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Lattice gas model in random medium and open boundaries:

hydrodynamic and relaxation to the steady state. *

Mustapha Mourragui ' and Enza Orlandi 2

Abstract We consider a lattice gas interacting by the exclusion rule in the presence of a random field
given by i.i.d. bounded random variables in a bounded domain in contact with particles reservoir at different
densities. We show, in dimensions d > 3, that the rescaled empirical density field almost surely, with respect
to the random field, converges to the unique weak solution of a non linear parabolic equation having the
diffusion matrix determined by the statistical properties of the external random field and boundary conditions
determined by the density of the reservoir. Further we show that the rescaled empirical density field, in the
stationary regime, almost surely with respect to the random field, converges to the solution of the associated

stationary transport equation.

1 Introduction

In the last years there has been several papers devoted in understanding macroscopic properties of non
equilibrium systems. Typical examples are systems in contact with two thermostats at different temperature
or with two reservoirs at different densities. A mathematical model of open systems is provided by stochastic
models of interacting particles systems performing a local reversible dynamics (for example a reversible
hopping dynamics) in a domain and some external mechanism of creation and annihilation of particles on
the boundary of the domain, modeling the reservoirs, which makes the full process non reversible. The
first question that one might ask for these systems is the derivation of the hydrodynamic behavior (law of
large number) for the locally conserved field in the non stationary and stationary regime. There has been
important classes of models, see for example [ELS1,2] , [DFIP], [KLO] in which it has been proved the
law of large numbers for the empirical density in the stationary regime. Typical generic feature of these
systems is that they exhibit long range correlation in their steady state. These long range correlations have
been calculated from the microscopic dynamics only in very few cases; mainly in the case of the symmetric
exclusion process, see [Spl], the asymmetric exclusion process, see [DEL], and in the weakly asymmetric
exclusion process, see [DELO]. More recently breakthroughs were achieved analyzing the large deviations
principle for the stationary measure. We refer to [BSGJL] for a review of works on the statistical mechanics
of non equilibrium processes based on the analysis of large deviations properties of microscopic systems.

In this paper we focus on the first step. We derive the macroscopic limit in the stationary and not
stationary regime (hydrodynamic limit) for a particles system evolving according to local- conservative

dynamics (Kawasaki) with hard core exclusion rule and with rates depending on a quenched random field
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in a cylinder domain d > 3 in which the basis, denoted I', are kept at different densities. The restriction
on the dimensions is only technical. We comment on this later. The rates are chosen so that the system
satisfies a detailed balance condition with respect to a family of random Bernoulli measures (the random
field Ising model at infinite temperature). To model the presence of the reservoirs, as in previous papers, we
superimpose at the boundary, to the local-conservative dynamics, a jump dynamics (creation and destruction
of particle). The rates of the birth and death process depend on the realizations of the random field and are
chosen so that a random Bernoulli measure with a suitable choice of the chemical potential is reversible for
it. This latter dynamic is of course not conservative and keeps the fixed value of the density on the boundary.
There is a flow of density through the full system and the full dynamic is not reversible. The bulk dynamic
models electron transport in doped crystals. In this case the exclusion rule is given by the Pauli principle
and the presence of impurities in the crystals is the origin of the presence of quenched random field, see
[KW]. The presence of the random field together with the exclusion rule makes the problem high not trivial.
The transport properties of such systems in the case of periodic boundary condition on I' has been studied
by Faggionato and Martinelli, [FM]. They derived in d > 3, the hydrodynamic limit and gave a variational
formula for the bulk diffusion, equivalent to the Green-Kubo formula. They proved that the bulk diffusion
is a deterministic quantity depending on the statistical properties of the random field. Later, Quastel [Q]
derived in all dimensions for the same model investigated by [FM] the hydrodynamic limit for the local
empirical density. Applying the method proposed by Quastel, we could extend our results in all dimensions.
Since our aim is to understand the role of the randomness in the non stationary and stationary state and
not the role of dimensions in the bulk dynamics we state and prove our results in d > 3. Dynamical Large
deviations for the same model and always with periodic boundary conditions have been derived in [MO] as
special case of a more general system discussed there. The bulk dynamics is of the so-called nongradient
type. Roughly speaking, the gradient condition says that the microscopic current is already the gradient
of a function of the density field. Further it is not translation invariant, for a given disorder configuration.
In order to prove the hydrodynamic behavior of the system, we follow the entropy method introduced by
Guo, Papanicolaou and Varadhan [GPV]. It relies on an estimate of the entropy of the states of process with
respect to a reference invariant state. By the general theory of Markov Processes the entropy of the state
of a process with respect to an invariant state decreases in time. The main problem is that in the model
considered the reference invariant state is not explicitly known. To overcome this difficulty we compute the
entropy of the state of the process with respect to a product measure with slowly varying profile. Since this
measure is not invariant, the entropy does not need to decrease and we need to estimate the rate at which it
increases. This type of strategy has been used in previous papers dealing with the same type of problems, see
[KLOJ] and [LMS], which considered generalized exclusion process of non gradient type. The main difference
with the previous mentioned papers is the presence of the randomness in the model considered here. This
forces to take on the boundary a jump process depending on the external random field. Important step
to derive the final results is then a convenient application of the ergodic theorem. Further we show that
the empirical density field obeys a law of large numbers with respect to the stationary random measures
(hydrostatic). This is achieved proving that it is possible to derive the hydrodynamic for the evolution of the
empirical measures starting from any initial particle configurations distributed according to the stationary

measure, even though it is not possible to identify the profile. Then we exploit that the stationary solution of
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the parabolic nonlinear equation is unique and is a global attractor for the evolution. These two ingredients
allow to conclude. Similar strategy for proving the hydrostatic is used in the paper in preparation by Farfan

Vargas, Landim and Mourragui, [FLM].

2 The model and the main results

2.1. The model

We consider the d— dimensional lattice ZZ¢ with sites = = (21,...,x4) and canonical basis £ = {e1,...,eq}
and we assume in all the paper that d > 3. We denote by A := [—~1,1] x T?!, where T*"! is the (d — 1)-
dimensional torus of diameter 1 and by I' the boundary of A.

Fix an integer N > 1. Denote by Ay = {—N, -+, N} x T‘Ii\fl the cylinder in Z¢ of length 2N + 1 with
basis the (d — 1)-dimensional discrete torus T4 * and by I'y = {z € Ay |z; = £N} the boundary of Ay.
The elements of Ay will be denoted by letters z, vy, ... and the elements of A by u,v,....

For a fixed A > 0, let Xp = [—A,A}%d be the set of disorder configurations on Z%. On ¥ we define
a product, translation invariant probability measure IP. We denote by IE the expectation with respect to
IP, and by a = {a(z), © € Z*}, a(zx) € [-A, A], a disorder configuration in Xp. A configuration o € ¥p
induces in a natural way a disorder configuration ay on Ay, by identifying a cube centered at the origin
of side 2N + 1 with Ay. By a slight abuse of notation whenever in the following we refer to a disorder
configuration either on Ay or on Z% we denote it by a. We denote by Sy = {0,1}*~ and S = {0, I}Zd
the configuration spaces, both equipped with the product topology; elements of Sy or S are denoted by 7,
so that n(x) = 1, resp 0, if the site = is occupied, resp empty, for the configuration 7. Given o € Xp, we

consider the random Hamiltonian H* : Sy — IR,

)=~ Y ale)n(). (2.1)

T€EAN

We denote by ,uOJQ’A the grand canonical random Gibbs measure on Sy associated to the Hamiltonian (2.1)

with chemical potential A € IR, i.e the random Bernoulli product measure

[a(@)+AIn(x)
. }
. (2.2)

o = 11 {Gemmry

TEAN

When A = 0, we simply write u%. We denote by u®*(:) and when A = 0, u(-) the measure (2.2) on the
infinite product space S. Moreover, for a probability measure p and a bounded function f, both defined
on S or Sy, we denote by E#(f) the expectation of f with respect to u. We need to introduce also the
canonical measures z/g"N ,

veN () = M LD ne = plAn)

TEAN

for p € [0, ﬁ7 ..., 1]. Tt is well known [CM] that the canonical and the grand canonical measures are

closely related if the chemical potential A is chosen canonical conjugate to the density p, in the sense that
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the average density with respect to /ﬁv’)‘ is equal to p. So as in [FM] one can define the random empirical
chemical potential and the annealed chemical potential Ao(p). To our aim it is enough to consider Ag(p).

For p € [0, 1], the function Ag(p) is defined as the unique A so that

IE Un(o)du“(n)] =IE {m} =p. (2:3)

We will consider as reference measure the random Bernoulli product measure VZ‘(’_) on Sy defined for positive

profile p: A — (0,1) by

VO"N(U) _ H {e[o‘(””)“‘O(P(I/N))]n(x) }
e() elal@) X0 (p(@/N)] 1 1)

TEAN

(2.4)

if p(-) = p is constant, we shall denote simply Va’_])v

() = z/g“N . We denote by n*¥ the configuration obtained

from 7 by interchanging the values at = and y:

and by n* the configuration obtained from 7 by flipping the occupation number at site z:

n*(z) = (2.6)

{ n(z) if  z#uz
1—n(x) if z=ux.

Further, for f: Sy — IR, z,y € Ay, we denote

(Vayf)n) = f(n™) = f(n).

The disordered exclusion process on Ay with random reservoirs at its boundary I'y is the Markov process

on Sy whose generator Ly can be decomposed as
Ly =LY+ LY, (2.7)
where the generators £, £4; act on function f: Sy — IR as

CHm= S Cnaten(VasreH))] (2.8)

e€f x€AN,z+eEAN

where e is a generic element of £, the rate Cy is given by

Cn(z,y;m) = C(z,y5m) = eXP{ - 7(%,?,1;1“)(77)} ; (2.9)
and
(L% ) () = > C*x/Nn)[f(n") = f(n)] - (2.10)

zxel'ny
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To define the rate C®(x/N,n) we fix a function b(-) on T, representing the density of the reservoirs. We assume
that b(-) is the restriction on I' of a smooth function 7(-) defined on a neighborhood V of A, v: V — (0,1)

and y(u) = b(u) for u € I'. The rate C? is chosen so that £%; is reversible with respect to Z/?;(])V

(@) + Ao (b(F)) M} (2.11)

I (1 ) exp { T2

The first term in (2.11) is the creation rate, the second one is the annihilation rate. Next we recall the

C"(a/N,m) = () exp { -

relevant properties of Cn(z,y;n):
a) detailed balance condition with respect to the measure (2.2),

b) positivity and boundedness: there exists a > 0 such that
a ' <On(z,y;m) < a, (2.12)
¢) translation covariant:
Cy(z,y;m) =CR%(x — 2,y — z12m) = .Cx(x — 2,y — 251) (2.13)
where for z in Z%, 7. denotes the space shift by z units on S x ¥p defined for all n €S, a € Xp and

g:SxXp — IR by

(rn) (@) = n(z + 2), (r20)(2) = (x + 2), (T29)(n, @) = g(7=, T201) - (2.14)

We omit to write in the notation the explicit dependence on the randomness «, unless there is an ambiguity.
The process arising from the full generator (2.7) is then a superposition of a dynamics with a conservation
law (the Kawasaki random dynamics) acting on the whole Ay and a birth and death process acting on T
Remark that if b(-) = by for some positive constant by, then the generator Ly, see (2.7), is self-adjoint in
L? (l/bof) ’N) and the measure 1/;;; N is the stationary measure for the full dynamics L. In the general case,
when b(+) is not constant, since the Markov process on Sy with generator (2.7), is irreducible for all N > 1,

there exists always an unique invariant measure but in general cannot be written in an explicit form.

2.2. The macroscopic equation

The macroscopic evolution of the local particles density p is described by the quasi linear parabolic
equation
dup = V- (D(p)Vn),
p(0.:) = po, (2.15)
pt, )|, = b() for t>0,
where D(p) is the diffusion matrix given in (2.17), b(-) € C*(T) represents the interaction with the reservoirs

appearing as boundary conditions to be imposed on the solution, see its definition before (2.11), and py :
A —[0,1] is the initial profile. The diffusion matrix is the one derived in [FM]. To define it, let *

G ={g:S xAp — IR; local and bounded } , (2.16)

*

A function g : S X Ap — IR is local if the support of g, Ag, i.e. the smallest subset of Zd such that g depends only

on {(U(I), Oé(l‘)) HARS Ag}, is finite. The function g is bounded if Sup,, sup,, |g(77, Oé)‘ < 0.
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and for g € G, Ty(n) = X, c 74 (729) (1, @). The T'y(n) is a formal expression, but the difference Vo I'y(n) =
Ly(n%¢) —Ty(n) for e € € is meaningful. For each p € (0,1), let D(p) = {D; ;(p), 1 < 14,5 < d} be the

symmetric matrix defined, for every a € IR?, by the variational formula

d

0 giIelg; > IE {ENQ’AO(’)) (C’O(O,ei;n){aivoﬁm(()) + (v07eirg)(n)}2>] (2.17)

(a- D(p)a) =

where Ag(p) is defined in (2.3), x(p) is the static compressibility given by

\(p) = IE [ [ n0Pane i~ ( n(O)dW°<P><n>)Q] , (2.18)

A0 (p)

for a,b € IR, (a - b) is the scalar vector product of a and b and, recall, E* (+) is the expectation with

respect to u®*o(P) see after (2.2), the random Bernoulli product measure on S with annealed chemical
potential Ag(p). In Theorem 2.1 of [FM] it has been proved, for d > 3 and for p € (0,1), the existence of
the symmetric diffusion matrix defined in (2.17). Further it has been proved that the coefficients D; ;(-) are
nonlinear continuous functions in the open interval (0,1) and there exists a constant C' > 1, depending on

dimensions and bound on the random field, such that

% <D(p)<CL pe(0,1) (2.19)

where T is the d x d identity matrix. One expects the matrix D(-) to be extended continuously to the closed
interval [0,1] and actually to be a smooth function of p, [KW]. We will assume all trough the paper that
D(-) is well defined in [0,1] and Lipschitz in the open interval. The diffusion matrix D(p) in a solid, in a

regime of linear response, is linked to the mobility £o(p), see [Sp], via the Einstein relation

D(p) = 5o (p)x(p) - (2:20)
The x(p) is a smooth function of p in [0, 1] and it can be easily proven from (2.18) that
1 1
U =p)=x(p) sp(l=p);  Hpl=p)L<a(p) < Clp(l~p), (2.21)

where C' is a constant that may change from one occurrence to the next.

Weak solutions By weak solution of (2.15) we mean a function p(-,-) : [0,T] x A — IR satisfying
(IB1) p € L?((0,T); H*(A)) :

/OT ds(/A Il Vo(s,u) HQdu) < 00 (2.22)

(IB2) For every function G(t,u) = Gy(u) in C22([0, T]x A ), where A=] = 1,1[xT%"! and Ch2([0,T)x A )
is the space of functions from [0,77]x A to IR twice continuously differentiable in A with continuous time

derivative and having compact support in A we have
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T
/A du{Cr(w)p(T, u) — Go(w)p(0,u)} — /O ds /A du (9,G.) (w)p(s, )

= —/OTds{/AduD(p(s,u))Vp(s,u)-VGS(U)} ;

(IB3) For any t € (0,T], Tr(p(t,-)) = b(-), a.e..
(IB4) p(0,u) = po(u). a.e.

Notice that, since the original particle model cannot have more than one particle at a lattice site any
solution p of (2.15) is bounded between 0 and 1. The existence and uniqueness of the weak solution of (2.15)
when (2.19) holds and D(-) is Lipschitz continuous for p € (0, 1), can be done using standard analysis tools.
We refer to [LSU], chapter V or [DL]. Further, one immediately obtains by the characterization of H~*(A),
see for example [E], page 283, that 0,p € L?(0,T; H '(A)). Recall that H~'(A) is the dual of Hj(A), i.e.
the Banach space equipped with the norm

ol = sup {(o. 7)1 gy < 1 (2.23)

Stationary solution We denote by p the stationary solution of (2.15), i.e. a function from A — [0, 1] so that

p e HY(A), for G e C2(A ) we have

/A du D(p(u))Vp(u) - VG(u) =0,
Te(p()) = b(), ace.

(2.24)

2.8. The main results

For any T' > 0, we denote by (7:):c[o,r] the Markov process on Sy with generator N?Ly starting from
no = 1 and by P, := P} its distribution when the initial configuration is 7. We remind that we omit to write
explicitly the dependence on . The P, is a probability measure on the path space D([0,T],Sy), which we
consider endowed with the Skorohod topology and the corresponding Borel U—algebra Expectation with
respect to P,, is denoted by E,,. If uY is a probability measure on Sy we denote P u~ (- = | SN N(dn)
and by E,~ the expectation with respect to P,~. For ¢ € [0,T],n € SN, let the emplrlcal measure 7rt be
defined by

m () = 7 (dusme) = Nd > (@) duyn(du) | (2.25)

TEAN

where d,(+) is the Dirac measure on A concentrated on u. Since n(z) € {0, 1}, relation (2.25) induces from
P~ a distribution @,~ on the Skorohod space D([0,T], M1(A)), where M;(A) is the set of positive Borel
measures on A with total mass bounded by 1, endowed with the weak topology. Denote by MY(A) the subset

of My (A) of all absolutely continuous measures w.r.t. the Lebesgue measure with density bounded by 1

MO(A) = {7 € My(A) : 7(du) = p(u)du and 0<p(u) <1 ae },
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MO (A) is a closed subset of Mj(A) endowed with the weak topology and D([0,T], MY(A)) is a closed subset
of D([0,T], M1(A)) for the Skorohod topology. To state next theorem we need the following definition.

Definition Given a Lebesgue absolutely continuous measure p(u)du € MY(A), a sequence of probability
measures (uV)n>o on Sy is said to correspond to the macroscopic profile p if, for any smooth function G
and 6 >0

lim u {‘Nd Z G(z/N)n /G du >6} (2.26)

N—o0
TEAN

Theorem 2.1 Let d > 3 and assume that D(p) can be continuously extended to the closed interval [0,1].
Let iV be a sequence of probability measures on Sy corresponding to the initial profile pg. Then, IP a.s. the
sequence of probability measures (Q,~)n>o is tight and all its limit points Q* are concentrated on p(t, u)du,
whose densities are weak solutions of the equation (2.15). Moreover if D(-) is Lipschitz continuous for
p € (0,1), then (Q,~)N>0 converges weakly, as N 1 oo, to Q*. This limit point is concentrated on the

unique weak solution of equation (2.15).

Denote by %" the unique invariant measure of the Markov process (1t )teo, ) with generator N 2Ln. We

have the following;:

Theorem 2.2 Let d > 3, assume that D(p) can be continuously extended to the closed interval [0,1] and

Lipschitz continuous for p € (0,1). For every continuous function G : A — IR and every § > 0,

lim VQN{‘Nd 3 G(a/N)n /G du >5} P =1, (2.27)

TEAN

with p(-) satisfying (2.24).

3. Strategy of proof and basic estimates

3.1. The steps to prove Theorem 2.1

To prove the hydrodynamic behavior of the system we follow the entropy method introduced by [GPV].
As explained in Section 1, since the reference invariant state is not explicitly known, we compute the entropy
of the state of the process with respect to a product measure with slowly varying profile y(-). We prove
in Lemma 3.8 that, provided 7(-) is smooth enough, C! suffices, and takes the prescribed value b(-) at the
boundary, the rate to which the entropy increases is of the order of the volume, N?, i.e the same order of
the entropy and for finite time 7" this implies only a modification of the constant multiplying N<.

We divide the proof of the hydrodynamic behavior in three steps: tightness of the measures (Q,~)n>1,
energy estimates and identification of the support of @* as weak solution of (2.15) with fixed boundary
conditions. We then refer to [KL], Chapter IV, that presents arguments, by now standard, to deduce the
hydrodynamic behavior of the empirical measures from the preceding results and the uniqueness of the
weak solution of (2.15). We state without proving the first two steps, tightness of the measures and energy

estimates. The proof of them can be easily derived from results already in the literature, which we refer to.
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Proposition 3.1 (Tightness) For almost any disorder configuration o € ¥p, the sequence (Q,~)n>1 is
tight and all its limit points Q* are concentrated on absolutely continuous paths 7(t,du) = p(t,u)du whose

density p is positive and bounded above by 1 :

Q*{w : w(t, du) = p(t,u)du} =1, Q*{w L0 < plt,u) < 1} ~1. (3.1)

Tightness for non gradient systems in contact with reservoirs is proven in a way similar to the one for non
gradient systems with periodic boundary conditions, see [KL], Chapter 7, Section 6. The main difference
relies on the fact that for systems in contact with reservoirs the invariant states are not product probability

measures and some additional argument is required. This can be proven as in [LMS], Section 6.

In the next step we prove that for almost any disorder configuration o € ¥ p, every limit point Q* of the

sequence (Quy)N>1 is concentrated on paths whose densities p satisfy (2.22).

Proposition 3.2 For almost any disorder configuration o € Xp, every limit points Q* of the sequence

(Qu~)N>1 is concentrated on the trajectories that satisfies (1B1).

The proof can be done applying arguments as in Proposition A.1.1. of [KLO]. However the latter proof

requires an application of Feynman-Kac formula, for which we have to replace our dynamic (2.7) (cf. [FM]).

We then show that IP— a.s. any limit point Q* is supported on densities p satisfying (2.15) in the weak
sense. For £ € IN, x € Ay, with —N + ¢ < x; < N — /¢ denote by n(z) the average density of i in a cube of
width 2¢ 4+ 1 centered at x

1@ = G 3w (32

For a function G on A, e € £, 9N G denotes the discrete (space) derivative in the direction e
(aévG)(x/N) = N[G((z+¢€)/N)—G(xz/N)] with = and x+eé€ Ay, (3.3)
and to short notation we denote by 6,]6\’6' = aé\iG for 1 <k <d.

Proposition 3.3 Assume that D(p) defined in (2.17) can be continuously extended in [0,1]. Then, for

almost any disorder configuration o € Xp, any function G in C12([0,T]x /i) and any 6 > 0, we have

lim sup lim sup lim sup P, ~ (|B§’CN| > 5) =0, (3.4)

c—0 a—0 N—oo
where

T
BEN = N“1 S G(T,a/Nyr() — N~ S G(0,2/N)no(a) - N4 S / 0,G(s,/N)na(x)ds

zEAN TEAN rEAN

+ Z /OT dsN'=d Z (0Y'G)(s,z/N) {Dk,m (ULGN]($)>

1<k,m<d TEAN

X {(20)_1 [nL“N} (4 cNep) — nloN (z — cNem)} }} .
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The proof is given in Subsection 3.3.

The last step states that I[P— a.s., any limit points Q* of the sequence (Q,~)n>1 is concentrated on the

trajectories with fixed density at the boundary and equal to b(-):

Proposition 3.4 IP— a.s., any limit point Q* of the sequence (Q,~)n>1 is concentrated on the trajectories
that satisfy (IB3).

The proof is given in Subsection 3.4.
3.2. Basic estimates

Lemma 3.5 (Ergodic lemma) Let V : ¥p x A — IR a bounded function, local with respect to the first
variable and continuous with respect to the second variable, that is for any a € Xp the function u — V(a, u)
is continuous and there exists an integer £ > 1 such that for all u € A the support of V(-,u) C {—¢,--- £}
Then

lim N4 Z V(a,x/N) = /ZE IP as.. (3.6)

N —oc0
TEAN
Proof. We decompose the left hand side of the limit (3.6) in two parts

NS mVlea/N) = NS (nViea/N) - EV(.a/))

TEAN TEAN

+ NN E[V(,2/N)] / E[V
TEAN
By the stationary of IP and the continuity of u — ZE[V(~7 u)]7 the second term of the the right hand side of

the last equality converges to 0 as N — co. The first term converges to 0, from Chebychef inequality and

the classical method of moments usually used in the proof of strong law of large numbers. O

We start recalling the definition of relative entropy, which is the main tool in the [GPV] approach. Let
VZL("I)V be the product measure defined in (2.4) and p a probability measure on Sy. Denote by (u|u O ™) the

relative entropy of u with respect to Vg(’,J)V:

1) = s { [ ntan) ~og [ SO an)}

where the supremum is carried over all bounded functions on Sy. Since VZ‘(’.J)V gives a positive probability to
each configuration, u is absolutely continuous with respect to VZ‘("J)V and we have an explicit formula for the

entropy:

o dp
H(,u|1/p(’.1)v) = /log { dya(’J)v } du . (3.7)
o(-

Further, since there is at most one particle per site, there exists a constant C, that depends only on p(-),
such that for all a
H(plvo)) < oN* (3.8)
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for all probability measures p on Sy (cf. comments following Remark V.5.6 in [KL]).

It is well known that one of the main step in the derivation of hydrodynamic limit for the empirical
density is a super exponential estimate which allows the replacement of local functions by functionals of
the empirical density. One needs to estimate expression such as < Z, f >,~ in terms of Dirichlet form
< =Ly \/W7 \/m >,~, where Z is a local function and < -, >,~ represents a scalar product with
respect to some state p/V. Since in the context of boundary driven process the invariant state is not explicitly
known and we fix as reference measure some product measure v, see Lemma 3.6, there are no reasons for
< —Ln m, m >, to be positive. Next lemma shows that this expression is almost positive. Let
DY (-,v), D4 (-, v) be functionals from h € L?(v) to IR™:

Dh(hr) =55 S [ Oxtaatan (bore) - hm)’ dvia).

e€$ z,x+e€EAN

Y / (/N 1) (h(n®) — h(n))? du(n) .

:DGFN

Lemma 3.6 Letv: A — (0,1) be a smooth function such that 7|F = b(:). For any a € ¥p and a > 0
there exists a positive constant Co = Co(A, ||[Vy|so) so that for any f € L? (v Vol )

[t o) < (1 DR + QN2 Dy (310

f(n)/ilz’vf( )dus(];[( ) = DN (f7 7( ) ) (3.11)

Proof. By (3.9) ,

PR v () = ~DR(f, %)
SN

ST [ Catnat ) (e DO s+ e ).

eeg z,x+e€EAN

where
Ry(z,z+e;n) = (vx,x+en(x)) (e(NilaéV/\O(’Y(z/N))) o 1) :

By the elementary inequality 2uv < au? 4+ a~'v? which holds for any a > 0, for any z,z +e € Ay

[ O+ ) (Tas NI Raa, 4 e o)

1 @ T, r+e «
< o [ Ontoat en)(Tumeed P )+ 5 [ Ot + cam f7 P (Bl + )P ()

To conclude the proof it remains to use Taylor expansion and an integration by part in the second term of
the right hand side of the last inequality. On the other hand, since 7|F = b(-) the measure 1/,(;(1;[ is reversible

with respect to L% . A simple computation shows that

LY F)dve (n) = ~DR (.02
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O

Lemma 3.7 Let p,pp : A — (0,1) be two smooth functions. There exists a positive constant Clj =

CHA, IV pollso, | Vpllso) such that for any probability measure u™N on Sy and for any o € ¥ p,
0

dpN duN _

0 o, N 0 o,N 1 nrd—2

D ( /d,,a(’f)V’”ﬂO) < 2% ( /dya’éV)’Vpo(?) + CINE? (3.12)
148 pol-

dv N
Proof. Denote by f(n) = d‘iﬁ;)v (n) and h(n) = ddfff;,) (n). Since f(n) = h(n) du‘jﬁ;()N)((Z)) we obtain for e € £
p(- po (- p(-

and z,z + e € Ay the following

[ Ontaat ) [Vonee/F)] dv) o

2
= | COntwwt e [VROPH) Rae, 2 4 e5m) + Ve VR) | i)

2
<2 Cnloaten)|VasseViln)] agili o

+2 [ On(ox+emh(n™ ) [Ro(w, @ + e;m)] “dvt ()

SN
where
Ry(z, 2 + e;n) = exp { (1/2)N 719 o(p(z/N)) = Xo(po(2/N))[Vaaren(@)} —1.
We conclude the proof using Taylor expansion and integration by parts. O

Denote by S} the semigroup associated to the generator N2£Ly. Given a probability measures u’¥ on Sy
denote by u(¢) the state of the process at time ¢ : p™(t) = uNSN.
Recall that v: A — (0,1) is a smooth profile equal to b at the boundary of A. Let hY¥ be the density of

u™N (t) with respect to 1/?{‘(1;[ Let L7 y be the adjoint of Ly in L2(1/$‘(];7) It is easy to check that
Ol = N2L% yhi . (3.13)

. . N . . . .
Notice that Ei; N is not a generator because 1/3(") is not an invariant measure for the Markov process with

generator L. We denote by Hy (t) the entropy of pV(t) with respect to 1/::(’,1;,, see (3.7),

Hy () = Hu (@)Y, (3.14)

Lemma 3.8 There exists positive constant C = C(||V7|leo) such that for any a > 0 and for any o € X p

gNd
a

O (1) < ~2(1 = a)N*DR( WY v5)) = 2N D (1Y) +

9

Proof. By (3.13) and the explicit formula for the entropy we have that

O Hy(t) = N? / hyY Ly log (b)Y )duj(’?)v .
S~
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Using the basic inequality a(logb — log a) < ,(\f — \/5)2 + (b — a) for positive a and b, we obtain

OuHiy(t) < —2N*DR (/) - 2N DR (VR )

(3.15)
+ N? / LY v + N? / L5 hN v N
SN SN

() -
Since y(u) = b(u) for u € T, uj(];] is reversible with respect to £% . This implies that

N
i Liht'dvs = 0.
N

We shall now obtain a bound for fSN E?Vhivdl/z‘(’.];[ in terms of DY;. Denote by R : IR — IR the function

defined by R(u) = e* —1 —u . A standard computation shows that
N2 /S LYY vy
N

= N? 26; EA /CN(% o emhy ()R(NTOX Mo (Y (@/N) Ve aren(@)dvSe] () (5 16)

ANY Y @M/ [ Wews b ) )

ecf x,x+e€EAN

where Wy, 41.(n) is the current over the bond (z,z +e) :

Wawse(n) = On (@2 + es) [n(x) — n(x +¢)] . (3.17)

We will often omit to write the dependence of Wy, ,4.(n) on N and n. By Taylor expansion and the elementary
inequality |R(u)| < “;e““, we obtain using the fact that  is smooth and hY is a probability density with
respect to V;l(’.];[, that the first term of the right hand side of the (3.16) is bounded by C' N for some positive
constant C'. On the other hand integrating by part, applying the same computations as in Lemma 5.1 of
[LMS], we obtain that there exists a constant Cy = C(||VY|leo) so that for any a > 0

1 2
/Wwwﬂhydyf;("];, < E/CN(x,x+e;77) (Vm,ﬁe\/hi\[) dy;x(’.l;f—&—C’o{a—f—N—l}

forx,x +e€ Apn. O

For z € Ay, M € IN denote by Aps(z) the intersection of a cube centered at z € Ay of edge 2M + 1 with
AN, i.e

For probability measure vV on Sy, denote by D?W,z(' ,v™) the Dirichlet form corresponding to jumps in
AM(Z)

D) = 5 % [ Cnlwat an)(Tamsed )2ar ). (319)
z,x+e€Ap(z)
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Similarly, for z € I'y define D?\/l,z(' ,vN) the Dirichlet form corresponding to creation and destruction of

particles at sites in I'y which are at distance less than M from z :

2

Dhpofv™) = 5 5 [N ror) - rn) o) (3.20)

zel NNAM(2)

Fix any z € I'y denote by f; N the Radon-Nikodym derivative of u¥ (¢) with respect to V&’ZI\//N), the random
Bernoulli measure on Sy with constant parameter equal to b(5). Recall that we denoted by hY the Radon-
Nikodym derivative of pV(¢) with respect to I/S(I;/ and that b(%) = v(%) for z € I'. We have the following

result.

Lemma 3.9 Take M € IN, M < N. There exists a positive constant Co = C(||V7||so) depending only on
() such that for any z € Ty

z, a, Md
D?M,z(ﬁ l/b(z]\/]N)) < 2DR4,Z(W? ) +Co
b 4N a,N b N MdJrl
DZVI,Z(F’ b(z/N)) < 2DM,Z(\/Z7 ) + C'O

The proof is similar to the proof of Lemma 3.7.
3.3. Proof of Proposition 3.3
We prove in this section Proposition 3.3. Let Q* be a limit point of the sequence (Q,~)n>1 and assume,

without loss of generality, that IP— a.s., Q,~ converges to Q*. Fix a function G in C}2([0,7]x /O&) For
a € Qp consider the P,~ martingales with respect to the natural filtration associated with (1¢)¢cjo,77s
ME = MEN* and NC = NEN* t € [0,T], defined by

t
MtG:<7r§V,Gt>—<7réV,Go>—/( N 0,Gs > +N?Ly <7l Gy > ) ds
0 (3.21)

t
NE (MtG)2—/{N2£°‘N(<7r§V,GS>) —2<aN Gy > N Ly <7V, G, >}d
0

A computation of the integral term of N shows that the expectation of the quadratic variation of MY

vanishes as N T 0. Therefore, by Doob’s inequality, for every § > 0, IP = 1,

lim P, | sup |[MZ| >8] =0. (3.22)
N—oo 0<t<T

Thanks to (2.13) and since for any s € [0,7T] the function G5 has compact support in li, a summation by

parts permits to rewrite the integral term of ME as

t t d
[ <mdiocsds + [ (NI S @G @/NWonea 02 Y. (3.23)

k=1xz€AN
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where the current Wy, 44, is defined in (3.17). To localize the dynamics define for any 0 < r < 1

A =[—r,7] x T4, Ay ={(z1,- - 2q) €Ay : —rN <21 <rN},

(3.24)
Iv={x€AN : x1==%rN}
Set, for0<a<c<1l, k=1,...,d,
d
V" (n,0) = NWoe, + Y Diem (n[“m (0)) {(26) [ [N (cNey,) — n[am(_cNem)} } . (3.25)

m=1

Next theorem is the main step in the proof of Proposition 3.3.

Theorem 3.10 Assume that D(-) defined in (2.17) can be continuously extended in [0,1]. Then, IP =1,

for any G € CL*(]0, T]x Ji),

limsuplimsuplimsupEﬂN ‘N / Z Gs(z/N) TIVNCCL(T’S, )dSH = (3.26)

c—0 a—0 N—o0 TEAN

fork=1,....d.

Proof. Let 0 < < 1 such that for any ¢ € [0,77], the support of the function G is a subset of A(;_z). Fix
a smooth function vg: A — (0,1) which coincides with b at the boundary of A and constant inside A(;_g).
Denote by Z,iv’c’a(G,n) the quantity

2 (Gn) = N4y Gla/N)m Vi (0, a)

TEAN

Since the entropy of N with respect to V:e’?]) is bounded by Cy|A x| for some finite constant Cy, by the
entropy inequality, the left hand side of (3.26) is bounded above by

C a, ('
Ea T BN _logE, 3;& exp BNd‘/ ZN s,ns)ds‘” (3.27)
for any positive B. Since el*l < e* 4+ =% and limsup N~%log{an + by} < max{limsup N ?logay ,
limsup N~¢log by }, we may remove the absolute value in the second term of (3.27), provided our estimate

remains in force if we replace G by —G. By the Feynman-Kac formula,

1 d N,a,c 1 r
B IOgE j‘;el(v) [exp {BN /O Zk (Gmﬁs)dsH BNd / )‘N,c,a(Gs) ds ;

where Ay ..o (Gy) is the largest eigenvalue of the N2{L3Y™ + BZ,“*(Gy,n)} where L™ := (LN +L2) )
and L7y is the adjoint of Ly in L*(v2 Ve (_)). By the variational formula for the largest eigenvalue, for
s € [0,T], we have that

1 c,a a, N2_d
BNd)‘Nca(GS) = SI;P{/ZIZCV’ ' (Gsm)f(ﬁ)l/wé\.f)(dﬁ) + B < 'C'N\/fﬂ \/} >(:) } :
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In this formula the supremum is carried over all densities f with respect to v and notice that we used

<LNVEANT >0, =< LNV AT >4 Since yg(-) coincides with b(-) on F:ﬂzﬁ’i, is reversible with respect
to 79 (), so that < LY/f,/J >,,(.) is negative. We then apply simply (3.10) of Lemma 3.6 with a = 1 to
estimate < LV, vV f >4,y by —(1/2)D% (V7 Vf;eév)) + C)N?=2 for some constant Cj. In particular, to
prove the theorem, we just need to show that

T
1
limsuplimsuplimsup/ dssup{/Z,iv’c’a(Gs,n)f(n)u‘;:f\.f)(dn) - ENQ_dD?V(f, V,%’N)} =0
0 !

c—0 a—0 N—oo

for every B > 0 and then let B T co. Notice that for N large enough and a,c small enough, the function
Z"“*(Gs,m) depends on the configuration 7 only through the variables {n(z), = € A —oyn}. Since yp(-)
is constant, say equal to vy in A(l,g), we may replace v

Yo
: 0 0 a,N
reversible for £, and therefore Dy (-, v5;

é\_[) in the previous formula by V%N . The V%’N is

is the Dirichlet form associated to the generator £3,. Since the
N

Dirichlet form is convex, it remains to show that

T
1
limsuplimsuplimsup/ dssup{/Z,JCV’C’“(GS,n)f(n)ujo’é\_f)(dn) - ENQ_dD?V(f, y%’N)} =0
0 )

c—0 a—0 N—oo

for every B > 0. This result has been proved in [FM], Theorem 3.2.
Proof of Proposition 3.3: By (3.21), (3.23) and (3.25), applying Theorem 3.10 we obtain (3.4).
3.4. Proof of Proposition 3.4

For a > 0, u € A denote

1
to(u) = ——11 d (u); (3.28)
I[-a, a]d NA] {[-a.a]"na}
and for A C A define the sets AT as
At ={(u1,...,uq) €A : u; >0}, A" ={(uy,...,us) €A : w3 <0}. (3.29)

We define similarly A%, and Ay when Ay C Ay. Let G(+,-) € CY2([0,T] x A), u € D([0,T], M1(A)) and
for 0 < a < ¢ < 1, define the following functional

F’gc(u(.7 ) = /T ds/ du{GS(u) (2¢)7" [(Ms *iq)(u+ cer) — (ps * ) (u — cel)} }
0 A (3.30)

+/OTds/Aduaele(u)(,us*La)(u)—/OTds{/Fb(u)nl(u)Gs(u)dS},

where Gs(u) = G(s,u), n=(ny,...,ng) is the outward unit normal vector to the boundary surface I" and dS

is the surface element of I'. The proof of Proposition 3.4 follows from the next lemma.

Lemma 3.11 For G(-,-) € C*2([0,T] x A), IP a.s. we have

lim sup lim sup lim sup DR HF(SC(NN(-, )) H =0.

c—0 a—0 N—oo

21/december/2008; 10:20 ].6



Proof. To short notation, denote fs(u) := (15 * tq)(u). Taylor expanding we have that

/1\(1c) du{Gs(u) (20)—1 [fs(u +cep) — folu — cel)} }

1

2¢ J(A\A(_20))*

f/ Oe, Gs(u) fs(u)du + c/ R(G,c,s,u)fs(u)du.
A(1-2¢)

A(1-2¢)

1
Gy(u— cer) fs(u)du — % Gs(u+ ceqr) fo(u)du (3.31)
CJ(M\AG_20))~

where |R(G, ¢, s,u)| < Sup,cp SUP,epo,1] 82 G(-)|. Since fy(u) <1 uniformly in s and u

<2sup sup |07 Gs(u), (3.32)
u€A s€[0,T

/ R(G, e, s,u)f(u)du
A(l—c)

and

<2csup sup |0,Gs(u)l.
u€A s€[0,T)

/ Do G () fo () s — / Do, Ga(u) fo(u)
A(1-2c¢) A

Taking in account (3.31), (3.28) and (3.32) the lemma is then proven once we show that IP = 1 the following
holds

T
. . . 1 €L aN
limsup lim sup limsup E,~ H/o ds{w E Gs(ﬁ)ns (z)

c—0 a—0 N
o z€(A1—a)yN\A1—a—20)8)F

-y 2 UGG} o,

IEFﬁ

(3.33)

where for 0 < ¢ < 1, A.y and (A.y)" are defined in (3.24) and below (3.29). By adding and subtracting
the same quantity in the expectation of (3.33), it is easy to see that the limit (3.33) follows once the next

two lemmas are proven. O

Lemma 3.12 For G(-,-) € C12([0,T] x A), IP a.s. we have

T
. . . . 1 alN
Zgr&llr?jgpllrfjgphﬁnjgopEuN H/o ds{m Z Gs(x/N)ns™(x)
z€(A1—ayNn\A1—a—20)n)F
) (3.34)
- Y Gt} =o.
zer® P
(1-5)N
Lemma 3.13 For G(,-) € C*2([0,T] x A), IP a.s. we have
i sy [| [F ool s 30 et
Lot (3.35)
1
=Y b(x/N)Gs(x/N)}H ~0.
ngﬁ
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Proof of Lemma 3.12.  The summation in (3.34) contains two similar terms. We consider the one
corresponding to the summation of the right hand side of Ay (i.e. the one with signe +). By Taylor

expansion applied to the function G, the expectation in the statement of the lemma is bounded above by

T . N(1-a)
1 T 1 alN - 14 *
EHN H/O dSW Z Gé(l’ﬁ){ﬁ Z (T]b (.Tl,x)—'r]é(N—g,m))}H + R(N,CL,C,G) y
iér(llv_l z1=N(1—a—2c¢)+1
where for z; € [N, N|, & = (zy,---,24) € T% ' the vector (zy,Z) stands for the element (z1,xg, -, z4) €

Ay. We denoted by R(N,a,c,G) a quantity so that for G € C*2 ([0, T] x A),

lim sup lim sup lim sup | R(N, a, ¢, G)| = 0. (3.36)
c—0 a—0 N—o00
The next step consists in replacing the density average over a small macroscopic box of length a /N by a large

microscopic box. More precisely, for N large enough the expectation of the last quantity is bounded above
by

T
1
Clel, s B[ [ diggm 3

2¢<|y|<2Nec _
ly|< jETdN 1

(N = 0,3) +y) —nO(N — 2, x)H + R(N,a,c,0), (3.37)

where for all ¢, R(N,a,c, ) satisfy (3.36) and C is a positive constant. Observe that the first term of the
previous formula is not depending on a but only on ¢, N and /.

In view of the estimate (3.12) and Lemma 3.8 on the Dirichlet form D%, and the entropy, by the usual
two blocks estimate, the first term of (3.37) converges to 0 an N T 0o, ¢ | 0 and £ 7 co. That concludes the
proof of Lemma 3.12. O

Proof of Lemma 3.13. The summation in (3.35) contains two similar terms, we consider the one
corresponding to the summation of the right hand side of Ay. It is easy to see that the expectation in (3.35)

is bounded above by

E(y — fea) = b(y/N)|] (3.38)

1 T
||GH00W Z Eu”{/ ds
yery; 0
For any fixed positive integer £ denote by I'§ = {(0,2) : & € T‘ji\fl, |Z] < £} = ({0} x T?\fl) N A¢(0), for
notation see (3.18). For u € T', denote

Diy(s) = 5 % [ Chtwwm(50) ~ f0)dvio)

‘
z€ly

where

ég(u,w,n) = n(z) exp{ — w} + (1 —n(x))exp {w} ) (3.39)

The difference with the rate in (2.11) is that here u is fixed. Let ”t?(;i\)] be the product measure, see (2.4),

where p(57) = b(u) for Vo € Ay and Vl?(f) the restriction of V?(’i\)’ to {0,132 Let f: Sy — IR, denote by
f¢ the conditional expectation of f with respect to the o-algebra generated by {n(z) : z € A,(0)} :

1 o
IO =~ © /]I{n; w2, zen oy SV () forall €€ {0,13O)
b(u)
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Note that ‘ne(()) - b(u)’ depends only on coordinates on the box A,(0), then by Fubini’s Theorem,

E#N[/O ds

where f‘T’N = % fOT f¥Nds and for all 0 < s < T, ¥V is the density of Y with respect to the product mea-

iy = te) = /N[ = [ [ ©) = /M| (7 aen ) i ) (340)

sure Vl’j(’ﬁ) with constant profile b(%;). The density (T_(y_gel) f%’N)Z stands for the conditional expectation
N —
of T,(y,eel)f%’N with respect to the o-algebra generated by {n(z) : z € Ay(0)}.

Remark that, since the Dirichlet form is convex and since the conditional expectation is an average,
jjh%f V/ 7y, N\¢  al < ifh% 7y, N a‘N
2,0 (Tf(yffel)fT ) »Py/Ny ) = eo T_(y—te)) ST > Vb(y/N)
ry,N a,N
= ,ngy_eel ( \/ é{ Vb(y/N)) (341)
<z / Dy ey (VI i ) s

Applying Lemma 3.9 we obtain from (3.41)

U 7 <
NN Dy (\/ (e ), b(j/N))
yel'n
1Ty 3 b
< T 0 {Nl d Dg,y—em (\/W Vb(yj\/’N))}ds

yel'n

(3.42)
d+1
<27/ N1 T3 g, Zel(w/ Ny ())}ds+00€
yel'n
CT ed-&-l
sy TORE

for some constant C that depends on 7. By the same argument we obtain the bound on the Dirichlet form
DY

- = o, Cr gd
N Z ng()(\/(T*(y*éeﬁfiy"’N)ev b(fj/N)) +CO (3.43)

yel'n
For N fixed and large enough, there exists a constant Cp, such that for all positive integer & > 1, applying
(3.42) and (3.43), we can bound by above the expectation (3.38) as following

|G N Y / 70) = bt/ )| (gt P it oy ) = & D (V) (it FE) i)

yery,

Y N\ a k (L +1)
— k DZ,ON (\/(T_(y—éel)fj%N) ’ b(j/N))} + N(CT + T) .

This last expression is bounded above by

T||G||lso N4 Z sup /’n ) —b(y/N) }f dVa,f/N)( ) — kD?,o<f7 ?(ye/zv))

very real (3.44)

— kD %(\/f, b(y/N))} +%(CT+WLNH)),
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where, for u € T,
Ap={r: =0, /f vl () =1}

Further, since the function

u — sup /‘n ) —b(u ‘f dyb( kDeO(\/?,ub( )— /{:f)z:g(\/f,ubu))}

feEA}

is continuous on I', from Lemma 3.5, for all positive integers ¢ and k, the limit when N T oo of the expression
(3.44) is equal to

THGHOO/FWE sup { [ [(0) = b ity o) ~ K DR (Vi) = kDl (VEvi ) ]

Au

Since [

on I' in the last expression is bounded by

/qulE fejlllzp /‘77 ) —b(u ’f dVb H )

where for a positive constant C, .AZ k.c is the following set of densities,

LrC = {f €A/, DZ:S(ﬂ, b(u)) i Dg,o(ﬂv b(u)) i}

We first consider the limit when k£ T co and use the usual technics in the replacement lemma. Since for any

n%(0) — ‘ fdyb(u) ) < CY for some positive constant Cj, that depends on ||b]|, the integral

¢>1, any constant C' > 0 and any u € I' the sets -A?,k,c are compacts for the weak topology, for all £ > 1
limsup sup {/’n 0) — b(u ‘f dug‘(qf) }z sup {/‘n 0) — b(u ‘f du;f(i) } ,
k—oo fEAY, feAi o
where
Zc = {f €AY, ng(\/f, Yh(u )) =0, Dgo(\/f’ b(“)) - O} '
By dominated convergence theorem, it is then enough to show that,

hmsuplE sup {/’n ) —b(u ‘f dyg(qf) }}:0.

{—00 FEAY ¢

Now, it is easy to see that, due to the presence of the jumps of particles in the Dirichlet form Dg,o and the
presence of the creation and destruction of particles in 132:8‘ the set A} o = {1}. Thus, to conclude the proof

of the lemma, it remains to apply the usual law of large numbers. O

Proof of Proposition 3.4 Let Q* be a limit point of the sequence (Q,~)n>1 and let (Q,,~, )r>1 be a sub-
sequence converging to Q*. By Lemma 3.2 Q* is concentrated on the trajectories that are in L2([0, T]; H'(A)).
For 0 < ¢ < 1 and for u(-,-) € D([0,T], M{(A)), such that pu(t, du) = p(t,u)du with p(-,-) € L*([0,T); H*(A)),
denote by F(u) the functional

= /OT ds /A(1 ) du{Gs(u) (2¢)7" [p(s,u +cer) — p(s,u — cel)}}

# [ as [ awoncnton — [ as{ [ smic.as}
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From Lemma 3.11 and the continuity of the function u — F’gc(u), we have

lim sup E? [

c—0

S| =0. (3.45)

On the other hand, an integration by parts and Taylor expansion up to the second order of the function

G, (+) permit to rewrite F¢ as

:/ / (w)p(s,u)duds 7/ / Gs(u)p(s,u)duds
0 (AM\A_20))t 2c (M\Ag—20))~
/ ds/ w)ny (u)Gs(u)dS + R(c),

where R(c) = R(G,¢) is a function vanishing as ¢ | 0. Further one has, see Theorem 5.3.2. of [EG], that

R m/ o p(s,y)dy =Te(p(s,w))  ae uellVs, (3.46)
u,r)N

r—0

and then by dominated convergence theorem

c—0

lim FC (1 / ds/ Tr(p(s,u)) — bu ))nl( )G (w)dS .

This together with (3.45) implies

EQ H /OT ds/r (TT(P(S,U)) - b(u))nl(u)Gs(u)dSH =

which concludes the proof. O

4 Proof of Theorem 2.2

The main problem in proving Theorem 2.2 is that we cannot associate to the stationary measure v,* a
macroscopic profile according to definition (2.26). If this would be the case the result would be a corollary
of Theorem 2.1. Denote by QY := inf‘ ~ the probability measure on the Skorohod space D([0,7], M)
induced by the Markov process (7)) = (7n(n:)), when the initial measure is vs®®. Denote by Ar C
D([0,T], M) the class of profiles p(-,-) that satisfies conditions (IB1), (IB2) and (IB3). The first step to

show Theorem 2.2 consists in proving that all limit points of the sequence ( Q%) are concentrated on Arp:

Proposition 4.1 The sequence of probability measures ( QV) is weakly relatively compact and all its
converging subsequences converge to the some limit Q¥ that is concentrated on the absolutely continuous
measures w(t,du) = p(t,u)du whose density p satisfying (IB1), (IB2) and (IB3).

The proof of Proposition 4.1 follows the same steps needed to show Theorem 2.1. We just have to show
the analogous of Lemmas 3.6, 3.7, 3.8 and 3.9 when the measure pV in the statements of these lemmas is
replaced by v,%~. The only lemma to be slightly modified is Lemma 3.8, see Lemma 4.2 given next. Recall
that v: A — (0,1) is a smooth profile equal to b at the boundary of A. Let A" be the density of v,*" with

)

respect to the measure 1/;1(.];[.
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Lemma 4.2 There exists positive constant C' = C(||V7||w) depending only on v(+) such that for any a > 0

o o C a4
(1 = ) DR (VAN ) + Dy (VAN o)) < SN2

Proof. By the stationary of v,*~

8tHN(t):/ BN L log (Y )du?Y = 0.
SN

Recalling that the generator £y has two pieces and applying the basic inequality a( logb — log a) < - (\/6 -
\/5)2 + (b — a) for positive a and b, we obtain

0= [ W exlog (V)i < aNTDR(VAV.v5]) - NP (VAN 1))

+N2 E hNdVaN+N2/ E hNdV(xN
SN

We then apply the same computation as in the proof of Lemma 3.8, ((3.15) and (3.16)). O

Proof of Theorem 2.2

Let Q* be a limit point of ( Q) and ( Q*) be a sub-sequence converging to  Q*. Let p be the
stationary solution of (2.15), see (2.24). We have by Proposition 4.1 the following;:

klin;oqu(a) = klim QN"‘{‘<7TT,G> < (u)du,G>’}

= Q{[(n(T.),6) ~ (p(u)du, G)|[1{ Az} (o) }

< NlGle Q{[lp(T.) = 2O, T AT (o)} } -
Denote by p°(-,-) (resp. p'(-,-)) the element of Ar with initial condition p°(0,-) = 0 (resp. p*(0,-) = 1).
From Lemma 5.8, each profile p(-,-) € Ay is such that for all ¢ > 0, /\{u €N 0 < ptu) < pltyu) <

pt(t,u) < 1} =1 and )\{u €A :p(tu) < plu) < pl(t,u)} = 1, where X is the Lebesgue measure on A.

Therefore
Jim gw, (@) < [[Gllso |P°(T,) = pH(T,0), P =1.
To conclude the proof, it is enough to let T' T co and to apply Theorem 5.1. O
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5 Appendix
In this section we show the global stability of the stationary solution of (2.15).

Theorem 5.1 Global stability. Let D(-) be Lipschitz. Let p(t, po) be the solution of (2.15) with initial
datum po, 0 < po(u) < 1, uw € A, and p the stationary solution of (2.15). We have

tlim/\ptu (u)|Pdu =0
forallp>1.

The proof of the theorem is based on an extensive use of monotone methods, see [S]. We were not able to find
the precise reference, so we briefly sketch it for completeness. We need to introduce some extra notation.
Let C*2([0,T] x A) be the space of functions from [0, 7] x A to IR twice continuously differentiable in A with

continuous time derivative. Denote by
G .= {G € Cl’z([O,T] X A)7G(t,u) = G¢(u) pointwise positive, G(t,u) =0,Vu e T',Vt € [O,T]} )

It is convenient to reformulate the notion of weak solution of (2.15) as following. A function p(-,-) : [0,T] X
A — [0,1] is a weak solution of the initial-boundary value problem (2.15) if p € L?*(0,T; H'(A)) and for
every G € G

T
/du{GT(u)p(T,u)—Gg(u)po(u)}7/ ds/du(@sGs)(u)p(s,u)
2

(5.1)
Z/ ds /duA”( (s, u))é9 Gyu) — /FAM(b(u))ﬁmG(s,u)dS}
i,
where A; ;(p fo i.i(p)dp'. A function p*(,-) : [0,7] x A — IR is a weak upper solution of the
1n1t1a1—b0undary value problem (2.15) if p* € L2(0,T; H'(A)) and for all G € G we have
62
Z/ ds /duAJ (s u))a Gg(u) — /Ai7j(p+(s,u))3an(s,u)dS}
1] T
/du{GT (T, u) — Go(u)pg (u)} — / ds/ du (0sG)(u)pT (s,u) <0, (5.2)
pr(t,)) =b() on T
p (O’U) Zpo(u) uweA

A weak lower solution p~(,:):[0,7] x A — IR is defined reversing the inequality in (5.2).
By a solution of the stationary problem (2.15) we mean a function p € H*(A) so that for all G € C*(A),

pointwise positive vanishing on I'

So{ [ dues o) -G — [ Aus(60)on, G5} =0 (53)

i, I
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As before we define upper and lower solutions of the stationary problem (5.3). A function pT is an upper
solution for the stationary problem (5.3) if p* € H'(A) and for all G € C?(A), pointwise positive vanishing

on T,

_ 9? _
2 { /A du A (7" () 5=G(u) - / ;5" ()0, G(u)dS } <0, o

Tr(pt) >b on T,
A lower solution of the stationary problem (5.3) is defined reversing the inequality in (5.4).
To apply the monotone method we first show the following comparison principle.

Lemma 5.2 Let p* (resp. p?) be a lower solution (resp. upper solution) of (2.15), 0,p* € L*(0,T; H-1(A)),
fori=1,2. If there exists s > 0 such that

Mued : p'(s,u) <p*(s,u)} =1,
where X\ is the Lebesgue measure on A, then for allt > s

MueA o plt,u) <p*(tu)} =1

Proof Take s <t < T and § > 0. Denote by Fj the function defined by

2
a
Fs(a) := %H{Ogagg} + (a - 5/2) ]I{a>5}, a € IR.

Let As := As(T) be the set
As = {(t,u) €0, T] x A : 0<p'(t,u) — p*(t,u) < 5}.

By definition Tr(p' — p*) < 0 a.e. and therefore Tr(F}(p' — p?)) = 0. Since p' ( p? )is lower (upper) solution
of (2.15), we have that

/St dTaaT/AF‘S (pl(T7 u) — p*(r, u)) :/AdUF6 (pl(t,u) - p2(t,u)> — /Adqu (pl(s,u) - p2(3,u))
< —51/: dr | du Vip' —p?)- {D(pl)Vpl - D(pQ)VPQ}
= 5 [Lar [ vt =) DG - )

t
— ot [Lar [ auviet =) (D) - D)}
s As
(5.5)
Since D(-) is strictly positive, see (2.19), the third line of (5.5) can be estimated by above

1 t 1 t
- / dr / duV (o' — p?) - D"V (o' — p?) < — / dr / WV - AP (5.6)
1) s As oC s As
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Further, by the Lipschitz property of D(-) we have on the set As, sup,<; j<q|Dij(p") — Di;(p*)| < M|p' —
p?| < M§ for some positive constant M. By Schartz inequality, the last line of (5.5) is bounded by

t t
5—1MA/ dT/ du||V(p' = p*)|* + 5MA—1/ dT/ du || Vp?|? (5.7)
s As s As

for every A > 0. By (5.5), (5.6), (5.7) and choosing A = M~1C~! to cancel the term in (5.6) and the first

term of (5.7) we have
/ du F (pl(t,u) - p2(t,u)) — / du Fs (pl(s,u) - pg(s,u))
A A
T
< 50—1M2/ dT/du||Vp2||2.
0

Letting ¢ | 0, we conclude the proof of the lemma because Fs(-) converges to the function F(a) = all,>¢ as
610. U

By Lemma 5.2 we immediately obtain the following corollaries.
Corollary 5.3 Let mg : A — [0,1] be a measurable function. There is a unique weak solution p(t,mg) of

the equation (2.15) with initial datum myg.

Corollary 5.4 Let mg be a lower stationary solution of (5.3). Let p(t,mq) be the solution of (5.1) with

initial datum mg then p(t,u) > mo(u) a.e in (u,t).

The proof is an immediate consequence of Lemma 5.2 with p! := mgy and p? := p. When the initial datum

of solution of (5.8) is an upper stationary solution we have:

Corollary 5.5 Let my be a upper stationary solution of (5.3). Let p(t,m1) be the solution of (5.1) with
ingtial datum my then p(t,u) < mq(u) fort € [0,T] and u € A.
Next we show that when a lower (upper) stationary solution mq (m;) is taken as initial datum, the

corresponding solution p(t,mg) (p(t,m1)) is monotone nondecreasing (nonincreasing) in time.

Lemma 5.6 Under the assumptions of Corollary 5.4 p(t,mo) is a nondecreasing solution of (2.15) for all
t€[0,T).

Proof: Corollary 5.4 implies that p(s,mg) > mg for all s > 0, since mg lower solution. Let p(t; p(s,mo))
be the solution of (5.1) starting at time ¢ = 0 from p(s,mg). Then p(t; p(s,mo)) > p(t,mo) since the initial
datum p(s,mg) > mg. But p(¢; p(s,mo)) = p(t + s,mg) by uniqueness of weak solution then p(t + s, mg) >
p(t,mg) > my. O
Lemma 5.7 Under the assumptions of Corollary 5.5 p(t,m1) is a nonincreasing solution of (2.15) for

te0,T].

The proof is similar to the one of Lemma 5.6.
Lemma 5.8 Let mg be a lower solution and my be an upper solution of (5.8), mo(-) < mi(-) a.e in A, we
have

mo < p(tymo) < p(t;ma) <ma VE € (0,00)
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The proof is an immediate consequence of the previous results. O
Lemma 5.9 Under the assumption of Lemma 5.8 the solutions p(t;mg) and p(t;mq) exist for all t € [0, 00)
and they converge in LP(A) for p € [1,00) to limits pi(-) and p*(-), both solutions of (5.3). Further

pulu) < p*(u) ae.

Proof: Since p(t;mp) is nondecreasing in ¢ and p(t;mg) < mq for any t > 0, p(t;mg) converges almost
everywhere in A as t — oo and p,(-) € L*°(A). By the monotone convergence theorem p(t;mg) — py(-) for

p € [1,00). Next we show that p,(-) solves (5.3). Take as test function in (5.1) the following function
B)F(u); Fu)>0; C>p(t)>6>0; F'(t)>0,(ut)€AxIR"
B € C?*(RT), F € C*(A) vanishing at the boundary. Then for all ¢ > 0, see (5.1), we have

/ du{ B(t)F (u)p(t,u) — BO)F (u)po(u)} — / dsf3'(s) / duF (u)p(s, u)
A 0 A (5.9)

= Z/Otdsﬁ(s){/AdUAi’j(p(S’u));iF(u)_/FAi’j(b(u))a"IF(“)dS}-

Divide by t the left and right side of (5.9) and then let ¢ — co. For the left side we have

% {/Adu{ﬁ(t)F(u)P(t,u) — B(0)F(u)po(u)} — /Ot dSﬁ’(s)/AduF(u)p(s,u)} — 0. (5.10)

By continuity of A(-) and since by assumption lims_, o, 3(s) = B(c0) > 0

t&%i% [ asao)] [ dudtotom?

,J

2

Flu) — /F A,;J(b(u))amF(u)dS}
(5.11)

= 0000 S { [ s outw0) 3P0~ [ 4050000, Fyas}

4.3
By (5.10) we then obtain

ﬁ(oo)z{/AduAi,j(p*(U));iF(u) —/FAi,j(b(u))amF(u)ds} _o

Therefore p, is a solution of (5.3). The same can be argued for p*. O

The proof of Theorem 5.1 is a simple consequence of Lemma 5.9 and the unicity of the stationary solution
p* = py of (2.15).
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