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More E�cient Periodic Traversal
in Anonymous Undirected Graphs

Jurek Czyzowicz⋆, Stefan Dobrev⋆⋆, Leszek G¡sieniec⋆ ⋆ ⋆, David Ilcinkas†,
Jesper Jansson‡, Ralf Klasing†, Ioannis Lignos§, Russell Martin⋆ ⋆ ⋆,

Kunihiko Sadakane¶, and Wing-Kin Sung‖

Abstract. We consider the problem of periodic graph exploration in
which a mobile entity with (at most) constant memory, an agent, has
to visit all n nodes of an arbitrary undirected graph G in a periodic
manner. Graphs are supposed to be anonymous, that is, nodes are un-
labeled. However, while visiting a node, the robot has to distinguish
between edges incident to it. For each node v the endpoints of the edges
incident to v are uniquely identi�ed by di�erent integer labels called
port numbers. We are interested in the minimisation of the length of the
exploration period.
This problem is unsolvable if the local port numbers are set arbitrar-
ily, see [1]. However, surprisingly small periods can be achieved when
assigning carefully the local port numbers. Dobrev et al. [2] described
an algorithm for assigning port numbers, and an oblivious agent (i.e.,
an agent with no persistent memory) using it, such that the agent ex-
plores all graphs of size n within period 10n. Providing the agent with a
constant number of memory bits, the optimal length of the period was
proved in [3] to be no more than 3.75n (using a di�erent assignment of
the port numbers). In this paper, we improve both these bounds. More
precisely, we show a period of length at most 4

1

3
n for oblivious agents,

and a period of length at most 3.5n for agents with constant memory.
Finally, we give the �rst non-trivial lower bound, 2.8n, on the period
length for the oblivious case.
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1 Introduction
E�cient search in unknown or unmapped environments is one of the funda-
mental problems in algorithmics. Its applications range from robot navigation
in hazardous environments to rigorous exploration (and, e.g., indexing) of data
available on the Internet. Due to a strong need to design simple and cost e�ective
agents as well as to design exploration algorithms that are suitable for rigorous
mathematical analysis, it is of practical importance to limit the local memory of
agents.

We consider the task of graph exploration by a mobile entity equipped with
small (constant number of bits) memory. The mobile entity may be, e.g., an
autonomous piece of software navigating through an underlying graph of con-
nections of a computer network. The mobile entity is expected to visit all nodes
in the graph in a periodic manner. For the sake of simplicity, we call the mobile
entity an agent and model it as a �nite state automaton. The task of periodic
traversal of all nodes of a network is particularly useful in network maintenance,
where the status of every node has to be checked regularly.

We consider here undirected graphs that are anonymous, i.e., the nodes in
the graph are neither labelled nor colored. To enable the agent to distinguish the
di�erent edges incident to a node, edges at a node v are assigned port numbers
in {1, . . . , dv} in a one-to-one manner, where dv is the degree of node v.

We model agents as Mealy automata. The Mealy automaton has a �nite
number of states and a transition function f governing the actions of the agent.
If the automaton enters a node v of degree dv through port i in state s, it switches
to state s′ and exits the node through port i′, where (s′, i′) = f(s, i, dv). The
memory size of an agent is related to its number of states; more precisely it equals
the number of bits needed to encode these states. For example, an oblivious agent
has a single state, or, equivalently, zero bits of persistent memory. Note that in
this model the size of the agent memory represents the amount of information
that the agent can remember while moving between nodes in the graph. This does
not restrict computations made on a node and thus the transition function can
be any deterministic function. Additional memory needed for computations can
be seen as provided temporarily by the hosting node. Nevertheless, our agent
algorithms perform very simple tests and operations on the non-constant inputs
i and d, namely equality tests and incrementations.

Periodic graph exploration requires that the agent has to visit every node
in�nitely many times in a periodic manner. In this paper, we are interested
in minimising the length of the exploration period. In other words, we want
to minimise the maximum number of edge traversals performed by the agent
between two consecutive visits of a generic node, while the agent enters this
node in the same state through the same port.

Cohen et al. [4] showed that putting two bits of advice at each node allows
to explore all graphs by an agent with constant memory, by a periodic traversal
of length O(m), where m is the number of edges. In the general adversarial
setting (where the adversary can set the port numbers in a misleading order), the
exploration problem is unsolvable, even restricted to cubic planar graphs [5]. On



the other hand, even if nodes are not marked in any way but if port numbers are
carefully assigned (still satisfying the condition that at each node v, port numbers
from 1 to dv are used), then a simple agent, even oblivious, can perform periodic
graph exploration within period of length O(n). Using appropriate assignment
of the local port numbers, the best known period achieved by an oblivious agent
is 10n [2] whereas the best known period achieved by an agent with constant
memory is 3.75n [3].

In this paper, we improve both these bounds. Due to space limitations, the
missing proofs can be found in the full version [6].

1.1 Related Work

Graph exploration by robots has recently attracted growing attention. The un-
known environment in which the robots operate is often modelled as a graph,
assuming that the robots may only move along its edges. The graph setting is
available in two di�erent forms.

In [7, 8, 9, 10, 11], the robot explores strongly connected directed graphs
and it can move only in one pre-speci�ed direction along each edge. In [12, 13,
4, 14, 15, 16, 17], the explored graph is undirected and the agent can traverse
edges in both directions. Also, two alternative e�ciency measures are adopted
in most papers devoted to graph exploration, namely, the time of completing
the task [7, 12, 8, 9, 13, 10, 14], or the number of memory bits (states in the
automaton) available to the agent.

In this paper, we are interested in robots characterised by very low memory
utilisation. In fact, the robots are allowed to use only a constant number of
memory bits. This restriction permits modelling robots as �nite state automata.
Budach [1] proved that no �nite automaton can explore all graphs. Rollik [5]
showed later that even a �nite team of �nite automata cannot explore all planar
cubic graphs. This result is improved in [18], where Cook and Racko� introduce
a powerful tool, called the JAG, for Jumping Automaton for Graphs. A JAG is
a �nite team of �nite automata that permanently cooperate and that can use
teleportation to move from their current location to the location of any other
automaton. However, even JAGs cannot explore all graphs [18].

2 Preliminaries

2.1 Notation and basic de�nitions

Let G = (V, E) be a simple, connected, undirected graph. We denote by −→
G the

symmetric directed graph obtained from G by replacing each undirected edge
{u, v} by two directed edges in opposite directions � the directed edge from u

to v denoted by (u, v) and the directed edge from v to u denoted by (v, u). For
each directed edge (u, v) or (v, u) we say that the undirected edge {u, v} ∈ G is
its underlying edge. For any node v of a directed graph the out-degree of v is the
number of directed edges leaving v, the in-degree of v is the number of directed



edges incoming to v, and the cumulative degree of v is the sum of its out-degree
and its in-degree.

Directed cycles constructed by our algorithm traverse some edges in G once
and some other edges twice in opposite directions. However, at early stages,
our algorithm for oblivious agents is solely interested in whether the edge is
unidirectional or bidirectional, indi�erently of the direction. To alleviate the
presentation (despite some abuse of notation), in this context, an edge that is
traversed once when deprived of its direction is called a single edge. Similarly,
an edge that is traversed twice is called a two-way edge, and it is understood
to be composed of two single edges (in opposite directions). Hence we extend
the notion of single and two-way edges to general directed graphs in which the
direction of edges is removed. In particular, we say that two remote nodes s

and t are connected by a two-way path, if there is a �nite sequence of vertices
v1, v2, . . . , vk, where each pair vi and vi+1 is connected by a two-way edge, and
s = v1 and t = vk. We call a directed graph−→

K two-way connected if for any pair of
nodes there is a two-way path connecting them. Note that two-way connectivity
implies strong connectivity but not the opposite.

2.2 Three-layer partition

The three-layer partition is a new graph decomposition method that we use in
constructing periodic tours e�ciently in both the oblivious and the constant-
memory cases.

For any set of nodes X we call the neighborhood of X the set of their neighbors
in graph G (excluding nodes in X) and we denote it by NG(X). One of the main
components of the constructions of our technique are backbone trees of G, that
is, connected cycle-free subgraphs of G. We say that a node v is saturated in a
backbone tree T of G if all edges incident to v in G are also present in T .

A three-layer partition of a graph G = (V, E) is a 4-tuple (X, Y, Z, TB) such
that (1) the three sets X, Y and Z form a partition of V , (2) Y = NG(X) and
Z = NG(Y ) \ X, (3) TB is a tree of node-set X ∪ Y where all nodes in X are
saturated. We call X the top layer, Y the middle layer, and Z the bottom layer
of the partition. Any edge of G between two nodes in Y will be called horizontal.

During execution of procedure 3L-Partition the nodes in V are dynamically
partitioned into sets X, Y, Z, P and R with temporary contents, where X is
the set of saturated nodes, Y = NG(X) contains nodes at distance 1 from X,
Z = NG(Y ) \ X contains nodes at distance 2 from X, P = NG(Z) \ Y contains
nodes at distance 3 from X and R = V \ (X ∪ Y ∪ Z ∪ P ) contains all the
remaining nodes in V .

Procedure 3L-Partition(in : G = (V, E); out : X, Y, Z, TB);
(1) X = Y = Z = P = ∅; R = V ; TB = ∅;
(2) select an arbitrary node v ∈ R;
(3) loop

(a) X = X ∪ {v}; (insert into X newly selected node);



(b) update contents of sets Y, Z, P and R (on the basis of new X);
(c) saturate the newly inserted node v to X (i.e., insert all new

edges in TB);
(d) if the new node v in X was selected from P then insert in TB

an arbitrary horizontal edge (on middle level) to connect
the newly formed star rooted in v with the rest of TB .

(e) if any new node v ∈ Y can be saturated then
select v for saturation;

else-if any new node v ∈ Z can be saturated then
select v for saturation;

else-if P is non-empty then
select a new v from P for saturation arbitrarily;

else exit-loop;
end-loop

(4) output (X,Y, Z, TB)

Figure 1 below shows a representative example of the output from the 3L-
Partition procedure.

middle layer Y

bottom layer Z

top layer X

Fig. 1. Three-layer partition. Solid lines and black nodes belong to the backbone tree
TB . Dashed lines represent horizontal edges outside TB . Dotted lines are incident to
nodes from Z.

Lemma 1. Procedure 3L-Partition computes a three-layer partition for any
connected graph G.

Lemma 2. The three-layer partition has the following properties:
(1) each node in Y has an incident horizontal edge outside of TB;
(2) each node in Z has at least two neighbors in Y .

Proof. To prove property (1) assume, by contradiction, that there exists a node
u ∈ Y that has no horizontal edges outside of TB . Observe that in this case u can
be saturated , i.e., u may be moved to X, inserting into TB all remaining edges
incident to u. Indeed, since before u was saturated all such edges lead only to
nodes in Z their insertion does not form cycles. Thus property (1) holds. Finally,
assume there is a node w in Z with no more than one incident edge leading to
level Y. Also in this case we can saturate w since all edges incident to w form a
star that shares at most one node with TB . Thus, no cycle is created, which in
turn proves property (2). ⊓⊔



Lemma 3. For any graph G = (V, E) a three-layer partition may be computed
in O(|E|) time.

2.3 RH-traversability and witness cycles
In this section we discuss the conditions for the oblivious periodic traversals.
Given a port number assignment algorithm and an agent algorithm, it is possible,
for a given degree d, to permute all port numbers incident to each degree-d node
of a graph G according to some �xed permutation σ, and to modify the transition
function f of the agent accordingly, so that the agent behaves exactly the same
as before in G. The new transition function f ′ is in this case given by the formula
f ′ = σ ◦ f ◦ σ−1 and the two agent algorithms are said to be equivalent.

More precisely, two agent algorithms described by their respective transition
functions f and f ′ are equivalent if for any d > 0 there exists a permutation σ

on {1, . . . , d} such that f ′ = σ ◦ f ◦ σ−1.
The most common algorithm used for oblivious agents is the Right-Hand-

on-the-Wall algorithm. This algorithm is speci�ed by the transition function
f : (s, i, d) 7→ (s, (i mod d)+1). Di�erently speaking, if the agent enters a degree-
d node v by port number i, it will exit v through port number (i mod d) + 1.

The following lemma states that any couple consisting of a port number
assignment algorithm and an oblivious agent algorithm, and solving the periodic
graph exploration problem, can be expressed by using the Right-Hand-on-the-
Wall algorithm as the agent algorithm. We will thus focus on this algorithm in
all subsequent parts referring to oblivious agents.
Lemma 4. Any agent algorithm enabling an oblivious agent to explore all graphs
(even all stars) is equivalent to the Right-Hand-on-the-Wall algorithm.

Graph traversal according to the Right-Hand-on-the-Wall algorithm has been
called right-hand traversals or shortly RH-traversals, see [2]. Similarly, cyclic
paths formed in the graph according to the right-hand rule are called RH-cycles.
The aim of our �rst oblivious-case algorithm is to �nd a short RH-traversal of
the graph, i.e., to �nd a cycle −→

C in −→
G containing all nodes of −→G and satisfying

the right-hand rule: If e1 = (u, v) and e2 = (v, w) are two successive edges of
−→
C then e2 is the successor of e1 in the port numbering of v. We call such a
cycle a witness cycle for G, and the corresponding port numbering a witness
port numbering.

Given graph −→
G we �rst design −→

H , a spanning subgraph of −→G that contains
all edges of a short witness cycle −→

C of −→G . Then we look for the port numbering
of each node in −→

H to obtain −→
C . The characterisation of such a graph −→

H is not
trivial, however it is easy to characterise graphs which are unions of RH-cycles.
De�nition 5. A node v ∈

−→
G is RH-traversable in −→

H if there exists a port
numbering πv such that, for each edge (u, v) ∈

−→
H incoming to v via an underlying

edge e there exists an outgoing edge (v, w) ∈
−→
H leaving v via the underlying edge

e′, such that e′ is the successor of e in the port numbering of v.
We call such ordering a witness ordering for v.



Let −→H be a spanning subgraph of −→G . For each node v, denote by bv, iv and
ov the number of two-way edges incident to v used in −→

H, only incoming and only
outgoing edges, respectively. The following lemma characterises the nodes of a
graph being a union of RH-cycles.

Lemma 6. A node v is RH-traversable if and only if bv = dv or iv = ov > 0.

Proof. (⇒) The de�nition of RH-traversability implies iv = ov.
(⇐) If bv = dv, i.e., all edges incident to v are used in two directions, any
ordering of the edges is acceptable. Otherwise (bv 6= dv,) choose a port numbering
in which outgoing edges that contribute to two-way edges are arranged in one
block followed by an outgoing edge. All remaining directed edges are placed in a
separate block, in which edges alternate directions and the last (incoming) edge
precedes the block of all two-way edges. ⊓⊔

We easily obtain the following

Corollary 7. A spanning subgraph −→
H of −→G is a union of RH-cycles if and only

if each node v has an even number of single edges incident to v in −→
H , and, in

case no single edge is incident to v in −→
H , all two-way edges incident to v in −→

G

must be also present in −→
H .

In the rest of this section we introduce several operations on cycles, and the
conditions under which these operations will result in a witness cycle.

Consider a subgraph −→
H of G that has only RH-traversable nodes. Observe

that any port numbering implies a partitioning of −→H into a set of RH-cycles.
Take any ordering γ of this set of cycles. We de�ne two rules which transform
one set of cycles to another. The �rst rule, Merge3, takes as an input three
cycles incident to a node and merge them to form a single one. The second rule,
EatSmall, breaks a non-simple cycle into two sub-cycles and transfers one of
them to another cycle.
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Fig. 2. (a) Applying rule Merge3; (b) applying rule EatSmall.



1. Rule Merge3: Let v be a node incident to at least three di�erent cycles
C1, C2 and C3. Let x1, x2 and x3 be the underlying edges at v containing
incoming edges for cycles C1, C2 and C3, respectively (x1, x2 and x3 can be
a single edge or a two-way edge in −→

H ). Suppose w.l.o.g., that x2 is between
x1 and x3 in cyclic port numbering of v. The port numbering which makes
the successor of x2 become the successor of x1, the successor of x3 become
the successor of x2 and the successor of x1 become the successor of x3 and
keeps the relative order of the remaining edges the same (see Figure 2(a))
connects the cycles C1, C2 and C3 into a single cycle C3, while remaining a
witness port numbering for v (due to the original port numbering).

2. Rule EatSmall: Let C1 be the smallest cycle in ordering γ such that
� there is a node v that appears in C1 at least twice
� there is also another cycle C2 incident to v

� γ(C1) < γ(C2)
Let x and y be underlying edges at v containing incoming edges for C1 and
C2, respectively; let z be the underlying edge containing the incoming edge
by which C1 returns to v after leaving via the successor of x. If z is the
successor of y, choose a di�erent x. Modify the ordering of the edges in v

as follows: (1) the successor of x becomes the new successor of y, (2) the
old successor of y becomes the new successor of z, (3) the old successor of z

becomes the new successor of x and (4) the order of the other edges remains
unchanged � see Figure 2(b).

Lemma 8. Let −→K be a two-way connected spanning subgraph of G with all nodes
RH-traversable in −→

K . Consider the set of RH-cycles generated by some witness
port numbering of its nodes, with C∗ being the largest cycle according to some
ordering γ. If neither Merge3 nor EatSmall can be applied to the nodes of C∗

then C∗ is a witness cycle.

Proof. Suppose, by contradiction, that C∗ does not span all the nodes in G. Let
V ′ be the set of nodes of G not traversed by C∗. Since −→

K is two-way connected
there exist two nodes u, v ∈ G, such that v belongs to C∗ and u ∈ V ′, and
the directed edges (u, v) and (v, u) belong to −→

K . Edges (u, v) and (v, u) cannot
belong to di�erent cycles of −→K because Merge3 would be applicable. Hence (u, v)
and (v, u) must both belong to the same cycle C ′. However (u, v) and (v, u)
cannot be consecutive edges of C ′ because this would imply dv = 1 which is
not the case, since v also belongs to C∗. Hence C ′ must visit v at least twice.
However, since C∗ is the largest cycle we have γ(C ′) < γ(C∗) and the conditions
of applicability of rule EatSmall are satis�ed with C1 = C ′ and C2 = C∗. This
is the contradiction proving the claim of the lemma. ⊓⊔

3 Oblivious periodic traversal

In this section we describe the algorithm that constructs a short witness cycle
for graph G. This witness cycle will allow an oblivious agent (i.e., one with



no persistent memory) to perform the periodic traversal of G. According to
Lemma 8 it is su�cient to construct a spanning subgraph −→

K of G which is
two-way connected, such that, each node of G is RH-traversable in −→

K . We will
present �rst a restricted case of a terse set of RH-cycles, when it is possible
to construct a spanning tree of G with no saturated node. In this case we can
construct a witness cycle of size 2n. In the case of arbitrary graphs, we need
a more involved argument, which will lead to a witness cycle of size 4 1

3
n. We

conclude this section with the presentation of a lower bound of 2.8n.

3.1 Terse set of RH-cycles
Suppose that we have a graph G, which has a spanning tree T with no satu-
rated node. This happens for large and non-trivial classes of graphs, including
two-connected graphs, graphs admitting two disjoint spanning trees, and many
others. For those graphs we present an algorithm that �nds a shorter witness
cycle than one that we can �nd for arbitrary graphs. The idea of the algorithm
is to �rst construct a spanning subgraph of G,

−→
K of size 2n, which contains

only RH-traversable nodes (cf. algorithm TerseCycles). Then we apply a port
numbering which partitions −→K into a set of RH-cycles that can then be merged
into a single witness cycle (cf. Corollary 10).

Algorithm TerseCycles:
1: Find T � a spanning subgraph of G with no saturated nodes;
2:

−→
K ← T ; {each edge in T is a two-way edge in −→

K}
3: For each node v ∈

−→
K add to −→

K a single edge from G \ T ; {the single edges
form a collection of stars S}

4: Restore-Parity(
−→
K, T, root(T ));

Procedure Restore-Parity has to assure that the number of single edges
incident to each node is even. The procedure visits each node v of the tree T in
the bottom-up manner and counts all single edges incident to v. If this number
is odd, the two-way edge leading to the parent is reduced to a single edge (with
the direction to be speci�ed later). The procedure terminates when the parity
of all children of the root in the spanning tree is restored. Note also that the
cumulative degree of the root must be even since the cumulative degree of all
nodes in S is even. Note also that no decision about the direction of single edges
is made yet.

ProcedureRestoreParity(directed graph−→
K, tree T, node v): integer;

1: Pv = (number of single edges in −→
K \ T ) (mod 2);

2: if v is not a leaf in T then
3: for each node cv ∈ T being a child of v do
4: Pv ← (Pv + RestoreParity(

−→
K, T, cv)) (mod 2);

5: end for
6: end if



7: if Pv = 1 then
8: reduce the two-way edge (P, parent(P )) to single;
9: end if

10: return Pv;

Lemma 9. After the completion of procedure TerseCycles every node of −→K
is RH-traversable.

Proof. Every node is either saturated or it has at least two single edges incident
to it. ⊓⊔

Corollary 10. For any graph G admitting a spanning tree T , such that none of
the nodes is saturated (i.e., G\T spans all nodes of G) it is possible to construct
a witness cycle of length at most 2n.

Corollary 10 gives small witness cycles for a large class of graphs. It should
be noted for 3-regular graphs, �nding a spanning tree having no saturated nodes
corresponds to �nding a Hamiltonian path, a problem known to be NP-hard
even in this restricted setting [19].

3.2 Construction of witness cycles in arbitrary graphs
The construction of witness cycles is based on the following approach. First
select a spanning tree T of graph G composed of two-way edges. Let Gi, for
i = 1, 2, . . . , k be the connected components of G \ T , having, respectively, ni

nodes. For each such component we apply procedure 3L-Partition, obtaining
three sets Xi, Yi and Zi and a backbone tree Ti. We then add single edges incident
to the nodes of sets Yi and Zi, and we apply the procedure RestoreParity to
each component Gi. We do this in such a way that the total number of edges
in Gi is smaller than 2 1

3
n. For the union of graphs T ∪ G1 ∪ G2 ∪ · · · ∪ Gk we

take a port numbering that generates a set of cycles. The port numbering and
orientation of edges in the union of graphs is obtained as follows. First we remove
temporarily all two-way edges from the union. The remaining set of single edges
is partitioned into a collection of simple cycles, where edges in each cycle have
a consistent orientation. Further we reinstate all two-way edges in the union,
such that each two-way edge is now represented as two arcs with the opposite
direction. Finally we provide port numbers at each node of the union, such that
it is consistent with the RH-traversability condition, see Lemma 6. We apply
rules Merge3 and EatSmall to this set of cycles until neither rule can be applied.
The set of cycles obtained will contain a witness cycle, using Lemma 8.

Algorithm FindWitnessCycle;
1: Find a spanning tree T of graph G {two-way edges}
2: for each connected component Gi of G \ T do
3: 3L-Partition(Gi, Xi, Yi, Zi, Ti);
4: Form set Pi by selecting for each node in Zi two edges leading to Yi; {single

edges};



5: Form a set of independent stars Si spanning all nodes in Yi that are not
incident to Pi; {single edges};

6: RestoreParity(Gi ∪ Pi ∪ Si, Ti, root(Ti));
7: end for
8:

−→
K ← T ∪ G1 ∪ G2 ∪ · · · ∪ Gk;

9: Take any port numbering and produce a set C of RH-cycles induced by it;
10: Apply repeatedly Merge3 or, if not possible, EatSmall to C until neither rule

can be applied;
11: return the witness cycle of C;

Theorem 11. For any n-node graph algorithm FindWitnessCycle returns a
witness cycle of size at most 4 1

3
n − 4.

Theorem 12. The algorithm FindWitnessCycle terminates in O(|E|) time.

3.3 Lower Bound

We have shown in the previous section that for any n-node graph we can con-
struct a witness cycle of length at most 4 1

3
n− 4. In this section we complement

this result with the lower bound 2.8n:

Theorem 13. For any non-negative integers n, k and l such that, n = 5k + l

and l < 5, there exists an n-node graph for which any witness cycle is of length
14k + 2l.
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Fig. 3. The lower bound based on diamond graphs.

Proof. Consider �rst a single diamond graph G′, see the left part of Figure 3.
Without loss of generality, we can assume that we start the traversal through
(v, x). Consider the successor of (x, u). Also, without loss of generality, we can



take (u, y) as the successor. Now there is only one feasible successor of (y, v)
and that is (v, z). All other edges violate either RH-traversability ((v, y)) or
leave z unvisited. Similarly, the only possible successor of (z, u) is (u, x) ((u, y)
has already been traversed with a di�erent predecessor, and (u, z) violates RH-
traversability), of (x, v) is (v, y) and of (y, u) is (u, z). Therefore, each edge of
G′ must be used in both directions.

Consider now a chain of diamond graphs from the right side of Figure 3,
starting the graph traversal at node v0. From the fact that each edge in the
witness cycle is traversed at most twice (one time in each direction) it follows
that when returning from vi to ui−1, all nodes in Gi (as well as in all Gj ,

for j > i) must have been visited. Note that from RH-traversability it follows
that the successor of (ui−1, vi) cannot be the same (in reverse direction) as the
predecessor of (vi, ui−1), and similarly the successor of (vi, ui−1) cannot be the
same as the predecessor of (ui−1, vi). In turn this means that the analogous
arguments (as used in G′) apply also to each Gi, therefore all edges of G must
be traversed in both directions.

The theorem now follows directly for n = 5k. If n is not a multiple of 5, an
extra path of l nodes can be added to uk to satisfy the claim of the theorem.

⊓⊔

4 Periodic traversal with constant memory

In this section we focus on the construction of a tour in arbitrary undirected
graphs to be traversed by an agent equipped with a constant memory. The use
of the constant amount of memory allows the agent to change its behavior be-
tween a small number of (internal) states for its operation, i.e., the agent has
a deterministic transition function and can change from one state from another
according to pre-de�ned rules. As in the case of oblivious agents, we do not im-
pose restrictions on the amount of local memory it might have available for use
at any vertex, but this local memory is temporary and is lost when an agent
leaves the vertex. The main idea of the periodic graph traversal mechanism pro-
posed in [20], and further developed in [3], is to visit all nodes in the graph while
traversing along an Euler tour of a (particularly chosen) spanning tree (together
with a few additional, specially chosen, edges). Due to space constraints, we refer
the reader to [3] for more background and details on the mechanism the agent
uses to perform the exploration. In what follows, we concentrate on the new
construction of the spanning tree (with additional edges) that the agent uses for
its exploration.

Recall that the nodes of the input graph can be partitioned into three sets
X, Y and Z where all nodes in X and Y are spanned by a backbone tree, see
Section 2.2. The spanning tree T is obtained from the backbone tree by con-
necting every node in Z to one of its neighbors in Y. Recall also that every node
v ∈ X is saturated, i.e., all edges incident to v in G belong also to the spanning
tree. Every node in Y that lies on a path in T between two nodes in X is called
a bonding node. The remaining nodes in Y are called local.



Initial port labeling When the spanning tree T is formed, we pick one of its
leaves as the root r where the two ports located on the tree edge incident to r

are set to 1. Initially, for any node v the port leading to the parent is set to 1
and ports leading to the i children of v are set to 2, . . . , i + 1,, such that the
subtree of v rooted in child j is at least as large as the subtree rooted in child
j′, for all 2 ≤ j < j′ ≤ i + 1. All other ports are set arbitrarily using distinct
values from the range i+2, . . . , dv, where dv is the degree of v. Later, we modify
the allocation of ports at certain leaves of the spanning tree located in Z. In
particular we change labels at all children having no other leaf-siblings in T of
bonding nodes (see, e.g., node w1 in Figure 4), as well as at single children of
local nodes, but only if the local node is the last child of a node in X that has
children on its own (see, e.g., node w2 in Figure 4).

w2 w1
bottom layer Z

middle layer Y

top layer Xs

v
u

Fig. 4. Fragment of the spanning tree with the root located to the right of w1 and w2.

Port swap operation Recall that every leaf w located at the level Z has also
an incident edge e outside of T that leads to some node v in Y (property 2 of the
three-layer partition). When we swap port numbers at w, we set to 2 the port
on the tree edge leading to the parent of w. We call such edge a sham penalty
edge since it now pretends to be a penalty edge while, in fact, it connects w to
its parent in the spanning tree T . We also set to 1 the port number on the lower
end of e. All other port numbers at w (if there are more incident edges to w)
are set arbitrarily. After the port swap operation at w is accomplished we also
have to ensure that the edge e will never be examined by the agent, otherwise it
would be wrongly interpreted as a legal tree edge, where v would be recognised
as the parent of w. In order to avoid this problem we also set ports at v with
greater care. Note that v has also an incident horizontal edge e′ outside of T

(property 1 of the three-layer partition). Assume that the node v has i children
in T. Thus if we set to i+2 the port on e′ (recall that port 1 leads to the parent
of v and ports 2, .., i + 1 lead to its children) the port on e will have value larger
than i+2 and e will never be accessed by the agent. Finally note that the agent
may wake up in the node with a sham penalty edge incident to it. For this reason
we introduce an extra state to the �nite state automaton A governing moves of
the agent in [3] to form a new automaton A+. While being in the wake up state
the agent moves across the edge accessible via port 1 in order to start regular



performance (speci�ed in [3]) in a node that is not incident to the lower end of
a sham penalty edge.

Lemma 14. The new port labeling provides a mechanism to visit all nodes in the
graph in a periodic manner by the agent equipped with a �nite state automaton
A+.

Theorem 15. For any undirected graph G with n nodes, it is possible to compute
a port labeling such that an agent equipped with a �nite state automaton A+ can
visit all nodes in G in a periodic manner with a tour length that is no longer
than 3 1

2
n − 2.

Note that in the model with implicit labels, one port at each node has to be
distinguished in order to break symmetry in a periodic order of ports. This is to
take advantage of the extra memory provided to the agent.

5 Conclusion

Further studies on trade-o�s between the length of the periodic tour and the
memory of a mobile entity are needed. The only known lower bound 2n − 2
holds independently of the size of the available memory, and it refers to trees.
This still leaves a substantial gap in view of our new 3.5n upper bound. Another
alternative would be to look for as good as possible tour for a given graph, for
example, in a form of an approximate solution. Indeed, for an arbitrary graph,
�nding the shortest tour may correspond to discovering a Hamiltonian cycle in
the graph, which is NP-hard.
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