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Global Regularity for the Navier-Stokes equations with large, slowly varying initial data in the vertical direction

Marius Paicu, Zhifei

Introduction

We study in this paper the Navier-Stokes equations with initial data which is slowly varying in the vertical variable. More precisely we consider the system (N S)

     ∂ t u + u • ∇u -∆u = -∇p in R + × Ω div u = 0 u| t=0 = u 0,ε ,
where Ω = R 3 and u 0,ε is a divergence free vector field, whose dependence on the vertical variable x 3 will be chosen to be "slow", meaning that it depends on εx 3 where ε is a small parameter. Our goal is to prove a global existence in time result for the solution generated by this type of initial data, with no smallness assumption on its norm. This type of initial data which is slowly varying in the vertical direction was already studied in [START_REF] Chemin | On the global wellposedness of the 3-D Navier-Stokes equations with large initial data[END_REF]- [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF]- [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF]. We recall that in [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF] is studied the case of "well prepared" initial data of the type (εu h 0 (x h , εx 3 ), u 3 0 (x h , εx 3 )) and in [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF] is studied the more difficult case of "ill prepared" initial data of the type (u h (x h , εx 3 ), ε -1 u 3 (x h , εx 3 )). In this paper, we consider the large initial data between the "well prepared" case treated in [START_REF] Chemin | On the global wellposedness of the 3-D Navier-Stokes equations with large initial data[END_REF]- [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF] and the "ill prepared" case treated in [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF]. More precisely, our initial data is of the form u 0,ε = (ε

The mathematical study of the Navier-Stokes equations has a long history. We begin by recalling some important and classical facts about the Navier-Stokes system, focusing on the conditions which imply the global existence of the strong solution.

The first important result about the classical Navier-Stokes system was obtained by J. Leray [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], and asserted that for every finite energy initial data there exists at least one global in time weak solution which verifies the energy estimate. This solution is unique in R 2 but unfortunately the solution is not known to be unique in three dimensional space. The result of J. Leray uses the structure of the nonlinear terms in order to obtain the energy inequality. The question of the uniqueness or of the regularity of the weak solutions is open.

The Fujita-Kato theorem gives a partial response to the construction of global unique solution. Indeed, the theorem of Fujita-Kato [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF] allows to construct a unique local in time solution in the homogeneous Sobolev spaces Ḣ 1 2 (R 3 ), or in the Lebsegue space L 3 (R 3 ) [START_REF] Kato | Strong L p -solutions of the Navier-Stokes equation in R m with applications to weak solutions[END_REF]. If the initial data is small compared to the viscosity u 0 Ḣ 1 2 ≤ cν, then the strong solution exists globally in time. This result was generalized by M. Cannone, Y. Meyer et F. Planchon [START_REF] Cannone | Solutions autosimilaires des équations de Navier-Stokes, Séminaire[END_REF] to Besov spaces of negative index of regularity. More precisely, they proved that, if the initial data belongs to the Besov space B -1+ 3 p p,∞ (R 3 ), and verifies that it is small in the norm of this Besov space, compared to the viscosity, then the solution is global in time. More recently, in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] is obtained a unique global in time solution for Navier-Stokes equation for small data belonging to a more general space of initial data, which is derivatives of BMO function. Concerning the methods to obtain such results, we recall that proving the existence of a unique, global in time solution to the Navier-Stokes equations is rather standard (it is a consequence of a Banach fixed point theorem) as long as the initial data is chosen small enough in some scale invariant spaces (with invariant norm by the scaling λu(λ 2 t, λx)) embedded in Ḃ-1 ∞,∞ (the Besov space) , where we recall that

f Ḃ-1 ∞,∞ def = sup t>0 t 1 2 e t∆ f L ∞ .
We refer for instance to [START_REF] Cannone | Solutions autosimilaires des équations de Navier-Stokes, Séminaire[END_REF], [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF], [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF], [START_REF] Weissler | The Navier-Stokes Initial Value Problem in L p[END_REF] for a proof in various scale invariant function spaces. These theorems are general results of global existence for small initial data and does not take into account the any particular algebraical properties of the nonlinear terms in the Navier-Stokes equations.

However, proving such a result without any smallness assumption or any geometrical invariance hypothesis, which implies conservation of quantities beyond the scaling, is a challenge. Little progress has been made in that direction: we will not describe all the literature on the question, but refer among others to [START_REF] Mahalov | Global solvability of three-dimensional Navier-Stokes equations with uniformly high initial vorticity[END_REF], [START_REF] Cannone | Solutions autosimilaires des équations de Navier-Stokes, Séminaire[END_REF], [START_REF] Chemin | Fluids with anisotropic viscosity[END_REF], [START_REF] Chemin | Mathematical Geophysics: An introduction to rotating fluids and to the Navier-Stokes equations[END_REF], [START_REF] Chemin | On the global wellposedness of the 3-D Navier-Stokes equations with large initial data[END_REF]- [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF], [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF], [START_REF] Chemin | On the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations[END_REF], [START_REF] Raugel | Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions[END_REF] and the references therein for more details.

We recall briefly the examples of large initial data which gives global existence of the solution known in the literature. We first notice that for regular axi-symmetric initial data, without swirl, there exists a unique global in time solution for the Navier-Stokes system. This result is based on the conservation of some quantities beyond the scaling regularity level (see [START_REF] Ukhovskii | Axially symmetric flows of ideal and viscous fluids filling the whole space[END_REF]).

The case of large initial data (in some sense) for fluids evolving in thin domains was firstly considered by [START_REF] Raugel | Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions[END_REF]. Roughly speaking, the tridimensional Navier-Stokes system can be seen as a perturbation of the two dimensional Navier-Stokes system if the domain is thin enough in the vertical direction. Generally, if the initial data u 0 can be splitting as u 0 = v 0 + w 0 , with v 0 a two dimensional free divergence vector field belonging to L 2 (T 2 h ) and w 0 ∈ H 1 2 (T 3 ), such that

w 0 H 1 2 (T 3 ) exp v 0 2 L 2 (T 2 h ) ν 2 ≤ cν,
then the solution exists globally in time.

The case of initial data with large initial vortex in the vertical direction (rot u ε 0 = rot u 0 + ǫ -1 (0, 0, 1)), or equivalently the case of rotating fluids, was studied in [START_REF] Mahalov | Global solvability of three-dimensional Navier-Stokes equations with uniformly high initial vorticity[END_REF] in the case of periodic domains and in [START_REF] Chemin | Fluids with anisotropic viscosity[END_REF]- [START_REF] Chemin | Mathematical Geophysics: An introduction to rotating fluids and to the Navier-Stokes equations[END_REF] for the case of a rotating fluid in R 3 or in R 2 ×(0, 1). When the rotation is fast enough the fluid tends to have a two-dimensional behavior, far from the boundary of the domain (this is the so called Taylor-Proudman column theorem [START_REF] Pedlovsky | Geophysical fluid dynamics[END_REF]). For example, in the case where the domain is R 3 the fluctuation of this motion is dispersed to infinity and some Strichartz quantities became small [START_REF] Chemin | Fluids with anisotropic viscosity[END_REF] which allow to obtain the global existence of the solution (when ε small enough).

An important issue for the Navier-Stokes equations is to use on maximum the algebrical structure of the nonlinear terms. Some results used in a crucial way this structure and allow to obtain very interesting new results.

The case of the Navier-Stokes equations with vanishing vertical viscosity was firstly studied in [START_REF] Chemin | Fluids with anisotropic viscosity[END_REF] where the authors proved local existence for large data in anisotropic Sobolev spaces H 0,s , s > 1/2, and global existence and uniqueness for small initial data. One of the key observations is that, even if there is no vertical viscosity and thus no smoothing in the vertical variable, the partial derivative ∂ 3 is only applied to the component u 3 in the nonlinear term. The divergence-free condition implies that ∂ 3 u 3 is regular enough to get good estimates of the nonlinear term. In [START_REF] Chemin | On the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations[END_REF] the authors obtained the global existence of the solution for the anisotropic Navier-Stokes system with high oscillatory initial data.

A different idea, but always using the special structure of the Navier-Stokes equations, is used by J.-Y. Chemin and I. Gallagher [START_REF] Chemin | On the global wellposedness of the 3-D Navier-Stokes equations with large initial data[END_REF] in order to construct the first example of periodic initial data which is big in C -1 , and strongly oscillating in one direction which generates a global solution. Such initial data is given by

u N 0 = (N u h (x h ) cos(N x 3 ), -div h u h (x h ) sin(N x 3 )),
where

u h L 2 (T 2 h ) ≤ C(ln N ) 1 9
. This result was generalized to the case of the space R 3 in [START_REF] Chemin | Wellposedness and stability results for the Navier-Stokes equations in R 3 to appear[END_REF].

In the paper [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF], J.-Y. Chemin and I. Gallagher studied the Navier-Stokes equations for initial data which slowly varies in the vertical direction in the well prepared case. The "well prepared" case means that the norm of the initial data is large but does not blow up when the parameter ε converges to zero. We note that important remarks on the pressure term and the bilinear term were used in this paper in order to obtain the global existence for large data.

The case of slowly varying initial data in the vertical direction in the "ill prepared" initial data was recently studied in [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF]. We note that the horizontal components has a large norm and the vertical component has a norm which blows up when the parameter goes to zero. After a change of scale of the problem, the system became a Navier-Stokes type equation with an anisotropic viscosity -ν∆ h u -νǫ 2 ∂ 2 3 u and anisotropic gradient of the pressure, namely -(∇ h p, ǫ 2 ∂ 3 p). In this equation we can remark that there is a loos of regularity in the vertical variable in Sobolev estimates. To overcome this difficulty is needed to work with analytical initial data. The most important tool was developed in the paper of J.-Y. Chemin [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF] and consisted to make analytical type estimates, and in the same time to control the size of the analyticity band. This is performed by the control of nonlinear quantities which depend on the solution itself. Even in this situation, it is important to take into account very carefully the special structure of the Navier-Stokes equations. In [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF] is obtained in fact a global in time Cauchy-Kowalewskaya type theorem. We recall also that some local in time results for Euler and Prandtl equation with analytic initial data can be found in [START_REF] Sammartino | Zero Viscosity Limit for Analytic Solutions, of the Navier-Stokes Equation on a Half-Space. I. Existence for Euler and Prandtl Equations[END_REF].

In [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF] the fluid is supposed to evolve in a special domain Ω = T 2 h × R v . This choice of domain is justified by the pressure term. Indeed, the pressure verifies the elliptic equation ∆ ε p = ∂ i ∂ j (u i u j ), and consequently,

∇ h p = (-∆ ε ) -1 ∇ h ∂ i ∂ j (u i u j ). Because we have that ∆ -1 ε converges to ∆ -1
h it is important to control the low horizontal frequencies. While in the case of the periodic torus in the horizontal variable we have only zero horizontal frequency and high horizontal frequencies.

In this paper our goal is to investigate the case where the fluid evolves in the full space R 3 . In that situation, we are able to solve globally in time the equation (conveniently rescaled in ε) for small analytic-type initial data. In the case of the full space R 3 we need to control very precisely the low horizontal frequencies. We also note that we can construct functional spaces where the operator ∆ -1 h ∇ h (a∇ h b) is a bounded operator. However we still need to impose on the initial data more control of the regularity in the low horizontal frequencies (namely we impose that

u 0 (•, x 3 ) ∈ L 2 (R 2 h ) ∩ Ḣ-1 2 (R 2 h )).
In the vertical variable we need to impose analyticity of the data. The method of the proof follows closely the argument of [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF], but instead to use pointwise estimates on the fourier variables, we write an equation with a regularizing term in the vertical variable and we use energy estimates on anisotropic Sobolev spaces of the form H 0,s respectively H -1 2 ,s . Our main result in the case of the full space R 3 is the following (for the notations see the next section).

Theorem 1.1. Let a be a positive number, s > 1 2 . There exist two positive constants ε 0 and η such that for any divergence free fields v 0 satisfying

e a|D 3 | v 0 H 0,s + e a|D 3 | v 0 H -1
2 ,s ≤ η, and for any ε ∈ (0, ε 0 ), the Navier-Stokes system (N S) with initial data

u ε 0 = ε 1 2 v h 0 (x h , εx 3 ), ε -1 2 v 3 0 (x h , εx 3 ) has a global smooth solution on R 3 .
As we already explain above, in order to prove the main theorem 1.1, we will firstly transform the system using the change of scale

u ε (t, x h , x 3 ) = ε 1 2 v h (t, x h , εx 3 ), ε -1 2 v 3 (t, x h , εx 3 )
into a system of Navier-Stokes type, with a vertical vanishing viscosity, that is the Laplacian operator became -ν∆ h v -ǫ 2 ∂ 3 v and a changed pressure term became

-(∇ h p, ǫ 2 ∂ 3 p).
Taking the advantage that we work in the full spaces R 3 , we can also consider a different type of initial data, with larger amplitude but strongly oscillating in the horizontal variables, namely, initial data of the form

u ε 0 = ε -1 2 v h 0 (ε -1 x h , x 3 ), ε -3 2 v 3 0 (ε -1 x h , x 3 ) .
However, this type of initial data has the Ḃ-1 ∞,∞ norm on the same order as the initial data in the previous theorem. In order to solve the Navier-Stokes equations with this new type of initial data, we make the different change of scale,

u ε (t, x h , x 3 ) = ǫ -1 2 v h (ǫ -2 t, ǫ -1 x h , x 3 ), ǫ -3 2 v 3 (ǫ -2 t, ǫ -1 x h , x 3
) and we note that the rescaled system that we obtain is exactly the same as that in the proof of theorem 1.1. Consequently, we also obtain the following result.

Theorem 1.2. Let a be a positive number, s > 1 2 . There exist two positive constants ε 0 and η such that for any divergence free fields v 0 satisfying

e a|D 3 | v 0 H 0,s + e a|D 3 | v 0 H -1
2 ,s ≤ η, and for any ε ∈ (0, ε 0 ), the Navier-Stokes system (N S) with initial data

u ε 0 = ε -1 2 v h 0 (ε -1 x h , x 3 ), ε -3 2 v 3 0 (ε -1 x h , x 3 ) has a global smooth solution on R 3 .

A simplified model

Let us consider the following equation

∂ t u + γu + a(D)Q(u, u) = 0
where a(D) is a fourier multiplier of order one and, Q is any quadratic form. Then, if the initial data verifies u 0 X = e δ|ξ| û(ξ)dξ ≤ cγ whith a > 0 then we have a global solution in the same space. We follow the method introduced in [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF] and [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF]. The idea of the proof is the following, we want to control the some kind of quantities on the solution, but we must prevent the possible loose of the rayon of the analyticity of the solution. Let us introduce θ(t) the "loose of analyticity", such that θ(t) = e (δ-θ(t))|ξ| |û(ξ)|dξ, θ(0) = 0. We denote by Φ = (a -λθ(t))|ξ| and we define θ

(t) = |û Φ (ξ)|dξ = u Φ X , θ(0) = 0.
The computations which follow are performed under the condition θ(t) ≤ a/λ (which implies Φ ≥ 0). The equation verified by ûφ is the following

∂ t ûΦ + γ ûΦ + λ θ(t)|ξ|û Φ + a(ξ)e Φ ( u 2 ) = 0.
As θ ≥ 0, after integration in ξ, we obtained the following equation

∂ t u Φ X + γ u Φ X + λ θ(t) |ξ||û Φ |dξ ≤ C |ξ|| ûΦ | ⋆ |û Φ |(ξ)dξ.
As |ξ| ≤ |ξ -η| + |η|, we obtain

|ξ| ûΦ ⋆ ûΦ (ξ)dξ ≤ 2 |ξ||û φ |dξ |û Φ |dξ = 2 θ(t) |ξ||û φ |dξ . So, choosing λ = 4C we obtain θ(t) = u Φ (t) X ≤ 2 e a|D| u 0 X e -γt
which, for u 0 small enough, gives

θ(t) ≤ γ -1 e a|D| u 0 X ≤ aλ -1 .
This allows to obtain the global in time existence of the solution.

3. Structure of the proof 3.1. Reduction to a rescaled problem. We seek the solution of the form

u ε (t, x) def = ε 1 2 v h (t, x h , εx 3 ), ε -1 2 v 3 (t, x h , εx 3 ) .
This leads to the following rescaled Navier-Stokes system

(RN S ε )        ∂ t v h -∆ h v h -ε 2 ∂ 2 3 v h + ε 1 2 v • ∇v h = -∇ h q, ∂ t v 3 -∆ h v 3 -ε 2 ∂ 2 3 v 3 + ε 1 2 v • ∇v 3 = -ε 2 ∂ 3 q, divv = 0, v(0) = v 0 (x), (3.1) where ∆ h def = ∂ 2 1 + ∂ 2 2 and ∇ h def = (∂ 1 , ∂ 2 ).
As there is no boundary, the rescaled pressure q can be computed with the formula

-∆ ε q = ε 1 2 div h (v • ∇v), ∆ ε = ∆ h + ε 2 ∂ 2 3 . (3.2)
When ε tends to zero, ∆ -1 ε looks like ∆ -1 h . Thus for low horizontal frequencies, an expression of ∇ h ∆ -1 h cannot be estimated in L 2 . This is one reason why the authors in [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF] work in T 2 × R. To obtain a similar result in R 3 , we need to introduce the following anisotropic Sobolev space.

Definition 3.1. Let s, σ ∈ R, σ < 1. The anisotropic Sobolev space H σ,s is defined by H σ,s = {f ∈ S ′ (R 3 ); f H σ,s < ∞}, where f 2 H σ,s def = R 3 |ξ h | 2σ (1 + |ξ 3 | 2 ) s | f (ξ)| 2 dξ, ξ = (ξ h , ξ 3 ).
For any f, g ∈ H σ,s , we denote

(f, g) H σ,s def = (|D h | σ D 3 s f, |D h | σ D 3 s g) L 2 , D 3 = (1 + |D 3 | 2 ) 1 2 .
We prove that Theorem 3.2. Let a be a positive number, s > 1 2 . There exist two positive constants ε 0 and η such that for any divergence free fields v 0 satisfying

e a|D 3 | v 0 H 0,s + e a|D 3 | v 0 H -1
2 ,s ≤ η, and for any ε ∈ (0, ε 0 ), (RN S ε ) has a global smooth solution on R 3 .

Definition of the functional setting.

As in [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF], the proof relies on exponential decay estimates for the Fourier transform of the solution. Thus, for any locally bounded function Ψ on R + × R 3 and for any function f , continuous in time and compactly supported in Fourier space, we define

f Ψ (t) def = F -1 e Ψ(t,•) f (t, •) .
Now we introduce two key quantities we want to control in order to prove the theorem. We define the function θ(t) by

θ(t) def = ε v h Φ (t) 2 H 1 2 ,s + v 3 Φ (t) 2 H 1 2 ,s and θ(0) = 0, (3.3) 
and we also define

Ψ(t) def = v Φ (t) 2 H 0,s + t 0 ∇ h v Φ (τ ) 2 H 0,s dτ, (3.4) 
where

Φ(t, ξ) def = (a -λθ(t))|ξ 3 | (3.5)
for some λ that will be chosen later on.

3.3.

Main steps of the proof.

Proposition 3.3. A constant C 0 exists such that, for any positive λ and for any t satisfying θ(t) ≤ a/λ, we have

θ(t) ≤ exp C 0 Ψ(t) e a|D 3 | v 0 2 H -1 2 ,s + C 0 t 0 θ(τ )Ψ(τ )dτ .
Proposition 3.4. There exist C 1 and λ 0 such that for λ ≥ λ 0 and for any t satisfying θ(t) ≤ a/λ, we have

Ψ(t) ≤ e a|D 3 | v 0 2 H 0,s exp C 1 Ψ(t) .
The proof of Proposition 3.3 and 3.4 will be presented in section 4 and section 5 respectively. For the moment, let us assume that they are true and conclude the proof of Theorem 3.2. As in [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF], we use a continuation argument. For any λ ≥ λ 0 and η, let us define

T λ def = {T : θ(T ) ≤ 4η 2 , Ψ(T ) ≤ 2η 2 }.
Similar to the argument in [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF], T λ is of the form [0, T * ) for some positive T * . Thus, it suffices to prove that T * = +∞. In order to use Proposition 3.3 and 3.4, we need to assume that θ(T ) ≤ a λ , which leads to the condition 4η 2 ≤ a λ .

From Proposition 3.3 and 3.4, it follows that for all T ∈ T λ ,

θ(T ) ≤ exp(2C 0 η 2 )(η 2 + 2C 0 η 2 θ(T )), Ψ(T ) ≤ η 2 exp(2C 1 η 2 ) (3.6) Now we choose η such that exp(2C 0 η 2 ) < 2, exp(2C 1 η 2 ) < 2, 4C 0 η 2 < 1 2 .
With this choice of η, then we infer from (3.6) that

θ(T ) < 4η 2 , Ψ(T ) < 2η 2 , (3.7) 
which ensures that T * = +∞, thus we conclude the proof of Theorem 3.2.

The action of subadditive phases on products

For any function f , we denote by f + the inverse Fourier transform of | f |. Let us notice that the map f → f + preserves the norm of all H σ,s spaces. Throughout this section, Ψ will denote a locally bounded function on R + × R 3 which satisfies the following inequality

Ψ(t, ξ) ≤ Ψ(t, ξ -η) + Ψ(t, η). (4.1)
Before presenting the product estimates, let us recall the Littlewood-Paley decomposition. Choose two nonnegative even functions χ, ϕ ∈ S(R) supported respectively in B = {ξ ∈ R, |ξ| ≤ 4 3 } and

C = {ξ ∈ R, 3 4 ≤ |ξ| ≤ 8 3 } such that χ(ξ) + j≥0 ϕ(2 -j ξ) = 1, for ξ ∈ R, j∈Z ϕ(2 -j ξ) = 1, for ξ ∈ R \ {0}.
The frequency localization operators ∆ v j and S v j in the vertical direction are defined by

∆ v j f = F -1 ϕ(2 -j |ξ 3 |) f for j ≥ 0, S v j f = F -1 χ(2 -j |ξ 3 |) f = j ′ ≤j-1 ∆ v j ′ f, ∆ v -1 f = S v 0 f, ∆ v j f = 0 for j ≤ -2.

And the frequency localization operators ∆h

j and S h j in the horizontal direction are defined by

∆h j f = F -1 ϕ(2 -j |ξ h |) f , S h j f = j ′ ≤j-1 ∆h j ′ f, for j ∈ Z.
It is easy to verify that

f 2 H σ,s ≈ j,k∈Z 2 2js 2 2kσ ∆ v j ∆h k f 2 L 2 . (4.2)
In the sequel, we will constantly use the Bony's decomposition from [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] that

f g = T v f g + R v f g, (4.3) 
with

T v f g = j S v j-1 f ∆ v j g, R f g = j S v j+2 f ∆ v j g.
We also use the Bony's decomposition in the horizontal direction

f g = T h f g + T h f g + R h (f, g), (4.4) 
with

T h f g = j S h j-1 f ∆h j g, R h (f, g) = |j ′ -j|≤1 ∆h j f ∆h j ′ g. Lemma 4.1. (Bernstein's inequality) Let 1 ≤ p ≤ q ≤ ∞. Assume that f ∈ L p (R d ), then there exists a constant C independent of f , j such that supp f ⊂ {|ξ| ≤ C2 j } ⇒ ∂ α f L q ≤ C2 j|α|+dj( 1 p -1 q ) f L p , supp f ⊂ { 1 C 2 j ≤ |ξ| ≤ C2 j } ⇒ f L p ≤ C2 -j|α| sup |β|=|α| ∂ β f L p . Lemma 4.2. Let s > 1 2 , σ 1 , σ 2 < 1 and σ 1 + σ 2 > 0. Assume that a Ψ ∈ H σ 1 ,s and b Ψ ∈ H σ 2 ,s . Then there holds ∆ v j ∆h k (T v a b) Ψ L 2 + ∆ v j ∆h k (R v a b) Ψ L 2 ≤ Cc j,k 2 (1-σ 1 -σ 2 )k 2 -js a Ψ H σ 1 ,s b Ψ H σ 2 ,s ,
with the sequence (c j,k ) j,k∈Z satisfying j,k c j,k ≤ 1.

Proof. Let us firstly prove the case when the function Ψ is identically 0. Below we only present the proof of R a b, the proof for T a b is very similar. Using Bony's decomposition (4.4) in the horizontal direction, we write

∆ j ∆h k (R v a b) = j ′ ∆ v j ∆h k (S v j ′ +2 a∆ v j ′ b) = j ′ ∆ v j ∆h k T h S v j ′ +2 a ∆ v j ′ b + T h ∆ v j ′ b S v j ′ +2 a + R h (S v j ′ +2 a, ∆ v j ′ b) := I + II + III.
Considering the support of the Fourier transform of T h S v j ′ +2 a ∆ v j ′ b, we have

I = j ′ ≥j-4 |k ′ -k|≤4 ∆ v j ∆h k S v j ′ +2 S h k ′ -1 a∆ v j ′ ∆h k ′ b .
Then we get by Lemma 4.1 that

I L 2 ≤ C j ′ ≥j-4 |k ′ -k|≤4 S v j ′ +2 S h k ′ -1 a∆ j ′ ∆h k ′ b L 2 ≤ C j ′ ≥j-4 |k ′ -k|≤4 S v j ′ +2 S h k ′ -1 a L ∞ ∆ v j ′ ∆h k ′ b L 2 .
We use Lemma 4.1 again to get

S v j ′ +2 S h k ′ -1 a L ∞ ≤ j ′′ ≤j ′ +1 k ′′ ≤k ′ -2 ∆ v j ′′ ∆h k ′′ a L ∞ ≤ C j ′′ ≤j ′ +1 k ′′ ≤k ′ -2 2 k ′′ ∆ v j ′′ ∆h k ′′ a L ∞ x 3 L 2 x h ≤ C j ′′ ≤j ′ +1 k ′′ ≤k ′ -2 2 j ′′ 2 2 k ′′ ∆ v j ′′ ∆h k ′′ a L 2 ≤ C2 (1-σ 1 )k a H σ 1 ,s ,
from which, it follows that

I L 2 ≤ C2 (1-σ 1 )k a H σ 1 ,s j ′ ≥j-4 |k ′ -k|≤4 ∆ v j ′ ∆h k ′ b L 2 ≤ Cc j,k 2 -js 2 (1-σ 1 -σ 2 )k a H σ 1 ,s b H σ 2 ,s . (4.5)
Similarly, we have

II = j ′ ≥j-4 |k ′ -k|≤4 ∆ v j ∆h k (∆ v j ′ S h k ′ -1 bS v j ′ +2 ∆h k ′ a).
Then we get by Lemma 4.1 that

II L 2 ≤ C j ′ ≥j-4 |k ′ -k|≤4 ∆ v j ′ S h k ′ -1 b L 2 x 3 L ∞ x h S v j ′ +2 ∆h k ′ a L 2 x h L ∞ x 3 ≤ C2 -js 2 (1-σ 1 -σ 2 )k a H σ 1 ,s b H σ 2 ,s j ′ ≥j-4 |k ′ -k|≤4 2 -(j ′ -j)s c k ′ c j ′ ≤ Cc j,k 2 -js 2 (1-σ 1 -σ 2 )k a H σ 1 ,s b H σ 2 ,s . (4.6)
Now, let us turn to III. We have

III = j ′ ≥j-4 k ′ ,k ′′ ≥k-2;|k ′ -k ′′ |≤1 ∆ v j ∆h k (S v j ′ +2 ∆h k ′ a∆ v j ′ ∆h k ′′ b).
So, we have by Lemma 4.1 that

III L 2 ≤ C j ′ ≥j-4 k ′ ,k ′′ ≥k-2;|k ′ -k ′′ |≤1 2 k S v j ′ +2 ∆h k ′ a∆ v j ′ ∆h k ′′ b L 2 x 3 L 1 x h ≤ C j ′ ≥j-4 k ′ ,k ′′ ≥k-2;|k ′ -k ′′ |≤1 2 k S v j ′ +2 ∆h k ′ a L ∞ x 3 L 2 x h ∆ v j ′ ∆h k ′′ b L 2 ≤ C2 -js 2 (1-σ 1 -σ 2 )k a H σ 1 ,s b H σ 2 ,s j ′ ≥j-4 k ′ ≥k-2 2 -(σ 1 +σ 2 )(k ′ -k) 2 -(j ′ -j)s c k ′ c j ′ ≤ Cc j,k 2 -js 2 (1-σ 1 -σ 2 )k a H σ 1 ,s b H σ 2 ,s . (4.7) 
Summing up (4.5)-(4.7), we obtain

∆ v j ∆h k (R a b) L 2 ≤ Cc j,k 2 -js 2 (1-σ 1 -σ 2 )k a H σ 1 ,s b H σ 2 ,s .
The lemma is proved in the case when the function Ψ is identically 0. In order to treat the general case, we only need to notice the fact that

|F ∆ j ∆h k (R a b) Ψ (ξ)| ≤ F ∆ j ∆h k (R a + Ψ b + Ψ ) (ξ)
. This finishes the proof of Lemma 4.2. As a consequence of Lemma 4.2 and (4.2), we have

Lemma 4.3. Let s > 1 2 , σ 1 , σ 2 < 1 and σ 1 + σ 2 > 0. Assume that a Ψ ∈ H σ 1 ,s and b Ψ ∈ H σ 2 ,s . Then there holds (ab) Ψ H σ 1 +σ 2 -1,s ≤ C a Ψ H σ 1 ,s b Ψ H σ 2 ,s .

Classical analytical-type estimates

In this section, we prove Proposition 3.3. In this part, we don't need to use any regularizing effect from the analyticity, but only the fact that the e Φ(t,ξ 3 ) is a sublinear function.

Notice that

∂ t v Φ + λ θ(t)|D 3 |v Φ = (∂ t v) Φ , we find from (3.1) that          ∂ t v h Φ + λ θ(t)|D 3 |v h Φ -∆ h v h Φ -ε 2 ∂ 2 3 v h Φ + ε 1 2 (v • ∇v h ) Φ = -∇ h q Φ , ∂ t v 3 Φ + λ θ(t)|D 3 |v 3 Φ -∆ h v 3 Φ -ε 2 ∂ 2 3 v 3 Φ + ε 1 2 (v • ∇v 3 ) Φ = -ε 2 ∂ 3 q Φ , div v Φ = 0, v Φ (0) = e a|D 3 | v 0 (x).
(5.1)

Step 1. Estimates on the vertical component v 3 Φ Note that θ(t) ≥ 0, we get from the second equation of (5.1) that 1 2

d dt v 3 Φ (t) 2 H -1 2 ,s + ∇ h v 3 Φ (t) 2 H -1 2 ,s + ε∂ 3 v 3 Φ (t) 2 H -1 2 ,s ≤ -ε 1 2 (v h • ∇ h v 3 ) Φ , v 3 Φ H -1 2 ,s + ε 1 2 (v 3 div h v h ) Φ , v 3 Φ H -1 2 ,s -ε 2 ∂ 3 q Φ , v 3 Φ H -1 2 ,s def = I + II + III. (5.2)
Here we used the fact that div v = 0 such that

v • ∇v 3 = v h • ∇ h v 3 -v 3 div h v h .
For II, Lemma 4.3 applied gives

|II| ≤ ε 1 2 (v 3 div h v h ) Φ H -1 2 ,s v 3 Φ H -1 2 ,s ≤ Cε 1 2 v 3 Φ H 1 2 ,s ∇ h v h Φ H 0,s v 3 Φ H -1 2 ,s ≤ 1 100 v 3 Φ 2 H 1 2 ,s + Cε ∇ h v h Φ 2 H 0,s v 3 Φ 2 H -1 2 ,s . (5.3) 
For I, we get by integration by parts that

I = ε 1 2 (div h v h v 3 ) Φ , v 3 Φ H -1 2 ,s + ε 1 2 (v h v 3 ) Φ , ∇ h v 3 Φ H -1 2 ,s def = I 1 + I 2 .
As in (5.3), we have

|I 1 | ≤ 1 100 v 3 Φ 2 H 1 2 ,s + Cε ∇ h v h Φ 2 H 0,s v 3 Φ 2 H -1 2 ,s , (5.4) 
and by Lemma 4.3,

|I 2 | ≤ ε 1 2 (v 3 v h ) Φ H -1 2 ,s ∇ h v 3 Φ H -1 2 ,s ≤ Cε 1 2 v h Φ H 0,s v 3 Φ H 1 2 ,s ∇ h v 3 Φ H -1 2 ,s ≤ Cε v h Φ 2 H 0,s v 3 Φ 2 H 1 2 ,s + 1 100 ∇ h v 3 Φ 2 H -1 2 ,s . (5.5) 
Now, we turn to the estimates of the pressure. Recall that the pressure verifies

-∆ ε p = ε 1 2 ∂ i ∂ j (v i v j ) + ∂ i ∂ 3 (v i v 3 ) -2∂ 3 (v 3 div h v h ) .
Here and in what follows the index i, j run from 1 to 2. Thus, we can write p = p 1 + p 2 + p 3 with

p 1 = ε 1 2 (-∆ ε ) -1 ∂ i ∂ j (v i v j ), p 2 = ε 1 2 (-∆ ε ) -1 ∂ i ∂ 3 (v i v 3 ), p 3 = -2ε 1 2 (-∆ ε ) -1 ∂ 3 (v 3 div h v h ). (5.6)
We get by integration by parts that

ε 2 (∂ 3 p 1 Φ , v 3 Φ ) H -1 2 ,s = -ε(p 1 Φ , ε∂ 3 v 3 Φ ) H -1 2 ,s ≤ Cε 2 p 1 Φ 2 H -1 2 ,s + 1 100 ε∂ 3 v 3 Φ 2 H -1
2 ,s , which together with the fact that the operator

∂ i ∂ j (-∆ ε ) -1 is bounded on H σ,s and Lemma 4.3 implies that ε 2 (∂ 3 p 1 Φ , v 3 Φ ) H -1 2 ,s ≤ Cε 3 (v h ⊗ v h ) Φ 2 H -1 2 ,s + 1 100 ε∂ 3 v 3 Φ 2 H -1 2 ,s ≤ Cε 2 ε 1 2 v h Φ 2 H 1 2 ,s v h Φ 2 H 0,s + 1 100 ε∂ 3 v 3 Φ 2 H -1 2 ,s . (5.7)
For the term containing p 2 , we get by integration by parts that

ε 2 (∂ 3 p 2 Φ , v 3 Φ ) H -1 2 ,s = -ε 1 2 (ε 2 ∂ 2 3 (-∆ ε ) -1 (v i v 3 ) Φ , ∂ i v 3 Φ ) H -1
2 ,s , then using the fact that (ε∂ 3 )2 (-∆ ε ) -1 is bounded on H σ,s and Lemma 4.3, we have

ε 2 (∂ 3 p 2 Φ , v 3 Φ ) H -1 2 ,s ≤ Cε 1 2 (v 3 v h ) Φ H -1 2 ,s ∇ h v 3 Φ H -1 2 ,s ≤ Cε v 3 Φ 2 H 1 2 ,s v h Φ 2 H 0,s + 1 100 ∇ h v 3 Φ 2 H -1 2 ,s . (5.8) 
For the last term coming from p 3 , we use again the fact that (ε∂ 3 ) 2 (-∆ ε ) -1 is bounded on H σ,s and obtain

ε 2 (∂ 3 p 3 Φ , v 3 Φ ) H -1 2 ,s ≤ Cε 1 2 (v 3 div v h ) Φ H -1 2 ,s v 3 Φ H -1 2 ,s ≤ Cε 1 2 v 3 Φ H 1 2 ,s ∇ h v h Φ H 0,s v 3 Φ H -1 2 ,s ≤ Cε ∇ h v h Φ 2 H 0,s v 3 Φ 2 H -1 2 ,s + 1 100 v 3 Φ 2 H 1 2 ,s . (5.9) 
Summing up (5.2)-(5.5) and (5.7)-(5.9), we obtain

d dt v 3 Φ (t) 2 H -1 2 ,s + v 3 Φ (t) 2 H 1 2 ,s ≤ C ∇ h v h Φ 2 H 0,s v 3 Φ 2 H -1 2 ,s + C( v 3 Φ 2 H 1 2 ,s + ε 1 2 v h Φ 2 H 1 2 ,s ) v h Φ 2
H 0,s . (5.10) Here we used the fact that

∇ h v 3 Φ 2 H -1 2 ,s ≈ v 3 Φ 2 H 1 2 ,s . Step 2. Estimates on the horizontal component v h Φ
From the first equation of (5.1), we infer that 1 2

d dt ε 1 2 v h Φ (t) 2 H -1 2 ,s + ε 1 2 ∇ h v h Φ (t) 2 H -1 2 ,s + ε ε∂ 3 v h Φ (t) 2 H -1 2 ,s ≤ -ε (v • ∇v h ) Φ , ε 1 2 v h Φ H -1 2 ,s -ε ∇ h q Φ , v h Φ H -1 2 ,s def = I + II. (5.11)
We rewrite I as

I = -ε (v h • ∇ h v h ) Φ , ε 1 2 v h Φ H -1 2 ,s -ε (v 3 ∂ 3 v h ) Φ , ε 1 2 v h Φ H -1 2 ,s def = I 1 + I 2 .
Lemma 4.3 applied gives

|I 1 | ≤ ε (v h ∇ h v h ) Φ H -1 2 ,s ε 1 2 v h Φ H -1 2 ,s ≤ Cε v h Φ H 1 2 ,s ∇ h v h Φ H 0,s ε 1 2 v h Φ H -1 2 ,s ≤ 1 100 ε 1 2 v h Φ 2 H 1 2 ,s + Cε ∇ h v h Φ 2 H 0,s ε 1 2 v h Φ 2 H -1 2 ,s .
(5.12)

For I 2 , we use integration by parts and div v = 0 to get

I 2 = -ε (div h v h v h ) Φ , ε 1 2 v h Φ H -1 2 ,s + (v h v 3 ) Φ , ε 1 2 ε∂ 3 v h Φ H -1 2 ,s , def = I 21 + I 22 .
As in (5.12), we have

|I 21 | ≤ 1 100 ε 1 2 v h Φ 2 H 1 2 ,s + Cε ∇ h v h Φ 2 H 0,s ε 1 2 v h Φ 2 H -1
and by Lemma 4.3,

|I 22 | ≤ (v 3 v h ) Φ H -1 2 ,s ε 1 2 ε∂ 3 v h Φ H -1 2 ,s ≤ C v h Φ H 0,s v 3 Φ H 1 2 ,s ε 1 2 ε∂ 3 v h Φ H -1 2 ,s ≤ 1 100 ε ε∂ 3 v h Φ 2 H 1 2 ,s + C v h Φ 2 H 0,s v 3 Φ 2 H 1 2 ,s . (5.14) 
In order to deal with the pressure, we write p = p 1 + p 2 + p 3 with p 1 , p 2 , p 3 defined by (5.6). Using the fact that the operator ∂ i ∂ j (-∆ ε ) -1 is bounded on H σ,s and Lemma 4.3, we have

ε(∇ h p 1 Φ , v h Φ ) H -1 2 ,s = -ε((-∆ ε ) -1 ∂ i ∂ j (v i v j ) Φ , ε 1 2 div h v h Φ ) H -1 2 ,s ≤ Cε (v h ⊗ v h ) Φ H -1 2 ,s ε 1 2 ∇ h v h Φ H -1 2 ,s ≤ Cε 1 2 ε 1 2 v h Φ H 1 2 ,s v h Φ H 0,s ε 1 2 ∇ h v h Φ H -1 2 ,s ≤ 1 100 ε 1 2 ∇ h v h Φ 2 H -1 2 ,s + Cε ε 1 2 v h Φ 2 H 1 2 ,s v h Φ 2 H 0,s . (5.15)
For the term coming from p 2 , we integrate by parts to get

ε(∇ h p 2 Φ , v h Φ ) H -1 2 ,s = -(ε∂ i ∂ 3 (-∆ ε ) -1 (v i v 3 ) Φ , ε 1 2 div h v h Φ ) H -1 2 ,s , then note that ε∂ 3 ∂ i (-∆ ε ) -1 is bounded on H σ,s , we get by Lemma 4.3 that ε(∇ h p 2 Φ , v h Φ ) H -1 2 ,s ≤ C (v 3 v h ) Φ H -1 2 ,s ε 1 2 ∇ h v h Φ H -1 2 ,s ≤ C v 3 Φ H 1 2 ,s v h Φ H 0,s ε 1 2 ∇ h v h Φ H -1 2 ,s ≤ C v 3 Φ 2 H 1 2 ,s v h Φ 2 H 0,s + 1 100 ε 1 2 ∇ h v h Φ 2 H -1
2 ,s . (5.16) Similarly, we have

ε(∇ h p 3 Φ , v h Φ ) H -1 2 ,s ≤ C (v 3 div h v h ) Φ H -1 2 ,s ε 1 2 v h Φ H -1 2 ,s ≤ C v 3 Φ H 1 2 ,s ∇ h v h Φ H 0,s ε 1 2 v h Φ H -1 2 ,s ≤ 1 100 v 3 Φ 2 H 1 2 ,s + C ∇ h v h Φ 2 H 0,s ε 1 2 v h Φ 2 H -1
2 ,s . (5.17) Summing up (5.11)-(5.17), we obtain

d dt ε 1 2 v h Φ (t) 2 H -1 2 ,s + ε 1 2 v h Φ (t) 2 H 1 2 ,s - 1 50 v 3 Φ 2 H 1 2 ,s ≤ C ∇ h v h Φ 2 H 0,s ε 1 2 v h Φ 2 H -1 2 ,s + C v 3 Φ 2 H 1 2 ,s + ε 1 2 v h Φ 2 H 1 2 ,s v h Φ 2 H 0,s . (5.18)
Step 3. Estimate on the function θ(t)

Combining (5.10) with (5.18), we obtain

d dt ε 1 2 v h Φ (t) 2 H -1 2 ,s + v 3 Φ (t) 2 H -1 2 ,s + ε 1 2 v h Φ (t) 2 H 1 2 ,s + v 3 Φ (t) 2 H 1 2 ,s ≤ C ∇ h v h Φ 2 H 0,s ε 1 2 v h Φ 2 H -1 2 ,s + v 3 Φ 2 H -1 2 ,s +C ε 1 2 v h Φ 2 H 1 2 ,s + v 3 Φ 2 H 1 2 ,s v h Φ 2 H 0,s ,
from which and Gronwall's inequality, it follows that

ε 1 2 v h Φ (t) 2 H -1 2 ,s + v 3 Φ (t) 2 H -1 2 ,s + t 0 ε 1 2 v h Φ (τ ) 2 H 1 2 ,s + v 3 Φ (τ ) 2 H 1 2 ,s dτ ≤ exp C t 0 ∇ h v h Φ (τ ) 2 H 0,s dτ e a|D 3 | v 0 2 H -1 2 ,s + +C t 0 ε 1 2 v h Φ (τ ) 2 H 1 2 ,s + v 3 Φ (τ ) 2 H 1 2 ,s v h Φ (τ ) 2 H 0,s dτ .
In particular, we have

θ(t) ≤ exp CΨ(t) e a|D 3 | v 0 2 H -1 2 ,s + C t 0 θ(τ )Ψ(τ )dτ .
This finishes the proof of Proposition 3.3.

Regularizing effect du analyticity

Let's now prove Proposition 3.4. Here we will encounter two kinds of bad terms, where we lose a vertical derivative. The first one is (v 3 ∂ 3 v h ) Φ . We will see that in an energy estimate, we have no loss of vertical derivative in this term (by integrating by parts, using commutators and of course ∂ 3 v 3 = -div h v h ). In the term ∇p, we really lose a vertical derivative.

Step 1. Estimates on the horizontal component

v h Φ Let us recall that v h Φ verifies the equations ∂ t v h Φ + λ θ(t)|D 3 |v h Φ -∆ h v h Φ -ε 2 ∂ 2 3 v h Φ + ε 1 2 (v • ∇v h ) Φ = -∇ h q Φ .
Note that θ ≥ 0, we perform an energy estimate in H 0,s to obtain 1 2

d dt v h Φ 2 H 0,s + λ θ(t) v h Φ 2 H 0,s+1/2 + ∇ h v h Φ 2 H 0,s + ε∂ 3 v h Φ 2 H 0,s ≤ ε 1 2 ((v h ⊗ v h ) Φ , ∇ h v h Φ ) H 0,s -ε 1 2 (∂ 3 (v 3 v h ) Φ , v h Φ ) H 0,s -(∇ h p Φ , v h Φ ) H 0,s def = I + II + III. (6.1) 
We get by Lemma 4.3 and the interpolation that

|I| ≤ Cε 1 2 (v h ⊗ v h ) Φ H 0,s ∇ h v h Φ H 0,s ≤ Cε 1 2 v h Φ H 1 2 ,s v h Φ H 1 2 ,s ∇ h v h Φ H 0,s ≤ Cε 1 2 v h Φ H 0,s v h Φ H 1,s ∇ h v h Φ H 0,s ≤ Cε v h Φ 2 H 0,s v h Φ 2 H 1,s + 1 100 ∇ h v h Φ 2 H 0,s . (6.2) 
In order to estimate II, we use Bony's decomposition (4.3) to rewrite it as

II = -ε 1 2 (∂ 3 (T v v h v 3 ) Φ , v h Φ ) H 0,s -ε 1 2 (∂ 3 (R v v 3 v h ) Φ , v h Φ ) H 0,s def = II 1 + II 2 .
From the proof of Lemma 4.2, it is easy to find that

|II 2 | ≤ C |D 3 | 1 2 (R v v 3 v h ) Φ H -1 2 ,s |εD 3 | 1 2 |D h | 1 2 v h Φ H 0,s ≤ C v 3 Φ H 1 2 ,s v h Φ H 0,s+ 1 2 ∇ ε v h H 0,s ≤ C v 3 Φ 2 H 1 2 ,s v h Φ 2 H 0,s+ 1 2 + 1 100 ∇ ε v h 2 H 0,s . (6.3) 
Due to div v = 0, we rewrite II 1 as

II 1 = ε 1 2 ((T v v h div v h ) Φ , v h Φ ) H 0,s -ε 1 2 ((T v ∂ 3 v h v 3 ) Φ , v h Φ ) H 0,s def = II 11 + II 12 .
Using Lemma 4.2, we have

|II 11 | ≤ ε 1 2 (T v v h div v h ) Φ H -1 2 ,s v h Φ H 1 2 ,s ≤ Cε 1 2 v h Φ H 1 2 ,s ∇ h v h Φ H 0,s v h Φ H 1 2 ,s ≤ Cε v h Φ 2 H 0,s v h Φ 2 H 1,s + 1 100 ∇ h v h Φ 2 H 0,s . (6.4) 
From the proof of Lemma 4.2, we can conclude that

|II 12 | ≤ C v 3 Φ H 1 2 ,s v h Φ H 0,s+ 1 2 ∇ ε v h H 0,s ≤ C v 3 Φ 2 H 1 2 ,s v h Φ 2 H 0,s+ 1 2 + 1 100 ∇ ε v h 2 H 0,s . (6.5) 
We next turn to the estimate of the pressure. Recall that p = p 1 + p 2 + p 3 with p 1 , p 2 , p 3 defined by (5.6). Using the fact that (-∆ ε ) -1 ∂ i ∂ j is bounded on H σ,s and Lemma 4.3, we get

(∇ h p 1 Φ , v h Φ ) H 0,s = -ε 1 2 ((-∆ ε ) -1 ∂ i ∂ j (v i v j ) Φ , div v h Φ ) H 0,s ≤ Cε 1 2 (v h ⊗ v h ) Φ H 0,s ∇ h v h Φ H 0,s ≤ Cε 1 2 v h Φ H 1 2 ,s v h Φ H 1 2 ,s ∇ h v h Φ H 0,s ≤ Cε v h Φ 2 H 0,s v h Φ 2 H 1,s + 1 100 ∇ h v h Φ 2 H 0,s . (6.6) 
Notice that ∂ i ∂ j (-∆ ε ) -1 is bounded on H σ,s , then exactly as in the estimate of II, we can obtain

(∇ h p 2 Φ , v h Φ ) H 0,s ≤ C v 3 Φ 2 H 1 2 ,s v h Φ 2 H 0,s+ 1 2 + Cε v h Φ 2 H 0,s v h Φ 2 H 1,s + 1 100
∇ ε v h 2 H 0,s . (6.7) We write

∇ h p 3 = -2∂ 3 |D 3 | -1 2 ∇ h |D h | 1 2 |εD 3 | 1/2 (-∆ ǫ ) -1 |D h | -1 2 (v 3 div h v h ) thus, (∇ h p 3 Φ , v h Φ ) H 0,s = -2( ∇ h |D h | 1 2 |εD 3 | 1 2 (-∆ ǫ ) -1 |D h | -1 2 (v 3 div h v h ), ∂ 3 |D 3 | -1 2 v h Φ ) H 0,s . Note that ∇ h |D h | 1 2 |εD 3 | 1 2
(-∆ ǫ ) -1 is a bounded operator on H σ,s , we get by Lemma 4.3 that

(∇ h p 3 Φ , v h Φ ) H 0,s ≤ C |D h | -1/2 (v 3 div h v h ) H 0,s ∂ 3 |D 3 | -1 2 v h Φ H 0,s ≤ C v 3 Φ H 1 2 ,s ∇ h v h Φ H 0,s v h H 0,s+1/2 ≤ C v 3 Φ 2 H 1 2 ,s v h Φ 2 H 0,s+1/2 + 1 100 ∇ h v h Φ 2 H 0,s . (6.8) 
Summing up (6.1)-(6.8), we get by taking λ big enough that

d dt v h Φ (t) 2 H 0,s + ∇ h v h Φ (t) 2 H 0,s ≤ C v h Φ 2 H 0,s ∇ h v h Φ 2
H 0,s . (6.9)

Step 2. Estimates on the vertical component v 3

Φ

Recall that v 3 Φ verifies the equation

∂ t v 3 Φ + λ θ(t)|D 3 |v 3 Φ -∆ h v 3 Φ -ε 2 ∂ 2 3 v 3 Φ + ε 1 2 (v • ∇v 3 ) Φ = -ε 2 ∂ 3 q Φ .
We perform an energy estimate in H 0,s to obtain 1 2 This finishes the proof of Proposition 3.4.

d dt v 3 Φ 2 H 0,s + ∇ h v 3 Φ 2 H 0,s + ε∂ 3 v 3 Φ 2 H 0,s ≤ -ε 1 2 ((v h • ∇ h v 3 ) Φ , v 3 Φ ) H 0,s + ε 1 2 ((v 3 div h v h ) Φ , v 3 Φ ) H 0,s -ε 2 (∂ 3 p Φ , v 3 
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