its global perspective, starting with the fabrication of the tool electrode that will be used to produce the mold involved in the final cast of the microproduct. The addressed issue consists of identifying the capability of each process and then choosing the machining process parameters that will allow the best process combination to obtain the final microproduct. During this investigation several ideas emerge. They should help to identify the most advantageous characteristics of the involved processes in order to develop a reliable and cost-effective tooling strategy, which are discussed in this contribution. Additionally, an insight is given into similar research activities at the University of Ljubljana.