
HAL Id: hal-00371553
https://hal.science/hal-00371553v1

Submitted on 29 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Essay on Semantics Definition in MDE. An
Instrumented Approach for Model Verification

Benoit Combemale, Xavier Crégut, Pierre-Loïc Garoche, Xavier Thirioux

To cite this version:
Benoit Combemale, Xavier Crégut, Pierre-Loïc Garoche, Xavier Thirioux. Essay on Semantics Defi-
nition in MDE. An Instrumented Approach for Model Verification. Journal of Software, 2009, 4 (9),
pp.943-958. �hal-00371553�

https://hal.science/hal-00371553v1
https://hal.archives-ouvertes.fr

Pre
lim

in
ar

y
Ver

si
on

Essay on Semantics Definition in MDE

An Instrumented Approach for Model Verification

Benoı̂t Combemale⋆ Xavier Crégut† Pierre-Loı̈c Garoche‡ Xavier Thirioux†

⋆ INRIA, Ecole des Mines de Nantes, France
† Institut de Recherche en Informatique de Toulouse, Université de Toulouse, France

‡ Office National d’Étude et de Recherche en Aérospatiale, Toulouse, France

first name.last name ⋆: @inria.fr †: @enseeiht.fr ‡: @onera.fr

Abstract

In the context of MDE (Model-Driven Engineering), our

objective is to define the semantics for a given DSL (Domain

Specific Language) either to simulate its models or to check

properties on them using model-checking techniques. In

both cases, the purpose is to formalize the DSL semantics

as it is known by the DSL designer but often in an infor-

mal way. After several experiments to define operational

semantics on the one hand, and translational semantics on

the other hand, we discuss both approaches and we specify

in which cases these semantics seem to be judicious. As a

second step, we introduce a pragmatic and instrumented ap-

proach to define a translational semantics and to validate it

against a reference operational semantics expressed by the

DSL designer. We apply this approach to the XSPEM pro-

cess description language in order to verify process models.

1 Introduction

In the MDE (Model-Driven Engineering), models are

defined by means of metamodels which specify their syn-

tax and give some structural properties that constrain valid

models. Usually they rely on an abstract syntax (speci-

fied by means of metamodeling languages like MOF [42],

Ecore [11, 10], KM3 [27] or others) enriched with con-

straints expressed using query languages like OCL [41].

The MDE practices eases as well the definition of DSL

(Domain Specific Language). These languages allow users

to concentrate on their problems because they manipulate

a formalism specific to their activity. Numerous available

frameworks (Topcased [22], GME [34], AMMA [6], etc.)

have emerged, allowing to easily define both concrete and

abstract syntax of such DSLs.

A current open issue is the expression of a behavioral

semantics allowing to execute models during the develop-

ment process. Our actual works in this context has its roots

in the different kinds of behavioral semantics devised for

programming languages engineering (e.g., [56]).

We carried out several experiments to define an oper-

ational semantics for a simplified process modeling lan-

guage. We have used metaprogramming languages (like

Kermeta [38]) and endogenous transformations (expressed

in ATL [28], or in AGG [53], a rewriting graph tool). We

then compared these different approaches in [18]. In both

cases, we were able to execute a model but a mandatory pre-

liminary step was to extend the metamodel in order to de-

scribe the additional pieces of informations required to cap-

ture a snapshot of the system. Different approaches may be

followed depending upon the kind of extension. A metapro-

gramming approach requires to enrich the metamodel with

implemented operations. Instead, these operations are ex-

pressed in an endogenous transformation approach, through

the transformation itself.

A second experiment was the definition of a translational

semantics to Petri nets using ATL exogenous transforma-

tions1. The obtained Petri nets could then be executed using

their own semantics. This translation defines an behavioral

semantics for the original DSL. Once the semantics is de-

fined by translation to another language, we were able to

reuse existing tools such as model-checkers or simulators

available on the target model. This approach seems pow-

erful but one of its main drawback is the interpretation of

tools results back on the source model.

A lot of works consider this concern of defining a se-

mantics on a DSL. Our proposal is mainly focused on the

1see. http://www.eclipse.org/m2m/atl/usecases/

SimplePDL2Tina/

http://www.eclipse.org/m2m/atl/usecases/SimplePDL2Tina/
http://www.eclipse.org/m2m/atl/usecases/SimplePDL2Tina/

Pre
lim

in
ar

y
Ver

si
on

way used to express the semantics but also on means to val-

idate its consistency with respect to the one intended by the

DSL users. We do not target a general solution for every

kind of semantics and for every DSL but we rather propose

a methodology that could be instantiated in many contexts

depending on the DSL, on the granularity of the needed se-

mantics, and so on.

Thus, this paper broadens our tries and proposes:

• A survey (Section 2) synthesizing the ways of formal-

izing the semantics definition in the model-driven de-

velopment context. It particularly addresses the two

principal approaches: exhibiting an operational se-

mantics, mainly through an endogeneous transforma-

tion (based on rewriting rules, automaton, etc.), or a

translational semantics which relies on a separate for-

mal model to embed the model semantics.

• A definition (Section 3) and a complete use (Section 4)

of our proposal for the definition of a behavioral se-

mantics. It starts with the definition of the reference

semantics of the initial metamodel, goes on with the

definition of a translational semantics, and ends with

the proof of bisimulation stating that both semantics

– the reference one and the one obtained through the

translation – characterize the same systems2.

This second contribution presents a pragmatic approach

to define a translational semantics and reuse existing tools

of the chosen target domain. It is illustrated with an ex-

ample that considers process models and embeds them into

prioritized time Petri nets. Associated tools, such as the

Tina model checker, can then be used to observe proper-

ties of the models. Finally, we detail a bisimulation proof

that validates the semantics defined by translation against

the reference one defined on the source DSL.

The paper is organized as follows. Section 2 presents a

survey of ways to define the semantics of a DSL and dis-

cusses benefits and weaknesses of operational and transla-

tional semantics. Section 3 describes the general approach

we propose to define the semantics of a DSL and ensuring

their consistency. It is illustrated in Section 4. Last section

gives some concluding remarks and future works.

2 Defining an Execution Semantics for DSL

2.1 Taxonomy

The intensive works on the semantics of programming

languages have provided a taxonomy of the different tech-

niques used to express a semantic according to different

2In this paper, we follow the definition of bisimulation given in [37]

MyDSL

Metamodel

Rules

operational

semantics

MyDSL

Metamodel

FormalDomain

DATA

Rules

translational

semantics

Figure 1: Operational Vs. Translational Semantics

needs [56]. This concern is much more recent for model-

ing languages. We can identify three main techniques to

define the behavioral semantics of a DSL.

The first one is called axiomatic semantics. It consists to

define a set of properties satisfied by the model at the dif-

ferent steps of its execution (like pre- and post-conditions).

Unfortunately, it usually not easy to fully specify the behav-

ior of the model [56]. Furthermore, an axiomatic semantics

can not be made automatically or easily executable.

Operational semantics is the second technique. It di-

rectly manipulates the model. Thus, it allows to stay in

the same technical space and to express the evolution of the

model state in the same specific domain (fig. 1, on the left).

It generally requires to extend the initial metamodel with

the informations that describes the state of model at execu-

tion. Several possibilities have been explored to implement

the operational semantics directly on the abstract syntax.

The first one is to use a metaprogramming language to

express directly the behavioral semantics like a set of opera-

tions for each concept. We can cite, for example, operations

defined with Kermeta [38], xOCL [16] or the MOF action

langage [9, 45].

The second way is to lay endogenous transformations

over the abstract syntax. They can be implemented using

any model transformation language.

As an example, [35] uses QVT [44] to express in-place

rewriting rules that gradually compute the values of an OCL

[41] expression. In this way, they have defined an opera-

tional semantics of OCL and are able to compute the value

on an OCL expression. The authors had first to complete

the OCL and UML metamodels to add the required missing

dynamic informations.

Endogenous transformations have also been widely im-

plemented through graph transformation [51]. Graph trans-

formation provides a declarative and rule-based technique

to define an operational semantics, but also analysis capa-

bilities due to its formal nature. AGG [53] is an example

of such a language that is directly usable over Eclipse/EMF

models thanks to [7]. As another example, the GROOVE

tool was used in [29] (and detailled in [30]). Kuske, Gogolla

et Ziemann [32, 33, 24, 57] are also using graph transforma-

tions (and the notion of transformation unit [31]) to define

2

Pre
lim

in
ar

y
Ver

si
on

the behavioral semantics for some UML diagrams and their

relationships.

Hausmann [25] introduces the notion of dynamic meta-

modeling (DMM) as a semantics description technique for

Visual Modeling Languages. Graph transformation is used

to define the behavior as a system of transitions. In [21],

graph transformation rules are visually defined thanks to

collaboration diagrams. [23] represents elementary trans-

formations as UML collaborations diagrams indicating the

elements to add and/or to remove when it is applied. These

transformations are embedded in the state of a UML activ-

ity diagram that controls the order the transformations are

applied. It thus looks like a graphical meta-programming

language (called Story Diagrams) where actions are trans-

formations based on graph rewriting and control structures

are provided by the UML activity diagram.

The third technique to define the behavioral semantics of

a DSL is called translational semantics. On the contrary of

operational semantics, a translational semantics maps the

model state into another (formally well defined) technical

space (fig. 1, on the right). Thus, it relies on an existing

semantics defined on the target technical space. It consists

to translate constructs from the initial domain into the con-

structs of the formal target space. That is this translation

that gives the semantics of the initial domain.

As part of the MIC approach (Model-Integrated Com-

puting), the ISIS laboratory promotes semantics anchoring

[12] that is a kind of translational semantics. It consists

to map the DSL constructs into a semantics unit to define

its semantics. The GReAT transformation language is used

[1]. We can notice that semantics units are defined using op-

erational semantics, for example using Abstract State Ma-

chines (ASM). Translational semantics is also used by the

group pUML3, called Denotational Meta Modeling, in or-

der to formalize some UML diagrams [13].

Numerous works use translational semantics, mainly to

take advantage of the facilities and tools available in the tar-

get technical space (code generators, model-checkers, simu-

lators, visualization tools, etc.). To deal with the complexity

of a translational semantics definition and help in handling

changes in the language definition, Cleenewerck et al. [17]

promote the separation of concerns. They define a language

module as a language construct accompanied by its transla-

tional semantics that constitutes an important design deci-

sion in the language. The constructions (i.e., the concerns)

can then be assembled in order to define the semantics of

the entire DSL.

Other taxonomies have been proposed. Clark et al. [14],

recently updated in [15], share the distinction between oper-

ational and translational semantics. Their works are focused

3The precise UML group, cf. http://www.cs.york.ac.uk/puml/

on the execution semantics and therefore do not mention ax-

iomatic semantics. They also define the notion of semantics

by extension, consisting in extending the concepts and se-

mantics of an existing language and thus allowing for capi-

talization and reuse of semantics. Nevertheless, the seman-

tics is defined either as a operational or translational seman-

tics. Finally, we do not share the definition of a denotational

semantics as a mapping to a semantic domain. For us, this

is the general definition of a semantics and thus generalizes

all the other kinds.

Hausmann [25] also presents a taxonomy of techniques

to express a behavioral semantics. He lists the available

techniques to achieve specific objectives (e.g., verification

of properties, analysis of the consistency and code genera-

tion) and he identifies the general techniques to express the

semantics, including operational and translational seman-

tics.

2.2 Discussion

An operational semantics seems simpler to define and

to use than a translational one because it is directly ex-

pressed on the concepts of the specific domain which are

naturally well-known by the expert. For the purpose of an-

imation (viewing the evolution of a model during its exe-

cution) and/or simulation (analysing an execution) this ap-

proach seems preferable, in particular if the model of com-

putation is fairly simple, for example representable using

discrete states.

However, operational semantics may not always be easy

to implement. For example, if the model of computation

deals with time, operational semantics definition may be-

come tricky and may involve to heavily extend the source

metamodel to deal with time constraints [48].

Furthermore, if one needs to use formal techniques

like model-checking for example, a translational semantics

seems more relevant than operational one. Indeed, state-of-

the-art existing tools rely on several years of research and

development and could not be easily generalized to be ap-

plied to any domain specific concepts.

To use translational semantics, one has to choose the ap-

propriate target technical space depending on the kind of

property one wants to check or depending on the tool one

wants to use. This approach requires to define a metamodel

for the target language, which may not already exist in a

MDE model flavor, and then to define a translation from

models of the source language to models of the target one.

Finally a concrete syntax extractor is needed in order to cre-

ate the input data for the tools.

So one great benefit of the translational semantics is to

give access to any tools existing on the target space. Obvi-

ously, it requires a good understanding of both the source

space, specific to a given domain, and the target one, gen-

3

Pre
lim

in
ar

y
Ver

si
on

erally a more formal one. Indeed, the execution of a model

in the source language must be expressed by a translation

to the target language, relying on its behavioral semantics.

Another difficulty of the translational semantics is that re-

sults obtained in the target space have to be interpreted back

according to the concepts of source one.

The work done in [49, 50] illustrates the strength and

weakness of operational and translation approach explained

here-above. The authors aim at formally defining the se-

mantics of a DSL by translating it to the Maude formal en-

vironment. The Maude tool is then used to express the op-

erational semantics using rewriting rules. It looks like se-

mantics anchoring approach presented in the previous sec-

tion with ASM replaced by Maude that the purpose is not

to define reusable semantics units but only express the de-

sired semantics. An identified drawback is that it requires

specialized knowledge and expertise by the DSL designer

who has to use the Maude tool. Thereafter, the same au-

thors have proposed in [47] the use of graph transformation

to directly express the operational semantics through the ab-

stract syntax of the DSL, which then become more intuitive

to the designer. Metamodel and graph transformation rules

are then automatically translated into the Maude environ-

ment.

3 A Pragmatic and Combined Approach to

Define Consistent Behavioral Semantics

We introduce in this section our pragmatic and combined

approach to define a behavioral semantics for DSL. We first

discuss the necessity to define a reference operational se-

mantics ¡refletant¿ the DSL designers experiences. Then

we discuss the validation of translational semantics accord-

ing to the reference one and its abstraction level.

3.1 The Need for a Reference Semantics

Having in mind the variety of choices that could be made

in order to express one DSL’s semantics, the first concern

should be to define a reference semantics, which should

carry the most precise (or less abstract) view on model ex-

ecutions. So we have to gather and take into account every

concept that every expert has pinpointed as important ac-

cording to his own standpoint. For instance, some expert

may stay focused on complex functional properties, while

some other would direct his interest toward real-time as-

pects only. Obviously, independent concerns should bet-

ter be expressed independently. As shown in section 4.3,

we have defined a translational semantics which indeed re-

spects such a separation of concerns. In our opinion, a refer-

ence semantics should stay as close as possible to the model

designers’ views, and as such, should also stick to the orig-

inal technical space, avoiding its translation to a somehow

distant target space. As a consequence, a reference seman-

tics ought to be operational, rather than translational or ax-

iomatic.

More than being only the most precise one, the reference

semantics also gives us the opportunity to define a formal

semantics, i.e., one that could serve as a basis for formally

expressing a specification and achieving mechanized vali-

dation proofs. Model designers may also consider other se-

mantics, which may be designed for practical purposes, as

long as these semantics are respectful of the reference se-

mantics. In that case, designers will also benefit from the

specification and proof effort made on the reference seman-

tics, as some properties will automatically be carried over

to these other respectful semantics. The forthcoming prob-

lem of determining whether another given semantics is re-

spectful of the reference semantics will be addressed by ex-

hibiting simulation or bisimulation relations between these

semantics.

The bisimulation relation between a reference semantics

and any other translational semantics is defined as follows,

as pictured in Figure 2. Note that it is a kind of weak bisim-

ulation, assuming the reference semantics has no τ unob-

servable transitions. This hypothesis makes sense as transi-

tions introduced by model designers are always meaningful

and reflect observable changes in the model.

Definition 1 (Weak Bisimulation Relation) Let us as-

sume a translation function Π between state spaces from a

reference semantics (RS) to a target semantics (TS): For

all model state S ∈ RS and for all sequence u ∈ T ∗ such

that S0
u
→ S, S0 being an initial state of RS:

1. ∀λ ∈ T, S′ ∈ RS,

S
λ
→ S′ =⇒ Π(S)

τ∗
→

λ
→

τ∗
→ Π(S′)

2. ∀λ ∈ T, P ∈ TS,

Π(S)
τ∗
→

λ
→

τ∗
→ P =⇒

∃S′ ∈ RS s.t.

{

S
λ
→ S′

Π(S′) ≡ P

where
τ
→ denotes a non observable transition.

We propose in the remainder a formal operational refer-

ence semantics, as a rather standard transition system. As is,

this transition system may be directly implemented by a set

of endogenous rewrite rules, mapping each state to its pos-

sible successor states. This approach can be implemented

by using a model transformation engine such as ATL [28]

or a graph transformation tool such as AGG [53].

3.2 Taxonomy of Combined Semantics
Definition

In this section, we enumerate the different approaches

used to describe a model semantics relying on a target

4

Pre
lim

in
ar

y
Ver

si
on

S1

P2

P1’

S2

*

*

bisimulation

ΠP1= (S1)

P2’=Π(S2)

λ λ

τ

τ

Figure 2: Bisimulation between a reference and any other

semantics

model with its own well defined semantics. In a general

manner, we consider in the following that the translation

target model is provided with a formal small-steps opera-

tional semantics, like the one of Petri nets. The source DSL

semantics can then be described by two orthogonal view-

points: the abstraction level and the kind of description. De-

pending on the abstraction level used to describe the source

DSL semantics, we then identify how to ensure the quality

of the defined translational semantics.

3.2.1 Expressing the source DSL semantics

A first characteristic of the source DSL semantics is its ab-

straction level. A small-steps operational semantics could,

for example, be described by a set of rewriting rules, by an

automaton or a Kripke structure. A denotational abstraction

of this semantics maps each observable state to its possi-

ble observable images by one or more applications of these

transitions or rules. Finally an axiomatic semantics, ab-

stracting the latter, is not operational but rather defines a

set of properties satisfied by the model at the different steps

of its execution (like pre- and post-conditions). It does not

fully specify the behavior of the model [56].

The second, very pragmatic, viewpoint is the kind of

description of this source semantics. Independently of its

abstraction level, the semantics can be described more or

less formally. Historically, DSL were used by designers to

communicate their modeling concepts. Therefore there is

no general formal framework for specifying the DSL se-

mantics. Thus the semantics description, when it exists, is

usually given informally in natural languages. Sometimes

it is defined using more formal structures such as Kripke

structures, rewriting rules or endogenous transformations.

If the semantics does not explicitly exist, whether in a for-

mal manner or not, its definition is a required step.

We now consider the different possible combinations of

these two DSL semantic characteristics in order to identify

the key steps during the definition of a sound translational

semantics. Whatever the precision of the initial semantics,

a domain expert identifies equivalent states with respect to

the properties of interest for the model. Each such class

is characterized by a state predicate (predicate abstraction

phase). An event or a state evolution in the model is said

to be observable if its states before and after the event are

not equivalent. In the following, the translation function

considers a model in a particular state. The image of such a

state by this function is, in the following, a Petri net with a

particular marking.

3.2.2 Translation from an Axiomatic Semantics: Ex-

pression of the Consistency

When the initial semantics is not precise enough, it is not

always possible to exhibit a one to one mapping between

this semantics and the translational one. However, we need

to be sure that the target model satisfies the properties ex-

pressed in the initial semantics. A standard axiomatic se-

mantics contains invariants, preconditions and postcondi-

tions which must be expressed according to state predicates

defined by the expert. On a more theoretical side, there is

no bisimulation but simply a simulation of the target model

by the source model. In fact, the axiomatic semantics is not

operational, but the properties of the axiomatic semantics

permits to define a set of observable state-based properties

on the target model, that will have to be checked. We will

be able to translate only types of properties supported in

target technological space, in our case behavioral properties

of the Petri nets. The possibility of translating axiomatic

properties is thus strongly dependent on the target DSL.

This approach gives to model designers a way to ensure

minimal requirements such as typing constraints, but light

axiomatic semantics does not give strong confidence in the

results of target model analysis tools. Actually, the defi-

nition of a semantics by translation requires to make a lot

of choices in the semantics definition and the resulting se-

mantics could be distant from the original one, while being

compatible with the axiomatic requirements.

3.2.3 Translation from an Operational Semantics:

Bisimulation Relation

The approach of translating from an operational semantics

is more promising as the distance between the original and

target semantics is smaller.

When semantics is formally expressed and described in

an operational way, one has to ensure that the original se-

mantics and the one obtained by translation describe the

same behaviors. Thus one needs to have a proof of bisim-

ulation between these two semantics. It is a proof by in-

duction on the abstract syntax in which one shows that any

transition in the first semantics corresponds to a transition

5

Pre
lim

in
ar

y
Ver

si
on

in the second one, and vice versa. If one of these semantics

comprises more states than the other, it is a weak bisimu-

lation. This proof guarantees that the observable events of

these two semantics are identical and thus that the analyses

on the target model are relevant for the source model prop-

erties. The bisimulation consists in showing that a model

and its image by the translation function have identical ob-

servable events at every moment.

In the next section we propose such a model definition,

as a translation from an operational semantics defined on

process models to Petri nets. This translational semantics

definition is then validated by the weak bisimulation we ex-

hibit in the section 4.5. This application ensures that we can

rely on existing tools for Petri nets to verify properties on

process models.

3.3 Our Approach in a Nutshell

Whatever be the kind of description of the reference se-

mantics, the general schema of our proposal is described by

the following steps for a given metamodel:

1. reference semantics must be defined according to the

DSL designers needs.

2. an adequate target domain must be chosen depending

on the intended facilities;

3. then a mapping from the initial DSL to the target do-

main must be defined;

4. a validation of the mapping must be established with

respect to the reference semantics thanks to a bisimu-

lation proof;

5. finally, any user of the initial DSL is able to rely on

tools available in the target domain to observe proper-

ties of its initial models.

The last four steps (2–5) can be repeated to reuse facil-

ities provided by different domains with possibly different

levels of abstraction. It thus leads to the definition of a fam-

ily of semantics.

4 Process Models Verification Through Pri-

oritized Time Petri Nets

We now illustrate the above methodology throughout for

the instrumentation of a process model DSL: we enrich it

with a semantics definition “by translation” with respect to

its reference semantics. We first present our source DSL:

XSPEM, a SPEM-based4 process metamodel enriched with

4SPEM is an OMG specification [43]. It stands for Software Process

Engineering Metamodel. SPEM is used to define software and systems de-

velopment processes and their components. SPEM is a MOF-based meta-

model [42].

Activity
tmin : EInt
tmax: EInt
state: ActivityState
time: TimeState

Parameter
direction: DirectionKind
charge: EInt

WorkBreakdownElement
Resource

 occurencesNb : EInt

BreakdownElement

 name: EString

WorkSequence
linkKind: WorkSequenceKind

<<enumeration>>
DirectionKind

in

out

inout

<<enumeration>>
WorkSequenceKind

finishToStart

finishToFinish

startToStart

startToFinish

0..*

 ownedParameter

1 parameterType

0..* nestedBreakdownElement

predecessor
1

0..*
linkToSuccessor

successor
1

 0..*
linkToPredecessor

<<enumeration>>
ActivityState

notStarted

inProgress

finished

<<enumeration>>
TimeState

ok

tooLate

tooEarly

Figure 3: XSPEM metamodel (simplified)

information to support the execution of its models. We also

explain how the DSL designer may define an abstraction

of XSPEM operation semantics suited to the properties he

wants to focus on. The second part presents prioritized time

Petri nets and their associated semantics. Thereafter, we

propose the mapping from XSPEM to Petri nets and ex-

press it in a MDE approach. Finally, we validate the seman-

tics induced by the mapping with respect to the identified

reference semantics. The full details concerning the bisim-

ulation proof are given in Appendix A.

4.1 XSPEM: an eXecutable SPEM meta-
model

In our experiments, we used a simple process description

language, the simplified XSPEM metamodel (cf. Figure 3).

XSPEM stands for eXecutable SPEM. It is proposed

in [2] as an extension of SPEM2.0 specification [43] in or-

der to take into account the support of process enactment

while remaining standard. In the metamodel, an Activity

represents a general unit of work assignable to specific per-

formers. It may rely on inputs and produces outputs (repre-

sented by Resource). An activity may be broken down into

sub-activities. Activities are ordered thanks to the WorkSe-

quence concept whose attribute linkKind indicates when an

activity can be started or finished. The values of linkKind

are defined by the WorkSequenceKind enumeration. One

value is named in the form stateToAction where state indi-

cates the state that must have been reached by the source

activity in order to perform the action on the target activity.

For example, linking two activities A1 and A2 by a WorkSe-

quence relation of kind finishToStart specifies that A2 will

be able to start only when A1 is finished. The direction at-

tributes defined in Parameter could be used to complete se-

quencing constraints expressed through the WorkSequence

concept.

6

Pre
lim

in
ar

y
Ver

si
on

In order to tailor a process model for a given project,

additional features have to be defined. They are required

to specify the number of used resources, expected duration,

etc., and to identify the concrete resources allocated to the

project.

XSPEM includes: 1) the time interval during which an

activity must finish once started (tmin and tmax on Activ-

ity); 2) the number of occurrences for one kind of Resource

affected to the project (occurrencesNb on Resource); 3) the

work load affected to a resource for an activity (charge on

Parameter).

In order to enact a process model, its semantics has to

be defined or at least validated by the DSL designer. So we

consider that we should not yet rely on a translational se-

mantics but on an operational semantics that explains how a

model/program of the DSL evolves. It thus consists in iden-

tifying model states and transitions between these states. As

the initial definition of the DSL mainly focuses on static

properties of the domain language, a firt step consists in

adding features to the metamodel to capture states.

XSPEM identifies two orthogonal aspects for the Activ-

ity element. First, an activity can be not started, inProgress,

or finished (state attribute). Secondly, there is a notion of

time and clock associated to each activity; but this time is

only relevant for transition-enabling conditions (in our case

transitions that start and finish an activity) and is not explicit

in state properties. Thus it is abstracted away and yields

the finite set of observable states {tooEarly, ok , tooLate}
(time attribute). This second orthogonal aspect is only rel-

evant when the activity is finished. Abstracting away inter-

nal clocks doesn’t mean they are thrown away, but only that

their values are not observable. In particular they will be

needed and used in the bisimulation proofs.

It is also necessary to take into account the concept of a

global external clock (clock ∈ R
+), whose rate is followed

by the internal activity clocks when performing idle time-

elapsing transitions.

Definition 2 (xSPEM Model State) We denote a state

of an Activity by a triple (state, inT ime, clock) ∈
{notStarted, inProgress, finished} × {tooEarly, ok,

tooLate}×R
+. A model state is then a mapping from each

Activity to its state in the concerned model.

XSPEM reference semantics An observational abstrac-

tion of the operational semantics of our processes with re-

spect to our properties can now be defined. The expert has

again to formalize the initial state and the transition rela-

tion. In our case, it is quite natural: the initial state is

{a 7→ (notStarted, ok, 0)|a ∈ A}. The transition rela-

tion is defined for Activity in Figure 4. It is composed of

two possible transitions: a first one allows to start the activ-

ity and the second one to finish it. An activity can be started

whenever it is not yet activated and when its predecessor

constraints are satisfied. Concerning the second transition

rule, it has three cases depending on the value of the clock

and the timing bounds of the considered activity.

4.2 Prioritized Time Petri Net

As XSPEM models real-time constraints and clocks, we

find it natural to use time extensions to basic Petri nets.

Time Petri Nets (TPN) [36] are one of the most widely

used model for the specification and verification of real-

time systems. Time Petri nets are Petri nets (PN) in which

a non-negative real interval Is(t), with rational end-points,

is associated with each transition t of the net. Function Is

is called the Static interval function.

R+ and Q+ are the sets of non negative real numbers

and rationals, respectively. Let I+ be the set of non empty

real intervals with non negative rational end-points. For i ∈
I+, ↓ i denotes its left end-point, and ↑ i its right end-point

(if i bounded) or ∞. For any θ ∈ R+, i −
.

θ denotes the

interval {x − θ|x ∈ i ∧ x ≥ θ}.

Prioritized Time Petri Nets [4] extend TPNs with the pri-

ority relation ≻ on transitions. Priorities are represented by

directed arcs between transitions, the source transition hav-

ing a higher priority.

Definition 3 (Prioritized Time Petri Net – PrTPN) A

Prioritized Time Petri net (or PrTPN) is a tuple

〈P, T,Pre,Post,≻, m0, Is〉, in which 〈P, T, Pre, Post,

m0〉 is a Petri net, Is : T → I+ is a function called the

Static Interval function and ≻ a pre-order on transitions.

P is the set of places, T is the set of transitions, Pre,

Post : T → P → N+ are the precondition and post-

condition functions, m0 : P → N+ is the initial marking.

Time Petri nets add to Petri nets the static interval function

Is, that associates a temporal interval Is(t) ∈ I+ with every

transition of the net. Efts(t) = ↓Is(t) and Lfts(t) =
↑Is(t) are called the static earliest firing time and static

latest firing time of t, respectively.

A Prioritized Time Petri net is given in Figure 5. In such

example, the place p0 has a unique token. Both transitions t

and t′ could then be fired. However they have to satisfy

both the timing constraint and the priority expressed be-

tween them. Here, at time 0, only transition t can be fired.

But, in the valid timing range for both, i.e. in]1, ω[, t′ must

be fired before t. In any case, when a transition is fired, it

consumes a specified number of tokens and produces also a

given number of tokens. These values are defined on input

and output arcs of transitions. Default values for both are

one token, i.e. a transition needs one token in the source

place and produces one new in the target place. In this ex-

ample, the transition t′ consumes one from p0 and produces

two tokens into p2. In our graphical syntax, the number of

7

Pre
lim

in
ar

y
Ver

si
on

Let a be a given activity.

∀ws ∈ a.linkToPredecessor,

(ws.linkType = startToStart && ws.predecessor.state = {inProgress, finished})
|| (ws.linkType = finishedToStart && ws.predecessor.state = finished)

(notStarted, ok, clock)
StartActivity

−→ (inProgress, ok, 0)

∀ws ∈ a.linkToPredecessor,

(ws.linkType = startToF inished && ws.predecessor.state ∈ {inProgress, finished})
|| (ws.linkType = finishedToF inished && ws.predecessor.state = finished)

(inProgress, ok, clock)
FinishActivity

−→ (finished, tooEarly, clock) if clock < tmin

(inProgress, ok, clock)
FinishActivity

−→ (finished, ok, clock) if clock ∈ [tmin, tmax[

(inProgress, ok, clock)
FinishActivity

−→ (finished, tooLate, clock) if clock ≥ tmax

Figure 4: Event-based Transition Relation for Activities

tokens in a place is specified by a number, when greater than

one, or a black dot, when equal to one.

t

p1

p0 t'

p2]1,w[

[0,w[

2

Figure 5: A Prioritized Time Petri Net

States, and the temporal state transition relation
t@θ
−→, are

defined as follows:

Definition 4 (PrTPN state and semantics) A state of a

PrTPN is a pair s = (m, I) in which m is a marking

and I is a function called the interval function. Function

I : T → I+ associates a temporal interval with every tran-

sition enabled at m.

We write (m, I)
t@θ
−→ (m′, I ′) iff θ ∈ R+ and:

1. m ≥ Pre(t) ∧ θ ≥ ↓I(t)
∧ (∀k ∈ T)(m ≥ Pre(k) ⇒ θ ≤ ↑I(k))
∧ (∀k ∈ T)(m ≥ Pre(k) ∧ θ ≥↓ I(k) ⇒
¬k ≻ t)

2. m′ = m − Pre(t) + Post(t)

3. (∀k∈T)(m′ ≥ Pre(k) ⇒
I ′(k) = if k 6= qt ∧ m−Pre(t) ≥ Pre(k)
then I(k) −

.
θ else Is(k))

Transitions may fire at any time in their temporal inter-

vals, so states typically admit an infinite number of succes-

sor states. As with many formal models for realtime sys-

tems, state spaces of PrTPN are typically infinite. Model

checking PrTPN first requires to produce finite abstrac-

tions of their state spaces, that is labeled transition systems

that preserve some classes of properties of the PrTPN state

space.

Different state equivalence class constructions have been

proposed and are available in TINA, preserving different

families of properties of the state space. State class graph

construction preserves markings of the PrTPN and all the

properties that can be expressed in linear time temporal log-

ics like LTL.

4.3 XSPEM2PETRINET Transformation

We now propose to implement the semantics defined

in the previous section in order to check XSPEM process

models. For this purpose, we formalize a transformation

from XSPEM to Petri nets, thus defining a translational

semantics.

The Figure 6 presents the mapping in a graphical view.

The transformation is first defined by a structural mapping

from a XSPEM model to Petri net without any marking.

Then a second step is performed that produced a marking

in the Petri net structure. This second step is defined by the

value of the extra variables denoting the semantics state of

the XSPEM model.

Structural Mapping Each Activity is translated into three

places characterizing its state (NotStarted, InProgress and

Finished). An additional place called Started is added to

records that the activity has been started (and may either be

inProgress or finished). It corresponds to the set identified

in the operational reference semantics (cf. Figure 4). Three

places define a local clock that may be in state TooEarly

when the activity ends before tmin, in the state TooLate

when the activity ends after tmax, and in state ok when still

on time. Four transitions between these seven places define

8

Pre
lim

in
ar

y
Ver

si
on

a_notStarted a_start
[0,w[

a_started

a_tooEarly a_lock
[min,min]

a_ok

 a_deadline
[max-min,max-min]

a_tooLate

r

x

a_start a_finish

y

y

a_finish
[0,w[

a_finished
tmin = min

tmax = max

state = s

time = t

a:Activity

occurrencesNb = x

r:Resource

direction = d

charge = y

p:Parameter

a:Activity

if (d = in) or
(d = inout)

if (d = out) or
(d = inout)

r:Resource r

a1:Activity

a2:Activity

linkKind = lk

ws:WorkSequence

a2_finish

a1_started

a2_start

a1_finished

if (lk = finishToFinish)if (lk = startToStart)

if (lk = finishToStart)if (lk = startToFinish)

if (s = notStarted)

if (s = started)

a_inProgress
if (s = finished)

if (s ≠ notStarted
& t = tooEarly)

if (s ≠ notStarted
& t = tooLate)if (s ≠ notStarted & t = ok)

Figure 6: XSPEM2PETRINET (Simplified) Translation

the behavior of the modeled activity. We rely on the use of

priorities among transitions to soundly deal with temporal

constraints. As an example, the a deadline transition is de-

fined with a higher priority than the a finish one (light grey

in Figure 6).

Each Resource is represented by one place where the ini-

tial marking is initialized with its number of occurrences

(occurrencesNb). Every activity Parameter is translated

into one arc whose weight is initialized with a charge. This

arc is linked to one activity transition according to the di-

rection.

A WorkSequence becomes a read-arc from one place of

the source activity to a transition of the target activity ac-

cording to the linkKind.

The hierarchical decomposition of activities is repre-

sented in the form of scheduling constraints in the follow-

ing manner: (A1 �— A2) = ((A1
S2S
−→ A2) & (A2

F2F
−→

A1)), S2S denoting a startToStart dependency between ac-

tivities A1 and A2 and F2F a finishToFinish one (see Work-

SequenceType on Figure 3).

States Mapping Finally, the process state is characterized

using the markings of places characterizing the activity state

and the local clock. The different alternatives are expressed

in the Figure 6 through the use of annotations. These anno-

tations are complete with respect to the possible combina-

tion of values for semantics variables state and time.

4.4 Implementing XSPEM2PETRINET Trans-
formation Through MDE Practices

In order to fit the MDE view, the target model must

also be defined as a model as well as the translation from

XSPEM to Petri nets.

We first propose a Petri net metamodel that fits the usual

definition defined above in Section 4.2. Then we rely on this

metamodel to define a model transformation from XSPEM

metamodel to the Petri net one.

Petri Net Metamodel Figure 7 proposes a possible meta-

model for PrTPN. A PetriNet is composed of Nodes that

denote Places or Transitions. Nodes are linked by Arcs.

Arcs can be normal ones or read-arcs. An Arc specifies

the number of tokens consumed in the source place or pro-

duced in the target one (weight). A read-arc only checks to-

kens availability without removing them. A Petri net mark-

ing is defined by the number of tokens contained in each

place (marking). Priorities are modeled as a self-reference

on the Transition element, the source transition having a

higher priority that the target one. Finally, a time interval

can be expressed on a Transition. Obviously many models

conforming to this metamodel are invalid models. As an ex-

9

Pre
lim

in
ar

y
Ver

si
on

ample, this metamodel does not prevent from putting an arc

between two places or two transitions. Thus, we have com-

pleted it with OCL rules to check whether models are valid

or not. The metamodel, embedding structural rules based

on OCL rules and associated to its semantics, is our target

DSL.

Model Transformation The transformation described in

Section 4.3 and Figure 6 has been written in ATL. The

complete sources are available in the TOPCASED
5 open

source project. The principles of this approach are de-

tailed through a complete case study on the Eclipse website

within the context of an execution dedicated XSPEM subset

(SIMPLEPDL)6.

Remark 1 (Translation Π) We denote by Π the function

that applies the ATL transformation described above on

a model. It is defined for every model that conforms to

XSPEM. As mentionned earlier in Section 3.2.3, this func-

tion is later used to reason about the initial model and to

guaranty the validity of the translation.

The Petri net model is then translated into the concrete

syntax of Tina, our target Petri net model checker, us-

ing an ATL query PETRINET2TINA. To target other Petri

nets tools, only this last transformation would have do be

adapted.

Now that the process model is translated into a Petri

net model, we can check XSPEM properties by using

TINA [5]. Properties expressed on the XSPEM meta-

model are matched against an ATL transformation that pro-

duces the corresponding LTL properties instantiated from

the XSPEM model.

There are two kinds of checked properties: universal or

existential. In the first case, the property must be checked in

5http://www.topcased.org
6http://eclipse.org/m2m/atl/usecases/

SimplePDL2Tina

Node

 name: EString

Transition

tmin: EInt
tmax: EInt

Place

marking: EInt

PetriNet

 name: EString

Arc

weight: EInt
kind: ArcKind

<<enumeration>>
ArcKind

normal

readArc

1 source

1 target

outgoings
0..*

0..*
ingoings

nodes
0..*

arcs
0..*

0..* prioritize

Figure 7: PRIORITIZED TIME PETRI NET Metamodel

all executions. If they fail, the tool provides a trace counter-

example. The second case corresponds to checking that one

possible execution satisfies the property, for example the

time or resources constraints. If such an execution exists,

its trace is generated by the tool. This kind of property is

usually obtain with model-checking tools, by trying to en-

sure the validity of their negation. The counter example

produced by the tool is the answer to the initial query.

4.5 Validating the translation

Finally, we establish a bisimulation relation between the

two semantics. This relation ensures that the conclusions

obtained on the Petri nets also hold on the XSPEM model:

a property checked by the Tina Petri net model checker we

used, is thus a valid property on XSPEM.

Let us first compare the number of possible transitions

in the XSPEM model and in its associated Petri net. In the

first one we have two transitions applicable to each activ-

ity whereas in the second one we have four transitions for

each encoded activity. Therefore we need to prove a weak

bisimulation between these two models.

Theorem 1 (Weak bisimulation) Model state space MS

and Prioritized Time Petri Nets state space PNS are in

bisimulation w.r.t. the translation function Π, according to

the definition 1.

Proof 1 The theorem is proved by induction on the process

model structure. The initial case addresses the bisimilarity

of a single activity and its encoding. Then by structural

induction on the number of activities and their dependences,

one prove the theorem. The property for a set of activities to

be part of a bigger one is encoded by dependence links and

thus is preserved by the bisimulation. The different steps of

this weak bissimulation proof are detailed in appendix A.

5 Related Work

Related works presented in the survey on the definition

of semantics (Section 2) are not focused on the problem of

consistency between several complementary semantics be-

cause they aim at defining one semantics for a given lan-

guage. This is achieved either through operational seman-

tics or translational semantics.

Translational semantics is often used to reuse available

tools of target technical space like code generators, model-

checkers and so one. The work of [20] is close to the ap-

plication domain we have used in this paper. Indeed, the

authors propose a specific mapping from BPMN (Business

Process Modeling Notation) to Petri net in order to anal-

yse business process models. Like most of related works,

the stress is not on the check of the consistency of the

10

http://www.topcased.org
http://eclipse.org/m2m/atl/usecases/SimplePDL2Tina
http://eclipse.org/m2m/atl/usecases/SimplePDL2Tina

Pre
lim

in
ar

y
Ver

si
on

BPMN semantics and the one given by the translation into

Petri nets. Furthermore, they do not propose a general and

generic approach to describe a translational semantics ac-

cording to an operational one.

The key point is that we believe that a semantics always

exists on the DSL even if it is often only implicit or in-

formally described. We advocate that this semantics, the

reference semantics, has to be explicitly described so that it

can be validated by the DSL designer. One step toward this

goal is certainly achieved thanks to the work done to make

the definition of semantics easier for example by providing

a friendlier language to express it like visual graphical no-

tation of graph transformation rules [21], Story Diagrams

[23] or by reusing already defined semantics units like [12].

Furthermore, we can notice that aside the reference se-

mantics of the DSL, several semantics may have to be de-

fined for the same DSL to address the problem at differ-

ent levels of abstraction or for reusing the tools available in

other technical spaces. So we had to deal with the consis-

tency of these different definitions of the semantics of the

same DSL.

Automatically generating the mapping defining the

translational semantics is one way that has been investigat-

ing to ensure this consistency. The approach proposed in

[19] is one example. Once the semantics is defined in an op-

erational way on the DSL (through graph rewriting rules),

they are able to translate a model of this DSL into a Petri net

having the same behavior by construction. This translation

is based on the definition of a mapping between DSL meta-

model and the Petri net metamodel expressed through Triple

Graph Grammar (TGG). It consists in stating if an element

of the source DSL becomes a place or a token in the target

Petri net. Each rewriting rule describing the behavior of the

DSL is automatically translated into a Petri net transition.

Unfortunately, the approach imposes strong hypothesis and

thus cannot translate arbitrary behavioral specifications. It

also constrains the metamodel because a source element can

only be map into one place or one token. In our case, the

XSPEM metamodel should be changed to define one sub-

class of each possible state of an activity.

The same approach is used in [47]. As it has been pre-

sented in Section 2, they translate an operational semantics

defined on the DSL into the Maude environment.

A second way to verify consistency of semantics has

been proposed by Narayanan and Karsai [39]. As a first

step towards verifying model transformations, Narayanan

and Karsai propose to check if a particular generated model

is a valid representation of a particular source model in or-

der to verify a given property about the source model. They

establish an equivalence relation between objects of the in-

put and output models and use it to check if the two models

are similar in behavior. The approach has been applied to

a transformation from statecharts to EHA (Extended Hy-

brid Automata) and the checking is done according to links

between input and output objects recorded during the trans-

formation execution. In [40] they use semantic anchoring

[12] to the same semantic unit (Finite State Machines, FSM

defined using Abstract State Machines, ASM) to define the

semantics of two variants of statechart, and then check a

weak bisimulation between the two resulting FSM models

to ensure that they are behaviorally equivalent.

The approach does not ensure that both semantics are

consistent but it can assert whether the target model is be-

haviorally equivalent to the source one for a given property.

The check has to be done for each transformation but as it

is included in the transformation process, its execution is

automatic.

The work is facilitated by the fact that the two metamod-

els are quite similar and the transformation produces a one

to one mapping for states and transitions of both metamod-

els. It seems to be far less obvious in the case of general

metamodels, for example in the case of XSPEM to Petri

nets. In order to help detect errors in the transformation it-

self, we have defined additional LTL properties that controls

that invariants on the source metamodel are preserved of the

target metamodel. For example, we can check that the same

activity cannot be at the same time not started, running or

finished. Obviously, it does not ensure that the transforma-

tion is correct and only helps in pointing out errors.

In the process of validating model transformations, the

notion of bisimulation is a central concern. Actually, many

different definitions of bisimulation do exist, depending

upon the chosen granularity between corresponding events

of the two systems to be proved bisimilar. These bisimula-

tions have been defined on a semantical basis, as relations

between transition systems, but for a vast majority of works,

they have been applied to process calculi, and especially π-

calculus [52]. Still, the focus is mainly being put on defin-

ing new variants and addressing their properties, disregard-

ing the eventuality of automating bisimulation proofs.

As for this last topic, some works about automatic proofs

of bisimulations recently came up, again for π-terms and

within the framework of a proof assistant: Coq [54]. As is,

the results presented in [26, 46] seem inapplicable to our

case without a considerable redesign effort. Indeed, their

heuristics for automating bisimulation proofs have been

specifically developed for π-terms, not for arbitrary transi-

tion systems, and are obviously not aware of our metamod-

eling framework. As far as we know, the amount of related

works seems quite small. And furthermore, the special case

when one system is obtained through translation from the

other is by far an unexplored territory, even for structural

and modular translations like ours.

To conclude with a positive remark, most theoretical as

well as practical results about automation of bisimulation

proofs stemed from the study of finite state systems, a class

11

Pre
lim

in
ar

y
Ver

si
on

the simple XSPEM models presented in this paper indeed

boil down to. In this context, many questions about bisimu-

lations are decidable, though usually very resource demand-

ing, as advocated by a bunch of related tools [3, 8].Yet this

appealing property doesn’t carry over to the general case of

XSPEM models.

6 Conclusion and Perspectives

This paper gives several contributions on the definition

of model semantics. A first one is a survey of the differ-

ent techniques allowing to define and manipulate the exe-

cution of models. The different approaches are compared

with their pros and cons. Then a second contribution is the

application of one approach, the translational semantics def-

inition, on a DSL describing processes. Its semantics is de-

fined through a mapping to prioritized time Petri nets. All

the step towards the sound definition of the DSL semantics

are detailed. We formalize the initial semantics, give the

semantics of the target DSL, provide a translation from the

source metamodel to Petri nets. This transformation is vali-

dated by a bisimulation proof.

This work is a first step toward the practical instrumen-

tation of models. In particular the approach presented here,

including the transformation validation step, ensures that

one can rely on all available tools on the target model while

keeping a strong confidence in the quality of the semantics

representation. For example, model can then be validated

using static analyzers, model checkers, or even be simulated

using specific tools.

It is now essential to continue this work with the interpre-

tation of the results obtained on the Petri nets in term of the

XSPEM concepts. It will then provide a transparent way

to instrument high level models and gives tool to non expert

in order to manipulate their models. For example, a trace

obtained by a model checker on the target model could be

translated back as a trace of the source model (in XSPEM)

and exploited by an XSPEM simulator. Traces correspond-

ing to counterexamples may be used to find errors on the

source model while traces of an existential property may be

used to simulate a possible execution.

Another perspective is a computer-aided way to build

such translational semantics. The bisimulation proof step

which seems necessary could be automated, at least par-

tially. Promising works of [26] and [46] address the auto-

mated verification of bisimulation, resp. strong and weak.

In this line of thought, we have started the design and

implementation of a formal framework for expressing for-

mal semantics of models, the Coq4MDE (Coq for Model-

Driven Engineering) framework, which principles are ex-

posed in [55]. The rationale behind Coq4MDE was to pro-

vide a formal foundation to the various concepts of MDE

(e.g. model, metamodel, model conformity, model transfor-

mation, etc) so that properties could be stated and proved

about general MDE concepts and some of their specific

instances. We make use of the general purpose higher-

order logic and proof assistant Coq, as it provides an auto-

matic mechanism for generating executable programs from

proofs, loosely speaking. Thus, an operational formal ref-

erence semantics in this framework could be automatically

turned into an executable semantics, suitable for testing and

interactive simulation for instance, with no supplementary

developing effort. An immediate benefit of this executable

semantics is the possibility to put the model designers’ ref-

erence semantics to a test, in early stages of DSL definition,

i.e., before attempting to define a translational semantics

with its bisimulation proof. Such a feedback would surely

help in designing a sensible and suitable reference seman-

tics in a more efficient way.

As a general conclusion, regarding the spread of model

driven engineering, more and more tools will be needed to

support model manipulation, in particular model execution.

This work proposes an approach allowing to rely on existing

formal models and tools to support new developments.

References

[1] A. Agrawal, G. Karsai, Z. Kalmar, S. Neema, F. Shi, and

A. Vizhanyo. The Design of a Language for Model Transfor-

mations. Technical report, Institute for Software Integrated

Systems, Vanderbilt University, Nashville, TN 37235, USA,

2005.
[2] R. Bendraou, B. Combemale, X. Crégut, and M.-P. Ger-

vais. Definition of an eXecutable SPEM2.0. In 14th APSEC,

Japan, Dec. 2007. IEEE Computer Society.
[3] D. Bergamini, N. Descoubes, C. Joubert, and R. Mateescu.

Bisimulator: A modular tool for on-the-fly equivalence

checking. In N. Halbwachs and L. D. Zuck, editors, TACAS,

volume 3440 of LNCS, pages 581–585. Springer, 2005.
[4] B. Berthomieu, F. Peres, and F. Vernadat. Model check-

ing bounded prioritized time petri nets. In K. S. Namjoshi,

T. Yoneda, T. Higashino, and Y. Okamura, editors, ATVA,

volume 4762 of LNCS, pages 523–532. Springer, 2007.
[5] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool

TINA – construction of abstract state spaces for Petri nets

and time Petri nets. Int. Journal of Production Research,

42(14):2741–2756, 2004.
[6] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Mod-

eling in the large and modeling in the small. In U. Aßmann,

M. Aksit, and A. Rensink, editors, Model Driven Architec-

ture, European MDA Workshops: Foundations and Applica-

tions (MDAFA 2004), number 3599 in LNCS, pages 33–46,

Linköping, Sweden, June 2004. Springer Verlag.
[7] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer,

and E. Weiss. Graphical Definition of In-Place Transforma-

tions in the Eclipse Modeling Framework. In O. Nierstrasz,

J. Whittle, D. Harel, and G. Reggio, editors, Proceedings

of the 9th IEEE/ACM International Conference on Model

Driven Engineering Languages and Systems (MoDELS), vol-

12

Pre
lim

in
ar

y
Ver

si
on

ume 4199 of Lecture Notes in Computer Science, pages 425–

439. Springer, Oct. 2006.
[8] A. Bouali. XEVE, an ESTEREL Verification Environment.

In A. J. Hu and M. Y. Vardi, editors, CAV, volume 1427 of

LNCS, pages 500–504. Springer, 1998.
[9] E. Breton. Contribution à la représentation de processus par

des techniques de méta-modélisation. PhD thesis, Université

de Nantes, June 2002.
[10] F. Budinsky, E. Merks, and D. Steinberg. Eclipse Modeling

Framework 2.0. Addison-Wesley Professional, 2009.
[11] F. Budinsky, D. Steinberg, and R. Ellersick. Eclipse Mod-

eling Framework : A Developer’s Guide. Addison-Wesley

Professional, 2003.
[12] K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson.

Semantic anchoring with model transformations. In Model

Driven Architecture - Foundations and Applications, First

European Conference (ECMDA-FA), volume 3748 of LNCS,

pages 115–129, 2005.
[13] T. Clark, A. Evans, and S. Kent. The Metamodelling Lan-

guage Calculus: Foundation Semantics for UML. In Pro-

ceedings of the 4th International Conference on Fundamen-

tal Approaches to Software Engineering (FASE), volume

2029 of Lecture Notes In Computer Science, pages 17–31,

London, UK, 2001. Springer.
[14] T. Clark, A. Evans, P. Sammut, and J. Willans. Applied meta-

modelling - a foundation for language driven development.

version 0.1, 2004.
[15] T. Clark, P. Sammut, and J. Willans. Applied Metamodelling

– A Foundation for Language Driven Development. Second

Edition, 2008.
[16] T. Clark, P. Sammut, and J. Willans. SUPERLANGUAGES

– Developing Languages and Applications with XMF. First

Edition, 2008.
[17] T. Cleenewerck and I. Kurtev. Separation of concerns in

translational semantics for DSLs in model engineering. In

Proceedings of the 2007 ACM Symposium on Applied Com-

puting (SAC), pages 985–992, New York, NY, USA, 2007.

ACM Press.
[18] B. Combemale, S. Rougemaille, X. Crégut, F. Migeon,

M. Pantel, C. Maurel, and B. Coulette. Towards a Rigorous

Metamodeling. In 2nd International Workshop on Model-

Driven Enterprise Information Systems (MDEIS), Paphos,

Cyprus, May 2006. INSTICC.
[19] J. de Lara and H. Vangheluwe. Translating model simulators

to analysis models. In J. Fiadeiro and P. Inverardi, editors,

11th International Conference Fundamental Approaches to

Software Engineering (FASE), volume 4961 of Lecture Notes

in Computer Science, pages 77–92. Springer, 2008.
[20] R. M. Dijkman, M. Dumas, and C. Ouyang. Semantics and

analysis of business process models in BPMN. Inf. Softw.

Technol., 50(12):1281–1294, 2008.
[21] G. Engels, R. Heckel, and S. Sauer. Dynamic meta mod-

eling: A graphical approach to the operational semantics of

behavioral diagrams in UML. In UML 2000 - The Unified

Modeling Language. Advancing the Standard, vol. 1939 of

LNCS, pages 323–337. Springer, 2000.
[22] P. Farail, P. Gaufillet, A. Canals, C. L. Camus, D. Sci-

amma, P. Michel, X. Crégut, and M. Pantel. The TOP-

CASED project: a Toolkit in OPen source for Critical Aero-

nautic SystEms Design. In Embedded Real Time Software

(ERTS’06), Toulouse, 25-27 January 2006.

[23] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story

diagrams: A new graph transformation language based on

UML and Java. In H. Ehrig, G. Engels, H.-J. Kreowski,

and G. Rozenberg, editors, Proc. Theory and Application to

Graph Transformations (TAGT’98), Paderborn, November,

1998, volume 1764 of LNCS. Springer, 1998.
[24] M. Gogolla, P. Ziemann, and S. Kuske. Towards an Inte-

grated Graph Based Semantics for UML. In P. Bottoni and

M. Minas, editors, Proceedings of the Graph Transformation

and Visual Modeling Techniques (GT-VMT), volume 72(3) of

ENTCS, Barcelona, Spain, Oct. 2002. Elsevier.
[25] J. H. Hausmann. Dynamic Meta Modeling – A Semantics

Description Technique for Visual Modeling Languages. PhD

thesis, University of Paderborn, 2005.
[26] D. Hirschkoff. Bisimulation Verification Using the Up-to

Techniques. STTT, 3(3):271–285, 2001.
[27] F. Jouault and J. Bézivin. KM3: a DSL for Metamodel Spec-

ification. In IFIP Int. Conf. on Formal Methods for Open

Object-Based Distributed Systems (FMOODS), volume 4037

of LNCS, pages 171–185. Springer, 2006.
[28] F. Jouault and I. Kurtev. Transforming Models with ATL. In

Proceedings of the Model Transformations in Practice Work-

shop at MoDELS, LNCS, Jamaica, 2005. Springer.
[29] H. Kastenberg, A. Kleppe, and A. Rensink. Defining Object-

Oriented Execution Semantics Using Graph Transforma-

tions. In R. Gorrieri and H. Wehrheim, editors, Proceedings

of the 8th IFIP International Conference on Formal Methods

for Open Object-Based Distributed Systems (FMOODS’06),

volume 4037 of Lecture Notes in Computer Science, pages

186–201, Bologna, Italy, June 2006. Springer-Verlag.
[30] H. Kastenberg, A. Kleppe, and A. Rensink. Engineering

Object-Oriented Semantics Using Graph Transformations.

CTIT Technical Report 06-12, University of Twente, March

2006.
[31] S. Kuske. Transformation Units—A structuring Principle for

Graph Transformation Systems. PhD thesis, University of

Bremen, 2000.
[32] S. Kuske. A Formal Semantics of UML State Machines

Based on Structured Graph Transformation. In Proceedings

of the 4th International Conference on The Unified Model-

ing Language, Modeling Languages, Concepts, and Tools,

volume 2185 of Lecture Notes In Computer Science, pages

241–256, London, UK, 2001. Springer.
[33] S. Kuske, M. Gogolla, R. Kollmann, and H.-J. Kreowski.

An Integrated Semantics for UML Class, Object and State

Diagrams Based on Graph Transformation. In Proceedings

of the 3rd International Conference on Integrated Formal

Methods (IFM), volume 2335 of Lecture Notes In Computer

Science, pages 11–28, London, UK, 2002. Springer.
[34] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. T.

IV, G. Nordstrom, J. Sprinkle, and P. Volgyesi. The generic

modeling environment. In Workshop on Intelligent Signal

Processing, Budapest, Hungary, 2001.
[35] S. Markovic and T. Baar. Semantics of OCL specified with

QVT. Software and System Modeling, 7(4):399–422, 2008.
[36] P. M. Merlin. A Study of the Recoverability of Computing

Systems. Irvine: Univ. California, PhD Thesis, 1974.
[37] R. Milner. Communication and concurrency. Prentice Hall

International (UK) Ltd., Hertfordshire, UK, c. a. r. hoare edi-

tion, 1995.

13

Pre
lim

in
ar

y
Ver

si
on

[38] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving exe-

cutability into object-oriented meta-languages. In S. K. L.

Briand, editor, MoDELS, LNCS, Jamaica, 2005. Springer.
[39] A. Narayanan and G. Karsai. Towards verifying model trans-

formations. In R. Bruni and D. Varró, editors, 5th Interna-

tional Workshop on Graph Transformation and Visual Mod-

eling Techniques, Vienna, pages 185–194, Apr. 2006.
[40] A. Narayanan and G. Karsai. Using semantic anchoring to

verify behavior preservation in graph transformations. ECE-

ASST, 4, 2006.
[41] Object Management Group, Inc. UML Object Constraint

Language (OCL) 2.0 Specification, Oct. 2003. Final Adopted

Specification.
[42] Object Management Group, Inc. Meta Object Facility

(MOF) 2.0 Core Specification, Jan. 2006. Final Adopted

Specification.
[43] Object Management Group, Inc. Software Process Engineer-

ing Metamodel (SPEM) 2.0, Mar. 2007.
[44] Object Management Group, Inc. Meta Object Facility

(MOF) 2.0 Query/View/Transformation (QVT) Specification,

version 1.0, Apr. 2008.
[45] R. F. Paige, D. S. Kolovos, and F. A. C. Polack. An action

semantics for MOF 2.0. In Proceedings of the 2006 ACM

symposium on Applied computing (SAC), pages 1304–1305,

New York, NY, USA, 2006. ACM.
[46] D. Pous. New up-to techniques for weak bisimulation. Theor.

Comput. Sci., 380(1-2):164–180, 2007.
[47] J. E. Rivera, E. G. annd Juan de Lara, and Antonio. Ana-

lyzing Rule-Based Behavioral Semantics of Visual Model-

ing Languages with Maude. In International Conference on

Software Language Engineering, Oct. 2008.
[48] J. E. Rivera, J. R. Romero, and A. Vallecillo. Behavior,

time and viewpoint consistency: Three challenges for mde.

In Proc. of the First International Workshop on Challenges

in Model-Driven Software Engineering (ChaMDE’2008),

LNCS. Springer, 2008.
[49] J. E. Rivera and A. Vallecillo. Adding behavioral semantics

to models. In 11th IEEE International Enterprise Distibuted

Object Computing Conference. EDOC 2007, 15-19 October

2007 Annapolis, Maryland, USA. Proceedings, pages 169–

180, Los Alamitos, California, Oct. 2007. IEEE Computer

Society.
[50] J. R. Romero, J. E. Rivera, F. Duran, and A. Vallecillo.

Formal and Tool Support for Model Driven Engineering

with Maude. Journal of Object Technology, Special Issue:

TOOLS EUROPE 2007, 6(9):187–207, Oct. 2007.
[51] G. Rozenberg, editor. Handbook of graph grammars and

computing by graph transformation: volume I. foundations.

World Scientific Publishing Co., Inc., River Edge, NJ, USA,

1997.
[52] D. Sangiorgi. A theory of bisimulation for the pi-calculus.

Acta Inf., 33(1):69–97, 1996.
[53] G. Taentzer. AGG : A Graph Transformation Environment

for Modeling and Validation of Software. In Springer-Verlag,

editor, AGTIVE, volume 3062 of LNCS, pages 446–453,

2003.
[54] The Coq Development Team. The Coq Proof Assistant Ref-

erence Manual – Version V8.1, 2006. http://coq.inria.fr.
[55] X. Thirioux, B. Combemale, X. Crégut, and P.-L. Garoche.

A Framework to formalise the MDE Foundations. In

R. Paige and J. Bézivin, editors, Proceedings of the Inter-

national Workshop on Towers of Models (TOWERS), pages

14–30, Zurich, June 2007.

[56] G. Winskel. The formal semantics of programming lan-

guages: an introduction. MIT Press, Cambridge, MA, USA,

1993.
[57] P. Ziemann, K. Hölscher, and M. Gogolla. From UML Mod-

els to Graph Transformation Systems. In M. Minas, editor,

Proceedings of the Workshop on Visual Languages and For-

mal Methods (VLFM), volume 127(4) of ENTCS. Elsevier,

2005.

A Proofs

In this appendix, we give more details about the different steps

of the weak bisimulation proof.

Lemma 1 Model state space MSS where states are restricted to

a single activity and Prioritized Time Petri Nets state space PNS

are in bisimulation w.r.t. the translation function Π, according to

the definition 1.

Proof 2 Let S be a model state and u ∈ T∗ be such that S0
u
→ S,

1. Let S′ be a model states containing only a single Activity

such that S
λ
→ S′.

Then Π(S) is the Petri net described in Fig 6 describing only

one single activity in PN.

Is =

s 7→ (0, 0), f 7→ (0, w), l 7→ (min, min),
d 7→ (max − min, max − min)

P = {a notStarted, a started, a inProgress,

a finished} ∪ {a tooEarly, a ok, a tooLate}
T = {a start, a finish} ∪ {a lock, a deadline}

We associate to the transitions StartActivity and

FinishActivity of XSPEM semantics the Petri net tran-

sitions a start and a finish respectively. The two Petri

nets remaining transitions a lock and a deadline are our

epsilon transitions, the transitions that are not observable.

We now consider the different cases of possible transitions

applicable on S:

• StartActivity with any clock value (∀θ)

In that case, the activity in S is such that

∃clock, (notStarted, ok, clock). The precondition

about predecessor is satisfies since the considered ac-

tivity is the only one in the state.

Then S is such that the marking obtained by Π con-

tains a single token in the place nS.

m = {a notStarted 7→ 1}, I = {a start 7→ (0, w)}

According to the semantics of PN, m > Pre(s).

Let us compute such transition, the resulting Petri net

(m′, I ′) is such that:

m′ = {a started 7→ 1, a inProgress 7→ 1,

a tooEarly 7→ 1},
I ′ = {a lock 7→ (min, min), a finish 7→ (0, w)}.

14

Pre
lim

in
ar

y
Ver

si
on

Epsilon transitions are not computable here.

Let us go back to S′. According to the semantics of

MS, S′ is our activity with values (started, ok, 0). Its

image by the Π function gives a Petri net (m′′, I ′′)
such that

m′′ = {a started 7→ 1, a inProgress 7→ 1,

a tooEarly 7→ 1},
I ′′ = {a lock 7→ (min, min), a finish 7→ (0, w)}.

We have (m′, I ′) = (m′′, I ′′)

• FinishActivity with θ < min

Let us consider the second case. S is such that

its state is described by the triple ∃clock, such that

(started, ok, clock) and clock < min time.

The resulting S′ is such that its state is described by

the triple (finished, tooEarly, clock).

The image of S by Π is (m, I) with

m = {a started 7→ 1, a inProgress 7→ 1,

a tooEarly 7→ 1},
I = {a lock 7→ (min, min), a finish 7→ (0, w)}

Π(S′) is defined as (m′, I ′) where

m′ = {a started 7→ 1, a finished 7→ 1,

a tooEarly 7→ 1},
I = {}

Let us show that

(m, I)
(τ,θ1)∗
−−−−→

(f,θ2)
−−−−→

(τ,θ3)∗
−−−−→ (m′′

, I
′′)

with θ1 + θ2 + θ3 = θ = clock

The first transition on a lock ∈ τ is not applicable,

since θ1 < min.

(m, I)
(f,θ2)
−−−−→ (m′′′

, I
′′′)

with m′′′ = {a started 7→ 1, a tooEarly 7→
1, a finished 7→ 1}, I ′′′ = {} Then no τ transition

is applicable.

And we have (m′′′, I ′′′) = (m′′, I ′′) = (m, I)

• FinishActivity with min ≤ θ < max

S = (started, ok, clock) and min time ≤ clock <

max time.

S′ = (finished, ok, clock)

Π(S) = (m, I) with

m = {a started 7→ 1, a inProgress 7→ 1,

a tooEarly 7→ 1},
I = {a lock 7→ (min, min), a finish 7→ (0, w)}

Π(S′) = (m′, I ′) with

m
′ = {a started 7→ 1, a finished 7→ 1, a ok 7→ 1}, I = {}

Let us now show that

(m, I)
(τ,θ1)∗
−−−−→

(f,θ2)
−−−−→

(τ,θ1)∗
−−−−→ (m′

, I
′)

with θ1 + θ2 + θ3 = θ = clock

Transitions a lock and a finish are applicable to

(m, I).

The transition a lock ∈ τ could be applicable since

m > Pre(l). If θ1 < min then the transi-

tion a lock is not applicable. A first case is when

(m, I)
(f,θ2)
−−−−→ (m2, I2) with m2 = {a started 7→

1, a finished 7→ 1, a tooEarly 7→ 1}, I2 = {}
and θ2 = clock But according to the PN semantics, θ2

must then be < min. The transition is not computable.

Then θ1 must be ≥ min. Furthermore θ1 ≤ w. The

transition occurs.

(m, I)
(l,θ1)
−−−→ (m′

2, I
′

2)

with m′

2 = {a started 7→ 1, a ok 7→
1, a inProgress 7→ 1}, I ′

2 = {a deadline 7→
(max − min, max − min), a finish 7→ (0, w)}
(we have m − Pre(l) < Pre(d) & m − Pre(l) <

Pre(f))

We have 0 ≤ θ2 + θ3 < max − min. Let us now

compute the transition f .

(m′

2, I
′

2)
(f,θ2)
−−−−→ o(m3, I3)

with m3 = {a started 7→ 1, a ok 7→ 1, a finish 7→
1}andI3 = {}

We obtain (m′, I ′) = (m3, i3)

• FinishActivity with θ > max

S = (started, ok, clock) and clock > max time.

S′ = (finished, tooLate, clock)

Π(S) = (m, I) with

m = {a started 7→ 1, a inProgress 7→ 1,

a tooEarly 7→ 1},
I = {a lock 7→ (min, min), a finish 7→ (0, w)}

Π(S′) = (m′, I ′) with

m′ = {a started 7→ 1, a finish 7→ 1,

a tooLate 7→ 1},
I = {}

Let us now show that

(m, I)
(τ,θ1)∗
−−−−→

(f,θ2)
−−−−→

(τ,θ3)∗
−−−−→ (m′

, I
′)

with θ1 + θ2 + θ3 = θ = clock

Transitions a lock and a finish are applicable to

(m, I).

The same reasoning to the last case applies here. Then

necessary, a first a lock transition occurs when θ1 ≥
min and θ1 < w.

(m, I)
(a lock,θ1)
−−−−−−−→ (m′

2, I
′

2)

15

Pre
lim

in
ar

y
Ver

si
on

with

m′

2 = {a started 7→ 1, a ok 7→ 1, a inProgress 7→ 1},

I ′

2 =

a deadline 7→ (max − min, max − min),
a finish 7→ (0, w)

ff

(m − Pre(l) < Pre(d) & m − Pre(l) < Pre(f))

Let’s see if the transition on f can apply. Then θ2 <

max−min. And no more transition could apply. But

clock = θ1 + θ2 = max and we consider the case

clock > max

Then we have to compute the transition on d

(m′

2, I
′

2)
(a deadline,max−min)
−−−−−−−−−−−−−−−→ (m′′

2 , I ′′

2) with

m′′

2 = {a started 7→ 1, a tooLate 7→ 1,

a inProgress 7→ 1},
I ′′

2 = {a finish 7→ (0, w)}

Then transition on f can then apply.

(m′′

2 , I ′′

2)
(a finish,θ2)
−−−−−−−−→ (m3, I3) with m3 =

{a started 7→ 1, a tooLate 7→ 1, a finish 7→ 1}
and I3 = {}

We obtain (m′, I ′) = (m3, i3)

2. Let P ′ be a Petri net state such that Π(S)
λ
→ P ′.

• S = (notStarted, notF inished, clock)

(m, I) = ({a notStarted 7→ 1}, {a start 7→ (0, w)})

There is only one possible transition ∃θ s.t.

(m, I)
(a start,θ)
−−−−−−−→ (m′, I ′)

m′ = {a start 7→ 1, s inProgress 7→ 1,

s tooEarly 7→ 1}
I ′ = {a lock 7→ (min, min), a finish 7→ (0, w)}

The image of S by the same transition gives S′ =
(started, notF inished, 0)

and Π(S′) = (m′, I ′)

• S = (started, notF inished, clock)

Π(S) = (m, i) with

m = {a started 7→ 1, a inProgress 7→ 1,

a tooEarly 7→ 1},
I = {a lock 7→ (min, min), a finish 7→ (0, w)}

We have two possibilities :

– applying a finish iff θ < min then nec-

essary, (m, I)
(f,θ)
−−−→ ({a started 7→

1, a finished 7→ 1, a tooEarly 7→
1}, {}) = (m′, I ′) and clock = θ < min

S
λ2−→ (finished, tooEarly, clock)

Π((finished, tooEarly, clock)) = (m′, I ′)

– applying a lock iff θ1 = min (m, i)
(a lock,θ1)
−−−−−−−→

({a started 7→ 1, a inProgress 7→
1, a ok 7→ 1}, {a deadline 7→
(max − min, max − min), a finish 7→
(0, w)}) = (m2, I2) We have now two cases

again:

(a) a deadline iff θ2 = max − min then

(m2, I2)
(a deadline,θ2)
−−−−−−−−−−→ ({a started 7→

1, a tooLate 7→ 1, a inProgress 7→
1}, {a finish 7→ (0, w)}) = (m3, I3)
Finally the transition f can apply.

(m3, I3)
(a finish,θ3)
−−−−−−−−→ ({a started 7→

1, a tooLate 7→ 1, a finished 7→
1}, {}) = (m′, I ′)
and clock = θ1 + θ2 + θ3 = max +

θ3 S
λ4−→ (finished, tooLate, clock)

Π((finished, tooLate, clock)) = (m′, I ′)

(b) a finish iff θ2 < max − min then

(m2, I2)
(a finish,θ2)
−−−−−−−−→ ({a started 7→

1, a ok 7→ 1, a finish 7→ 1}, {}) =
(m′, I ′) clock = θ1 + θ2 < max&clock ≥

min S
λ3−→ (finished, ok, clock)

Π((finished, ok, clock)) = (m′, I ′)

– other cases of values for S are mapped to Petri

net with not applicable transitions

3. Initial case. Trivially (m, I) = Π(S0) is defined and satis-

fied the property.

Lemma 2 Let us consider a process model state S ∈ MS with

a finite number n of activities with dependence rules among them

such that S and Π(S) are weakly bisimilar. Let us define the pro-

cess model state S′ ⊇ S ∈ MS defined as the process model state

S with one more activity A with no links. Then S′ and Π(S′) are

weakly bisimilar.

Proof 3 If no link exists between S and A in S′ then

• S → X =⇒ S ∪ A → X ∪ A

• Similarly in Petri net, since no dependency link exists be-

tween A and S then Π(S′) = Π(S) ∪ Π(A) and Π(S) →
Π(X) =⇒ Π(S ∪A) = Π(S)∪Π(A) → Π(X)∪Π(A).

The transition does not add links then Π(X) ∪ Π(A) =
Π(X ∪ A).

A similar reasoning applies to transition on A in presence of S

with no link between A and S.

• A → A′ =⇒ S ∪ A → S ∪ A′

• Π(A) → Π(A′) =⇒ Π(S ∪ A) = Π(S) ∪ Π(A) →
Π(S) ∪ Π(A′) = Π(S ∪ A′).

Since S and Π(S) are weakly bisimilar (by induction hypothe-

sis) and using the lemma 1:

• if a transition λ occurs on S ⊆ S′ then S
λ
→ X =⇒

Π(S′)
λ
→ Π(X ∪ A);

• if a transition λ occurs on A ⊆ S′ then A
λ
→ A′ =⇒

Π(S′)
λ
→ Π(S ∪ A′);

• if a transition λ occurs on Π(S) ⊆ Π(S′) then Π(S) →

Π(X) =⇒ Π(S′)
λ
→ Π(X ∪ A)

• if a transition λ occurs on Π(A) ⊆ Π(S′) then Π(A) →

Π(A′) =⇒ Π(S′)
λ
→ Π(S ∪ A′)

16

Pre
lim

in
ar

y
Ver

si
on

Then S′ and Π(S′) are in weak bisimulation.

Lemma 3 Let us consider a process model state S ∈ MS with

a finite number n of activities with dependence rules among them

such that S and Π(S) are weakly bisimilar. Let us define the pro-

cess model state S′ ⊇ S ∈ MS defined as the process model state

S with one dependence link between two activity A1 and A2 ∈ S.

Then S′ and Π(S′) are weakly bisimilar.

Proof 4 The new dependence link constraints an activity A2 by

another one A1. For all transition λ applicable to any activity

A ∈ S \ A2, the transition can occur in Π(S′) since S and Π(S)
are weakly bisimilar and the activity A is not constrained by the

new link. And reciprocally, if the transition can occurs in Π(A) ⊆
Π(S) then it can occur in Π(S′).

Let us now consider the transitions applicable on A2 in S′

depending on the new link added. We can add as a preliminary

remark that if a transition can occur on A2 in S′, it is also com-

putable in S since the new dependence link does not exists there.

• a link of type start2start

Then according to the definition of Fig. 4, all links targeting

this activity A2 and labeled start2start, resp. finish2start,

must have their source activity in a started state, resp. fin-

ished state, in order to compute the start transition on A2.

Let us show that if this transition is computable in S′ then it

is in Π(S′).

If the transition is computable in S′, then all above con-

straint links in S constraining A2 start satisfy their own con-

straints (either started or finished). Π(S) is such that for

each of these links there exists a read-arc in the resulting

Petri net from ax started or ax finished, depending on

the link type, to a2 start. Each of these read-arc source is a

place fulfilled with a token (cf. preliminary remark).

Furthermore, in Π(S′), the new link from A1 to A2 is also

mapped to a read-arc from the place a1 started to transi-

tion a2 start. The transition is computable in S′ then the

activity A1 must be started. If so, its a1 started place has

one token.

The transition can then occurs in Π(S′).

• a similar reasoning applies for finish2start, start2finish and

finish2finish links.

Reciprocally, in Petri nets,

• image of a link of type start2start

Π(S′) = Π(S) ∪ { a new read-arc from a1 started to

a2 started}. Then if Π(S′) → Y using a2 start tran-

sition, then there must be at least one token in each place

linked to a2 start by either an arc or a read-arc. Then by

definition of Π and using the preliminary remark, S′ is such

that all activities constraining A2 start satisfy their own con-

straint including the new link. Then the transition can also

occurs in S′.

• a similar reasoning applies for finish2start, start2finish and

finish2finish links.

Since S and Π(S) are weakly bisimilar (by induction hypothe-

sis), we have S′ and Π(S′) also weakly bisimilar.

Theorem 4 (Weak bisimulation) Model state space MS and

Prioritized Time Petri Nets state space PNS are in bisimulation

w.r.t. the translation function Π, according to the definition 1.

Proof 5 By induction on the process model structure:

• The initial case is proved thanks to Lemma 1;

• Adding one activity preserves the property (Lemma 2);

• Adding one dependence link preserves the property

(Lemma 3);

The property for a set of activities to be part of a bigger one is

encoded by dependence links and thus is preserved by the bisimu-

lation.

17

	Introduction
	Defining an Execution Semantics for DSL
	Taxonomy
	Discussion

	A Pragmatic and Combined Approach to Define Consistent Behavioral Semantics
	The Need for a Reference Semantics
	Taxonomy of Combined Semantics Definition
	Expressing the source DSL semantics
	Translation from an Axiomatic Semantics: Expression of the Consistency
	Translation from an Operational Semantics: Bisimulation Relation

	Our Approach in a Nutshell

	Process Models Verification Through Prioritized Time Petri Nets
	xSPEM: an eXecutable SPEM metamodel
	Prioritized Time Petri Net
	xSPEM2PetriNet Transformation
	Implementing xSPEM2PetriNet Transformation Through MDE Practices
	Validating the translation

	Related Work
	Conclusion and Perspectives
	Proofs

