
HAL Id: hal-00371555
https://hal.science/hal-00371555

Submitted on 29 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Definition of an eXecutable SPEM 2.0
Reda Bendraou, Benoit Combemale, Xavier Crégut, Marie-Pierre Gervais

To cite this version:
Reda Bendraou, Benoit Combemale, Xavier Crégut, Marie-Pierre Gervais. Definition of an eXecutable
SPEM 2.0. 14th Asia-Pacific Software Engineering Conference (APSEC), Dec 2007, Nagoya, Japan.
pp.390-397. �hal-00371555�

https://hal.science/hal-00371555
https://hal.archives-ouvertes.fr

Pre
lim

in
ar

y
Ver

si
on

Definition of an eXecutable SPEM 2.0

Réda Bendraou† Benoît Combemale‡ Xavier Crégut‡ Marie-Pierre Gervais†

† Laboratoire d’Informatique de Paris 6 (CNRS UMR 7606), Paris, France

first_name.last_name@lip6.fr
‡ Institut de Recherche en Informatique de Toulouse (CNRS UMR 5505), Toulouse, France

first_name.last_name@enseeiht.fr

Abstract

One major advantage of executable models is that once

constructed, they can be run, checked, validated and im-

proved in short incremental and iterative cycles. In the

field of Software Process Modeling, process models have

not yet reached the level of precision that would allow their

execution. Recently the OMG issued a new revision of its

standard for Software Process Modeling, namely SPEM2.0.

However, even if executability was defined as a manda-

tory requirement in the RFP (Request For Proposal), the

adopted specification does not fulfill it. This paper presents

a critical analysis on the newly defined standard and ad-

dresses its lacks in terms of executability. An approach is

proposed in order to extend the standard with a set of con-

cepts and behavioural semantics that would allow SPEM2.0

process models to be checked through a mapping to Petri

nets and monitored through a transformation into BPEL.

1 Introduction

Since the earliest projects developing large software sys-

tems, one main concern of organizations was to provide a

conceptual scheme for rationally managing the complexity

of software development activities. Several Software De-

velopment Life Cycle (SDLC) have been proposed like the

“Waterfall”, “Spiral” and the “Incremental Model”. How-

ever, the software process modeling community was unsat-

isfied with using these life-cycle descriptions. The gran-

ularity of SDLC models is too coarse-grained and fails to

describe elementary process building blocks [7]. Rapidly,

the need to describe in more details processes that compa-

nies are actually performing during software development

or maintenance emerged. The idea was to decompose these

0This work is supported by the IST European project MODELPLEX

(contract n◦ IST-3408) and the TOPCASED project.

SDLC descriptions into sufficient detail so that they can

provide more explicit guidance for executing a software de-

velopment project. This is how the notion of Process Mod-

els (PM) appeared.

Goals that motivated the introduction of process models

are manifold: they span from informal support and facili-

tating human understanding to direct assistance in process

assessment, management and enactment [22]. To be most

effective in supporting this variety of objectives, process

models must go beyond representation. The understand-

ing of process participants about the contents and sequenc-

ing of process steps depends strongly on the degree of de-

tails provided in the process model. Recently, the pressure

for greater granularity (i.e., more details) in process models

is driven by the need to ensure process precision, the de-

gree to which a defined process specifies all process steps

needed to produce accurate results [9]. Another pressure

comes from the increasing demand for process validation

and automation, which requires precise process models at

relatively deep levels of detail.

In this paper, we will focus on two main objectives. The

first one deals with the ability to validate a software pro-

cess model at any stage of its lifecycle, i.e., during its de-

sign, when it is tailored for a given project and while it is

conducted. Validation may be achieved through the behav-

ioral checking of process model properties. The second ob-

jective relates to the automation of the execution support.

We mean by execution support, the ability to monitor and

to control a real process according to its defined process

model. We try to reach these two objectives i.e. Validation

and Execution in the context of SPEM2.0 (Software Process

Engineering Metamodel) [18], the recently adopted OMG’s

standard dedicated to software process modeling. Addion-

nally to describing a concrete software development process

or a family of related software development processes, the

last version of the standard claims its ability for partially

supporting process enactment, a facility which was inten-

tionally kept out of the scope in SPEM1.1 [15].

Pre
lim

in
ar

y
Ver

si
on

In the next section of this paper, we will start by giving

a critical analysis on the enactment approaches proposed

in SPEM2.0 and we will address their limits in supporting

process model executions. In order to tackle these limits,

in section 3, we define an extension of SPEM2.0 that al-

lows the specification of executable process models. This

extension brings a new compliance level to the standard.

It comes in form of a set of elements and features that

merge the SPEM2.0 metamodel. We also associate a be-

havioral semantics to the proposed extension. For validat-

ing and ensuring that processes can be executed with respect

to constraints defined in the process model, an approach is

proposed in section 4. Examples of such constraints are

schedulability constraints, temporal constraints and those

related to resource availabilities. The approach uses model-

checking. At this aim, process models are translated into a

formal language: Petri nets. This has the primary advan-

tage of leveraging the myriad of already existing model-

checkers. In section 5, we explore the possibility to use

workflow tools for monitoring purposes. Thus, we propose

a mapping between SPEM elements and BPEL (Business

Process Execution Language) concepts. Finally, section 6

concludes this work.

2 Process Models Enactment with SPEM2.0

SPEM2.0 is the OMG’s standard dedicated to software

process modeling. It aims at providing organizations with

means to define a conceptual framework offering the nec-

essary concepts for modeling, interchanging, documenting,

managing and presenting their development methods and

processes [18]. Besides providing a standard way for rep-

resenting organization’s processes and expertise, SPEM2.0

comes with a new attractive vision. That latter consists in

separating all the aspects, contents and material related to a

software development methodology from their possible in-

stantiation in a particular process. Thus, to fully exploit this

framework, the first step would be to define all the phases,

activities, artifacts, roles, guidance, tools, and so on, that

may compose a methodology and then, to pick, according

to the situation or process context, the appropriate method

contents to use within a process definition.

SPEM2.0 comes in form of a MOF-compliant meta-

model [17] that reuses UML2.0 Infrastructure [19] and

UML2.0 Diagram Interchange specifications [16]. It reuses

from the UML Infrastructure basic concepts such as Classi-

fier or Package. No concept from the UML2.0 Superstruc-

ture [20] is reused. The Standard comes also in form of

UML Profile where each element from the SPEM2.0 meta-

model is defined as a stereotype in UML2.0 Superstruc-

ture. The metamodel is composed of seven packages linked

with the "merge" mechanism (cf [19], §11.9.3), each pack-

age dealing with a specific aspect (cf. Fig. 1). The Core

Core

ProcessStructure
ManagedContent

MethodContent
ProcessWith

Method

MethodPlugin

ProcessBehavior

<<merge>>

<<merge>>

<<merge>>
<<merge>>

<<merge>>
<<merge>>

<<merge>>
<<merge>>

<<merge>>

Figure 1. Structure of SPEM2.0 [18]

package introduces classes and abstractions that build the

foundation for all other metamodel packages. The build-

ing block of this package is the WorkDefinition class, which

generalizes any work within SPEM2.0. The Process Struc-

ture package defines elements for representing basic pro-

cess models in terms of a flow of Activities with their

WorkProduct Uses and Roles Uses. However, the possibil-

ity to textually document these elements (i.e., add properties

describing the element) is not provided in this package but

in the Managed Content package, which provides concepts

for managing the textual description of process elements.

Examples of such concepts are the Content Description

class and the Guidance class. The Method Content package

defines core concepts for specifying basic method contents

such as Roles, Tasks and WorkProducts. The Process with

Method package defines the set of elements required for in-

tegrating processes defined by means of Process Structure

package concepts with instances of Method Content pack-

age concepts. The Method Plugin package provides mech-

anisms for managing and reusing libraries of method con-

tents and processes. This is ensured thanks to the Method

Plugin and Method Library concepts. Finally, Process Be-

havior package provides a way to link SPEM2.0 process

elements with external behavior models such as UML2.0

Activity Diagrams or BPMN (Business Process Modeling

Notation) models.

However, even if process enactment was among the prin-

cipal requirements when the SPEM2.0 RFP was issued [14],

the recently adopted specification does not address the en-

actment issue. Nevertheless, it clearly suggests two possible

ways of enacting SPEM2.0 process models. In the follow-

ing, we introduce them, we present the concepts that are

supposed to be used in order to enact SPEM2.0 models and,

we give some remarks on the feasibility of each approach.

2.1 Mapping the SPEM2.0 Processes
Models into Project Plans

In this first approach the standard proposes to map

SPEM2.0 processes into project plans by means of project

planning and enactment systems such as IBM Rational Port-

folio Manager or Microsoft Project. Once SPEM2.0 pro-

2

Pre
lim

in
ar

y
Ver

si
on

cesses are mapped to project plans, the plans can be instan-

tiated by means of planning tools and concrete resources

can then be affected. However, whether this approach may

be very useful for project planning, it is not considered as

process enactment. It is still necessary to affect duration

to tasks, persons to roles in order to get, at the end, an es-

timation of the development process period and resources

needed for its realization. These plans are used by a project

manager in order to estimate if the process will be in sched-

ule or not, whether more persons need to be affected to pro-

cess tasks, etc. There is no support for process execution,

no automatic task affectations to responsible roles, no au-

tomatic routing of artifacts, no automatic control of work

product states after each activity, no means to support agent

and team communication and so on. Besides the fact that

this approach does not provide concrete enactment support,

it presents a major lack which is its tight dependence to the

project planning tool. Another aspect that has to be taken

into account is the impact of modifying or adding informa-

tion within the planning tool and how this modification will

be reflected / traced-up to the SPEM2.0 process model. Fi-

nally, process modelers have to deal with the compatibility

of the process definition file format of the planning tool.

2.2 Linking SPEM2.0 process elements
with external behavior formalisms

The SPEM2.0 standard does not provide any concepts or

formalism for modeling precise process behavior models or

execution. Rather, claiming for more flexibility, SPEM2.0

provides, through the Process Behavior package, a way

to link SPEM2.0 process elements with external behavior

models. The goal behind is not to restrict or to impose

a specific behavior model but to give the process modeler

the option to choose the one that fits his needs best. Fur-

ther more, a mapping towards BPEL can be carried out

in order to reuse BPEL execution engines. In addition, a

WorkProduct can for instance be linked to a UML state di-

agram in order to model possible WorkProduct’s states and

transitions that can make this WorkProduct move from one

state into another. Here again, a state machine engine has

to be integrated to the process execution engine. SPEM2.0

defines a kind of proxy classes (i.e., Activity_ext, Con-

trolFlow_ext, Transition_ext and State_ext) in order to link

between SPEM2.0 process elements (i.e., WorkProductUse,

WorkDefinition, RoleUse, Activity, WorkSequence) and ex-

ternal behavior model elements. It is up to the process mod-

eler to link each process element with its equivalent in the

behavior model. Since a single behavior model may not be

expressive enough to represent all the behavioral aspects of

the process, several behavior models can be combined.

Even if this approach may provide flexibility in rep-

resenting behavioral aspects of SPEM2.0 processes, it

presents some lacks. The first one is that the standard is

not very clear on how the linking of process elements with

behavioral models is realized. It just provides proxy classes

that make reference to other elements in an external behav-

ioral model. We suppose that this task is tool implementer’s

responsibility. A tool implementers have to define a spe-

cific behavioral model that has to be automatically gener-

ated from the SPEM2.0 process model. This is already the

case in the free EPF1 tool which is meant to be the im-

plementation of SPEM2.0. In EPF, a kind of a proprietary

activity diagram is partially generated from a process def-

inition. The latter can be refined in order to provide more

details on the process activities and their coordination (con-

trol flows). However no execution is provided. The second

lack is that the mapping from SPEM2.0 process elements

into a specific behavioral model can be done differently

from one organization to another, depending on the process

modeler’s interpretation. Thus, a standardization effort may

be required in order to harmonize mapping rules between

SPEM2.0 concepts and a specific behavior model such as

BPEL for instance. At this aim, in section 5, we propose

such mapping rules between a subset of SPEM2.0 concepts

and the BPEL language. The third lack, which tightly re-

lates to the previous one, is that more often concepts in be-

havior models are richer than in SPEM2.0. This is due to the

fact that behavior modeling and execution languages pro-

vide additional concepts related to the technical support and

execution of processes while SPEM2.0 concentrates on the

"business concerns" of the software development process or

methodology (i.e., Roles, Activities, Guidance, etc.). Con-

sequently, a full executable code generation from SPEM2.0

is not possible which may impose some refinement steps in

behavior models before they can be enacted. This in its turn

poses the problem of traceability and how these refinements

(changes) can be reflected in the initial SPEM2.0 model.

In the rest of the paper, we propose an approach for val-

idating and executing SPEM2.0 process models. For this

purpose, we need first to extend the SPEM2.0 metamodel in

order to take into account some process execution aspects.

3 XSPEM: SPEM2.0 Extension for Process

Enactment

In this section, we propose to extend the SPEM2.0 spec-

ification in order to take into account the support of process

enactments while remaining standard. We call our proposi-

tion, XSPEM which stands for eXecutable SPEM. For sake

of clarity, we only present the minimal subset of SPEM2.0

concepts required for process execution. These concepts

are regrouped in the XSPEM Core package (section 3.1).

Additional features are required in the purpose of tailor-

1Eclipse Process Framework Project, http://www.eclipse.org/epf

3

Pre
lim

in
ar

y
Ver

si
on

ing a process for a given project. This includes defining

properties specific to activity scheduling and resource allo-

cations. They are introduced in XSPEM ProjectCharacter-

istics package (section 3.2). During execution, the process

will evolve from one state into another. It is then required

to provide concepts for characterizing all process states dur-

ing enactment time. This is the aim of the XSPEM Proces-

sObservability package (section 3.3). We also define the

behavioral semantics needed for process execution. Finally,

we defined events that trigger state changes in the XSPEM

EventDescriptions package (section 3.4).

3.1 XSPEM Core

xSPEM Core reuses concepts offered by the Core and

the ProcessStructure packages (grey packages on fig. 1).

Fig. 2 shows xSPEM Core’s concepts. An Activity is a con-

crete WorkDefinition that represents a general unit of work

assignable to specific performers represented by RoleUse.

It can rely on inputs and produces outputs represented by

WorkProductUses. RoleUse models a set of competences

required to perform an activity (ProcessPerformerMap). An

activity may be broken down into sub-activities. Activities

are ordered thanks to the WorkSequence concept whose at-

tribute linkKind indicates when an activity can be started or

finished. We do not reuse the remaining packages as their

content do not have any impact on process executability.

3.2 XSPEM Project Characteristics

In order to tailor a process model for a given project,

additional features have to be defined. It is required to

dimension activities, i.e., specify the number of used re-

sources, expected duration, etc., and to identify the concrete

resources allocated to the project. In this paper, we consider

that RoleUse and WorkProductUse may be considered as

resources required to perform an activity. The direction at-

tributes defined in WorkDefinitionParameter could be used

to complete sequencing constraints expressed through the

WorkSequence concept. They are not detailed in this paper

due to lack of space but they would be treated in the same

way as activities described below.

We have thus defined the xSPEM_ProjectCharacteristics

package as an extension of the xSPEM_Core package using

the OMG merge operator. It redefines the concepts of Ac-

tivity, RoleUse and ProcessPerformerMap by adding: 1) the

time interval during which an activity must finish (min_time

and max_time on Activity); 2) the number of role occur-

rences required to perform an activity (occurrencesNb on

RoleUse); 3) the work load affected to a role for an activity

(charge on ProcessPerformerMap).

xSPEM_Core

WorkDefinition

Activity

WorkDefinitionParameter
direction: ParameterDirectionKind

WorkDefinitionPerformerMap

ProcessParameterProcessPerformerMap

WorkBreakdownElementRoleUse WorkProductUse

BreakdownElement

WorkSequence
linkKind: WorkSequenceKind

<<enumeration>>
ParameterDirectionKind

in

out

inout

<<enumeration>>
WorkSequenceKind

finishToStart

finishToFinish

startToStart

startToFinish

1
mappedWorkDefinition

0..*
ownedParameter

0..1
parameterType

1..*
mappedRoleUse

0..* nestedBreakdownElement

predecessor
1

0..*
linkToSuccessor

successor
1

 0..*
linkToPredecessor

xSPEM_EventDescriptions

xSPEM_ProjectCharacteristics

Activity
min_time: Int
max_time: Int

RoleUse
occurenceNb: Int

ProcessPerformerMap
charge: Int

<<merge>>

xSPEM_ProcessObservability

<<enumeration>>
ActivityState

notStarted

started

suspended

finished

<<enumeration>>
ActivityTime

ok

tooLate

tooEarly

Activity
state: ActivityState
time: Activitytime

<<merge>>

<<merge>>

<<merge>>

DSL_Trace

<<import>>

Activity

Event

Event

Scenario Trace

Endogenous

Event

* {ordered}
*

{ordered}

1

1 *

ActivityEvent
1

StartActivity FinishActivity
Exogenous

Event
SuspendActivity ResumeActivity

Figure 2. XSPEM: an eXecutable SPEM2.0

3.3 XSPEM Process Observability

In order to enact a process model, its semantics has to

be defined. We apply a property-driven approach that we

have described in [5]. It helps a Domain Specific Language

(DSL) expert in defining the DSL semantics. It first consists

in identifying relevant properties and specifying them using

a temporal logic. Then, they are used to point out states of

interest for the DSL expert and transitions that lead from

one state to another.

The formal semantics associated to the system can be

seen as the set of maximal finite traces whose elements are

model states. If the metamodel has a well defined opera-

tional semantics, it can be easily expressed as a modifica-

tion of instance’s attributes or a modification of the topol-

ogy (dynamically creating or deleting instances). On the

contrary, if the associated semantics is not formally defined,

the states characterised by properties allow to define an ob-

servable operational semantics. Following this idea, if state

properties rely on notions that cannot be directly expressed

in the model (classical OCL queries), then the metamodel

must be enriched to express these notions. The dynamic op-

erational semantics, i.e. the Kripke structure that allows to

build trace semantics, must then be approximated by defin-

ing transitions between characterised states. It is the work

of the domain expert to describe them.

4

Pre
lim

in
ar

y
Ver

si
on

This approach has three major advantages: it gives a

method to define a formal semantics, it is incremental (prop-

erties may be added one after another) and it allows to easily

define an observable approximation of the trace semantics.

Based on expertise described in [1], we now apply our

property-driven approach to define the behavioral semantics

of SPEM2.0 metamodel.

3.3.1 Characterising Properties

We identify the following properties that every XSPEM

model must satisfy. We split them in two classes; univer-

sal properties that have to be satisfied by every execution

(every activity must start, all started activities must finish,

all suspended activities must resume, once an activity is fin-

ished, it has to stay in this state, an activity is able to start

or finish depending on worksequences constraints. . .) and

existential properties that must be true in at least for one

execution (each activity must be performed in more than

min_time and less than max_time, the overall process can to

finish when all activities are finished between min_time and

max_time).

Similar properties are defined on products. For exam-

ple, an activity can only be started if its input products have

been started (at least one activity producing them is started)

or completed (all the activities producing them are finished).

It could be of interest to know whether it is possible to com-

plete all the products of a process.

3.3.2 Extending the Metamodel to Represent Dynamic

Informations

The second step consists in adding features to the meta-

model to capture states implied by the aforementioned prop-

erties. For XSPEM, we can identify two orthogonal aspects

for the Activity element. First, an activity can be not started,

started, suspended and finally finished. Secondly, there is a

notion of time and clock associated to each activity; but this

time is only relevant for transition-enabling conditions (in

our case transitions that start and finish an activity) and is

not explicit in state properties. Thus it can be represented

into the finite set of states {tooEarly, ok , tooLate}. This

second orthogonal aspect is only relevant when the activity

is finished.

Now we have to express these states by extend-

ing the Activity element in order to introduce attributes

that reflect dynamic informations, i.e. the state of

the current activity. We choose to add two attributes

(in the xSPEM_ProcessObservability package): state ∈
{notStarted, started, suspended, f inished} and time ∈
{tooEarly, ok, tooLate}. It is also necessary to take into

account the concept of a clock (clock ∈ R
+), internal to an

activity. It is not represented in the metamodel because only

the abstraction is necessary, the clock being taken into ac-

count by the execution engine.

An observational abstraction of the operational seman-

tics of our processes with respect to our properties can now

be defined. The expert has again to formalise the initial

state and the transition relation. In our case, it is quite nat-

ural: the initial state is {a 7→ (notStarted, ok)|a ∈ A}. The

transition relation is defined for Activity in Fig. 3.

3.4 XSPEM Events Description

Definition of the observational semantics introduces

states and transitions. States have been captured through

features added on the XSPEM metamodel. Transitions are

triggered by events that make the process evolve. Events

can be exogenous (produced by the environment of the pro-

cess) or endogenous (produced within the process). For

example the transition between the states not started and

started corresponds to the event StartActivity applied on

the corresponding activity. Other events on an Activity

are finish, suspend and resume. They are modelled in the

xSPEM_EventsDescription package as specializations of Ac-

tivityEvent, an abstract event that involves a target activity.

Events may be recorded as a trace so as to keep track of

what happened in the process (package DSL_Trace). They

can also be used to build scenarios that can be used to sim-

ulate a process.

4 Process Models Validation

In this section, we propose to implement semantics de-

fined in the previous section in order to check xSPEM pro-

cess models. Like for programming languages, there are

several approaches.

Operational semantics allows to precisely describe the

dynamic behavior of the language’s constructions. In MDE

(Model-Driven Engineering), it aims to express the be-

havioral semantics of a metamodel and thus provides exe-

cutable models. We explore in [6] two ways to achieve this

purpose. The first one is closer to the operational seman-

tics in programming languages (Structural Operational Se-

mantics [21], natural semantics [12]). It consists in defining

transformations between two execution states of a model

(for example, in the ATL [11] transformation language).

The whole set of transformations defines the behavior of

models. The second way consists in describing the behavior

of each concept of the metamodel in an imperative manner

using metaprogramming languages such as Kermeta [13],

xOCL [4] or an action language.

Translational semantics relies on a well-defined formal-

ism to express the semantics of a given language [8]. A

translation is carried out from all concepts of the source

language towards this formalism. This translation defines

5

Pre
lim

in
ar

y
Ver

si
on

Let a be the considered activity.

∀ws = a.predecessor,(ws.linkType = startToStart&&ws.linkToPredecessor.state = started)
||(ws.linkType = f inishedToStart&&ws.linkToPredecessor.state = f inished)

notStarted,ok,clock
StartActivity

−→ started,ok,0

started,ok,clock
SuspendActivity

−→ suspended,ok,clock

suspended,ok,clock
ResumeActivity

−→ started,ok,clock

∀ws = a.predecessor,(ws.linkType = startToFinished&&ws.linkToPredecessor.state = started)
||(ws.linkType = f inishedToFinished&&ws.linkToPredecessor.state = f inished)

started,ok,clock < min_time
FinishActivity

−→ f inished, tooEarly,clock

started,ok,clock ∈ [min_time,max_time]
FinishActivity

−→ f inished,ok,clock

started,ok,clock > max_time
FinishActivity

−→ f inished, tooLate,clock

Figure 3. Event-based Transition Relation for Activities

the semantics of the source language. In MDE, it consists

in translating towards another technical space [4]. This ap-

proach allows to take advantage of all tools available in the

target domain. This last approach is explored in the section

hereunder in order to re-use model-checkers available in the

model-checking community.

4.1 Translational Semantics to Petri Nets

In this experimentation, we choose to use the technical

space of timed Petri nets as the target representation for for-

mally expressing XSPEM process models. We also choose

to generate our properties as LTL (Linear Temporal Logic)

formulae over the Petri net associated to a process model.

Then we manipulate timed Petri nets and LTL formulae

within the Tina2 toolkit [2] which includes: 1) nd (Net-

Draw), an editing tool for automata and timed networks, un-

der a textual or graphical form. It integrates a “step by step”

simulator (graphical or textual) for the timed networks. 2)

Tina, which builds the state space of a Petri net, timed or

not. Tina performs classical constructs (marking graphs,

covering trees) and allows abstract state space construc-

tion, based on partial order techniques. 3) selt, a model-

checker for formulae of an extension of temporal logic seltl

(State/Event LTL) [3]. In case of non satisfiability, selt is

able to build a readable counter-example sequence usable

by the TINA simulator to execute it step by step.

The XSPEM semantics is defined as a mapping to Petri

nets (XSPEM2PETRINET). A PetriNet is composed of Nodes

that denote Places or Transitions. Nodes are linked by Arcs.

Arcs can be normal ones or read-arcs. An Arc specifies the

number of tokens consumed in the source place or produced

in the target one. A read-arc only checks tokens availability

without removing them. Petri nets marking is defined by

the number of tokens contained in places. Finally, a time

interval can be expressed on Transitions.

An example of transformation from a process model to a

Petri net model is given in Fig. 4. Each activity is trans-

2TIme Petri Net Analyser, http://www.laas.fr/tina/

designer:RoleUse

occurenceNb = 3

: ProcessPerformerMap

charge = 2

design:Activity

min_time = 3
max_time = 5

design:WorkProductUse

: WorkDefinitionParameter

direction = out

Figure 4. An XSPEM activity as a Petri net

lated into five places characterising its state (NotStarted,

Started, InProgress, Suspended or Finished). The state

Started records that the activity has been started. A Work-

Sequence becomes a read-arc from one place of the source

activity to a transition of the target activity. We also add five

places that define a local clock. The clock will be in state

TooEarly when the activity ends before min_time and in the

state TooLate when the activity ends after max_time. This

transformation has been written in ATL within the context

of an execution dedicated XSPEM subset3.

The Petri net model is then translated into the concrete

syntax of Tina using an ATL query PETRINET2TINA. To

reuse other Petri nets tools, only this last transformation

would have do be adapted.

4.2 Model-Checking on Process Models

Now that the process model is translated into a Petri

net model, we can check xSPEM properties by using Tina.

Properties expressed on the xSPEM metamodel leads to an

3http://eclipse.org/m2m/atl/usecases/SimplePDL2Tina

6

Pre
lim

in
ar

y
Ver

si
on

ATL transformation that produces the corresponding LTL

properties instantiated from the xSPEM model.

So, whether a process may be completed or not may be-

comes a termination problem that can be expressed on the

Petri net model. In xSPEM, a process is finished when all

its activities are finished on time. On the Petri net model,

it means that for places of such activities there is one token

in the place _finished and none in _tooEarly and _tooLate

places. It is defined by the macro-definition finished gen-

erated from the process model by an ATL query.

We can distinguish the partial correction “all deadlock

is in final process state” (� (dead ⇒ finished)) and the

termination (� ♦ dead) which ensures that any execution

finishes. At this stage, we have a “strong consistency”: any

execution finishes and any finished execution is in deadlock.

In practice, the constraints expressed in the xSPEM model

do not allow to finish systematically.

Thus we can be interested by the “weak consistency”. It

means that at least one execution fulfills the constraints. We

evaluate the − ♦ finished property which, literally, ex-

presses that no execution finishes. If the process is weakly

consistent, this property is evaluated with False and the

counterexample produced by selt gives one correct exe-

cution of the process. If the property is evaluated with True

then the process does not allow any solution.

Note that the consistency study is generic: it only de-

pends on the finished criterium.

5 Project Monitoring

Once process models are validated, an execution sup-

port is required in order to ensure orchestrations of activ-

ities. At this aim, we can envisage two approaches. The

first one consists in developing from scratch, a process en-

gine that will take as input, XSPEM process models in or-

der to execute them. The process engine has then to en-

sure all enactment facilities such as activity sequencing, re-

sources management, events handling, exceptions process-

ing, etc. The second approach consists in reusing the cur-

rent state of the art in the Workflow and Business Process

Management (BPM) domains. Indeed, these domains have

reached a certain maturity level and recently, a consolida-

tion has led to a single language for business process exe-

cutions: the Business Process Execution Language for Web

Services (WS-BPEL, BPEL for short) [23]. Rapidly, BPEL

gained importance and became the "Language" for business

process orchestrations. Many tool vendors already provide

training supports and process engines for this standard: Ac-

tiveBPEL4, ApacheAgila5. For XSPEM process model ex-

ecutions, we decided to explore the second possibility and

4http://www.active-endpoints.com/active-bpel-engine-overview.htm
5http://wiki.apache.org/agila/

Table 1. Mappings between XSPEM and BPEL
xSPEM BPEL

Activity (Outermost) BPEL Process (next, a BPEL Sequence Activity

is required to incorporate nested activities)

Activity (Nested) BPEL Invoke Activity with a Receive Activity

Activity’s proper-

ties (min-time and

max_time, state, time)

BPEL Variable

WorkProductUse BPEL Variable

RoleUse BPEL Variable

WorkSequence (Fin-

ishToStart)

BPEL Sequence Activity

WorkSequence (Start-

ToStart, StartToFin-

ish, FinishToFinish)

BPEL Flow Activity combined with the Link el-

ement for Synchronization

ProcessParameter BPEL Variable with attribute MessageType

equals to the WorkProductUse used as an Ac-

tivity ProcessParameter. If the Activity has

more than one ProcessParameter than one Part

(name=processParameterName) and its type is

to be defined for each ProcessParameter whithin

the MessageType.

ProcessPerformerMap BPEL Variable

we opted for BPEL as process execution language. In or-

der to reuse BPEL process engines, a mapping between

XSPEM and the process execution language is required.

After studying the BPEL standard, in table 1, we propose

mappings between XSPEM elements and BPEL concepts.

While establishing these rules we have noticed three ma-

jor issues. The first one relates to the fact that all XSPEM

elements that provide semantics proper to software process

modeling have no equivalent in BPEL. All elements such

as RoleUse, ProcessPerformerMap, WorkProductUse, etc.,

are converted into simple BPEL process variables. The

second aspect is BPEL’s lack of user interactions and sup-

port for Human-oriented tasks. Since software processes

are mainly composed of human creative tasks, this issue

has to be tackled. As a solution, a very interesting work

done by industrials known as "BPEL4PEOPLE" [10] can

be reused. In BPEL4PEOPLE, a new BPEL activity called

People activity is introduced. A People activity is a basic

activity, which is not realized by a piece of software but an

action performed by a human being. It can be associated

with a group of people, a generic role, etc. The extended

BPEL engine creates for each People activity a generic user

interface in order to highlight inputs/outputs of the activ-

ity, deadlines, to add the possibility to attach other materi-

als (e.g., guidelines) and to ease communication between

agents. Regarding the implementation, BPEL4PEOPLE

leaves the choice to the modeler between five possible con-

figurations. These five configurations, that we will not de-

tail here, fall roughly into two kinds: Inline Activities and

Standalone Activities. Inline activities are defined as part

of the BPEL process (they have access to the process con-

text, variables, etc.) while standalone activities are defined

outside the process. Standalone activities may be accessed

through 1) implementation-specific invocation mechanisms

7

Pre
lim

in
ar

y
Ver

si
on

(i.e., no WSDL), 2) a Web service interface defined with

WSDL or 3) a BPEL Invoke activity that calls a Web ser-

vice implemented by the People activity (WSDL + bind-

ing). We opted for the latter configuration. Main reasons

are: 1) to promote reusability of standalone activities by

other processes, 2) to use tasks in a distributed environment

since they offer a WSDL interface, 3) to avoid BPEL engine

extensions, since that solution is generic and does not need

a support of the new People activity kind. However, process

modeler can decide to use another configuration among the

five that BPEL4PEOPLE proposes if needed. Finally, the

last issue relates to the fact that the generated BPEL is not

usable straightforward after the transformation. Some data

and configuration details have to be set first. Additionally,

the process modeler can decide to add new elements or vari-

ables for execution aims. This raises the issue of traceabil-

ity between the XSPEM process model and the generated

BPEL process, and how coherence between the two defini-

tions can be preserved.

6 Conclusion

In this paper, we proposed an extension of SPEM2.0 to

provide concepts required to enact a process model. A sub-

set of SPEM2.0 is used as a foundation and constitutes a

new compliance level. Features have been added to model

characteristics of a project, including defining concrete re-

sources allocated to the project and dimensioning activities.

We also define features to store process’s states during en-

actment time. Once both process model and the project

model have been defined, we propose two complementary

approaches. The first one consists in validating models with

formal tools (e.g., model-checkers available in the area of

Petri nets). It consists in evaluating properties on SPEM2.0

by translating them into LTL properties on the correspond-

ing Petri net model. Properties include termination (i.e.,

will the process finish) and can also exhibit examples of

process planning that fulfill process and project constraints.

The second approach consists in monitoring the project.

We proposed a mapping into BPEL, a standard process exe-

cution language in the BPM domain. When doing this map-

ping we identified some drawbacks; the major ones are the

loss of semantics proper to software process modeling while

mapping SPEM2.0 process models into BPEL, and BPEL’s

lack of user interaction supports. For this issue, we pro-

posed to reuse the BPEL4PEOPLE proposition. Another

deficit of this approach relates to the fact that the code gen-

erated after the mapping may need to be completed or mod-

ified for execution purposes. However, these modifications

are not reflected (traced-up) to the SPEM process model.

These approaches are currently evaluated in the context of

the IST MODELPLEX and TOPCASED projects. More

elaborated prototypes are under construction.

References

[1] R. Bendraou, M.-P. Gervais, and X. Blanc. UML4SPM :

A UML2.0-Based Metamodel for Software Process Mod-

elling. In MoDELS, volume 3713 of LNCS, 2005.
[2] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA

– construction of abstract state spaces for Petri nets and time

Petri nets. International Journal of Production Research,

42(14):2741–2756, July 2004.
[3] S. Chaki, M. E, Clarke, J. Ouaknine, N. Sharygina, and

N. Sinha. State/event-based software model checking. In

4th IFM, volume 2999 of LNCS, pages 128–147, Apr. 2004.
[4] T. Clark, A. Evans, P. Sammut, and J. Willans. Applied

metamodelling - a foundation for language driven develop-

ment. version 0.1, 2004.
[5] B. Combemale, P.-L. Garoche, X. Crégut, and X. Thirioux.

Towards a Formal Verification of Process Model’s Properties

– SimplePDL and TOCL case study. In 9th ICEIS, 2007.
[6] B. Combemale, S. Rougemaille, X. Crégut, F. Migeon,

M. Pantel, C. Maurel, and B. Coulette. Towards a Rigor-

ous Metamodeling. In 2nd MDEIS. INSTICC, May 2006.
[7] B. Curtis, M. I. Kellner, and J. Over. Process modeling.

Commun. ACM, 35(9):75–90, 1992.
[8] C. A. Gunter and D. S. Scott. Semantic domains. In Hand-

book of Theoretical Computer Science, Volume B: Formal

Models and Semantics (B), pages 633–674. 1990.
[9] W. Humphrey. Introduction to software process improve-

ment. Technical Report CMU/SEI-92-TR-7, Software Engi-

neering Institute, Carnegie-Mellon University, 1992.
[10] IBM and SAP. WS-BPEL Extension for People

BPEL4People, July 2005.
[11] F. Jouault and I. Kurtev. Transforming models with ATL. In

MTIP, volume 3713 of LNCS, Jamaica, Oct. 2005.
[12] G. Kahn. Natural semantics. Report 601, INRIA, Feb. 1987.
[13] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving exe-

cutability into object-oriented meta-languages. In MoDELS,

volume 3713 of LNCS, Montego Bay, Jamaica, Oct. 2005.
[14] Object Management Group, Inc. Software Process Engi-

neering Metamodel (SPEM) 2.0 RFP, Nov. 2004.
[15] Object Management Group, Inc. Software Process Engi-

neering Metamodel (SPEM) 1.1, Jan. 2005.
[16] Object Management Group, Inc. Diagram Interchange 1.0

Specification, Apr. 2006.
[17] Object Management Group, Inc. Meta Object Facility

(MOF) 2.0 Core, Jan. 2006.
[18] Object Management Group, Inc. Software Process Engi-

neering Metamodel (SPEM) 2.0, Mar. 2007.
[19] Object Management Group, Inc. Unified Modeling Lan-

guage (UML) 2.1.1 Infrastructure, Feb. 2007.
[20] Object Management Group, Inc. Unified Modeling Lan-

guage (UML) 2.1.1 Superstructure, Feb. 2007.
[21] G. Plotkin. A Structural Approach to Operational Seman-

tics. Technical Report DAIMI FN-19, Department of Com-

puter Science, Aarhus University, Denmark, 1981.
[22] W. Riddle. Session summary: Opening session. In I. C. So-

ciety, editor, 4th International Software Process Workshop

(ISPW), pages 5–10, Washington, DC, 1989.
[23] WS-BPEL TC OASIS. Web Services Business Process Ex-

ecution Language Version 2.0 (Working Draft), Jan. 2007.

8

