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Introduction

The system describing turbulent compressible barotropic flows is composed of equation of mass balance, equation of average momentum and evolution equation for the Reynolds stress tensor. In the following, we see that the Reynolds stress tensor equation is mainly driven by the velocity gradient tensor of the mean motion and this equation is the main object of our study when the source term is negligible.

The reason for considering the simplified turbulence model without the source term is twofold. First, in numerical studies of compressible turbulent 1 flows, this homogeneous equation is a natural step in applying the splitting-up technique (see for example [START_REF] Berthon | An approximate solution of the Riemann problem for a realisable second-moment turbulent closure[END_REF]). Secondly, such a homogeneous system appears as an exact asymptotic model of weakly shearing flows of long waves over a flat bottom (see [START_REF] Teshukov | Gas dynamic analogy for vortex free-boundary flows[END_REF]). The only difference is the space dimension: two dimensions are considered for shallow water flows instead of three dimensions for the general case.

We use the spectral decomposition of the Reynolds stress tensor and in the homogeneous case, we obtain a simpler dynamical system for the eigenvalues and the eigenvectors of the Reynolds stress tensor. The system admits a simple physical interpretation: the motion of each point of the turbulent flow is analogous to the motion of a free rigid body moving along the mean flow and rotating with an angular velocity which is different from the mean flow vorticity. The angular velocity is completely determined by the mean flow velocity. The moments of inertia of the free rigid body are not constant, they are also determined by the mean flow.

When the mean flow vorticity is small enough, an approximate turbulence model is obtained, which admits a variational formulation.

The governing equations

The governing equations of barotropic turbulent compressible fluids are (see [START_REF] Mohammadi | Analysis of the K-epsilon turbulence model[END_REF][START_REF] Pope | Turbulent flows[END_REF][START_REF] Wilcox | Turbulence Modeling for CFD[END_REF]) :

           ρ t + ( ρ U i ), i = 0, ( ρ U i ) t + ( ρ U i U j + p δ ij + ρ u i u j ) , j = 0, ρ u i u j t + ( ρ u i u j U k ) , k + ρ u k u j U i,k + ρ u i u k U j,k = S ij (1) 
where "brackets" mean the averaging, "coma" means the derivation with respect to the Eulerian coordinates x = {x i }, i ∈ {1, 2, 3} and index "t" means the partial derivative with respect to time, ρ is the fluid density, U = {U i }, i ∈ {1, 2, 3} is the mass average velocity, p is the pressure, u = {u i }, i ∈ {1, 2, 3} is the velocity fluctuation verifying ρu = 0. Repeated indices mean summation.

Here S = {S ij } is a source term, and its explicit expression can be written as :

S ij = -u i p, j -u j p, i -ρ u i u j u k , k .
We introduce the Reynolds stress tensor

R = ρ u ⊗ u , (R ij = ρ u i u j ).
System (1) can be rewritten in the tensorial form

                     ∂ ρ ∂t + div ( ρ U) = 0, ρ dU dt + ∇ p + (div R) T = 0, dR dt + R divU + ∂U ∂x R + R ∂U ∂x T = S, (2) 
where d/dt means the material derivative with respect to the mean motion

d dt = ∂ ∂t + U T ∇ .
The superscript " T " means the transposition. Using the mass conservation law, the equation for the volume Reynolds stress tensor R can be rewritten as the equation for the specific (or per unit mass) Reynolds stress tensor

dP dt + ∂U ∂x P + P ∂U ∂x T = S ρ , (3) 
where

P = R ρ .
The structure of source term S has generated much debate within physical and mathematical communities. Our goal is not to add new closure hypotheses, but to study the structure of the "master" equation ( 3) when S = 0. The reason is twofold:

-firstly, in the numerical study of compressible turbulent flows, this is a natural step in applying the splitting-up technique (see for example [START_REF] Berthon | An approximate solution of the Riemann problem for a realisable second-moment turbulent closure[END_REF]), -secondly, system (2) also appears as an exact asymptotic model of weakly shearing flows of long waves (turbulent shallow water flows) over a flat bottom (see [START_REF] Teshukov | Gas dynamic analogy for vortex free-boundary flows[END_REF]) :

                       ∂h ∂t + div (h U) = 0, h dU dt + ∇ gh 2 2 + (div R) T = 0, dR dt + R divU + ∂U ∂x R + R ∂U ∂x T = 0. (4) 
In system (4), h is the fluid depth playing the role of the average density; the average pressure is given by p = gh 2 /2, g is the gravity acceleration, and

R = h 0 ( U -U) ⊗ ( U -U) dz, hU = h 0 U dz,
where U is the instantaneous velocity. Equations are written for three-dimensional long waves and the production term is zero in the limit of weakly shearing flows. Equations (4) are hyperbolic (see [START_REF] Teshukov | Gas dynamic analogy for vortex free-boundary flows[END_REF] for proof). Finally, we will focus on the equation of the Reynolds stress tensor per unit mass

dP dt + ∂U ∂x P + P ∂U ∂x T = 0. ( 5 
)
The case S = 0 corresponds to conservative motions of turbulent compressible flows; these motions verify the equations

                     ∂ ρ ∂t + div ( ρ U) = 0, ρ dU dt + ∇ p + (div R) T = 0, dR dt + R divU + ∂U ∂x R + R ∂U ∂x T = 0. (6) 
The particular case rot U = 0 was investigated in [START_REF] Debiève | Evolution of the Reynolds stress tensor in a shock wave-turbulence interaction[END_REF]. In such a case (∂U/∂x) T = ∂U/∂x and Eq. ( 5) corresponds to a two-covariant tensor convected by the mean flow. This means that P has a zero Lie derivative d L with respect to the velocity field U and the tensor P 0 , image of P in Lagrange coordinates (t, X),

only depends on X = {X i }, i ∈ {1, 2, 3} d L P ≡ dP dt + ∂U ∂x P + P ∂U ∂x = 0, P = F T -1 P 0 (X) F -1 , (7) 
where F = ∂x/∂X is the deformation gradient of the mean motion. The aim of the paper is the study of the homogeneous Reynolds stress tensor equation structure [START_REF] Casal | La théorie du second gradient et la capillarité[END_REF] in the case rot U = 0.

Geometric properties of the Reynolds stress tensor evolution

The Reynolds stress tensor P is symmetric and semi-positive definite. The tensor P can be rewritten in a local basis of orthonormal eigenvectors in the form

P = 3 α=1 λ 2 α e α ⊗ e α ≡ 3 α=1 λ 2 α e α e T α .
The eigenvalues λ 2 α , α ∈ {1, 2, 3} are non-negative; the case λ 2 α > 0 is a generic one. For the two-dimensional case, λ 2 3 ≡ 0. Let us denote

a α = λ α e α , (λ α > 0) α ∈ {1, 2, 3}.
Then,

P = 3 α=1 a α ⊗ a α ≡ 3 α=1 a α a T α . (8) 
From Eq. ( 8), we deduce

dP dt = 3 α=1 da α dt a T α + a α da α dt T . (9) 
By using Eq. ( 9), Eq. ( 5) can be written

3 α=1 da α dt + ∂U ∂x a α a T α + da α dt + ∂U ∂x a α a T α T = 0. ( 10 
)
The vector da α /dt+ (∂U/∂x) a α can be developped in the local basis {a β }, β ∈ {1, 2, 3} of eigenvectors; one obtains

da α dt + ∂U ∂x a α = 3 β=1 A βα a β , α ∈ {1, 2, 3} (11) 
where A βα , (α, β ∈ {1, 2, 3}) are the scalar components to be determined. By using Eq. ( 11), Eq. ( 10) leads to

3 α=1 A αα g αα + 3 α =β=1 (A αβ + A βα ) g αβ = 0,
where g αα = 2a α a T α and g αβ = g βα = a α a T β + a β a T α , (α, β ∈ {1, 2, 3}), are six independent symmetric tensors. Consequently,

A αα = 0 and A αβ + A βα = 0, α, β ∈ {1, 2, 3}.
Equation ( 10) is equivalent to

da α dt + ∂U ∂x a α = Λ • i (π) e α with π =A 32 e 1 + A 13 e 2 + A 21 e 3 , α ∈ {1, 2, 3}, (12) 
where a diagonal matrix Λ and an antisymmetric matrix i (π) are determined in the basis e β , β ∈ {1, 2, 3} as

Λ =   λ 1 0 0 0 λ 2 0 0 0 λ 3   , i (π) =   0 -A 21 A 13 A 21 0 -A 32 -A 13 A 32 0   .
The vectors a β , β ∈ {1, 2, 3} are orthogonal, a T α a β = 0, (α = β). This is equivalent to

a T α da β dt + a T β da α dt = 0. (13) 
Consequently, Eqs. ( 12) -( 13) yield

∀ α = β ∈ {1, 2, 3}, a T α Λ • i (π) e β - ∂U ∂x a β + a T β Λ • i (π) e α - ∂U ∂x a α = 0. Or 2λ α λ β e T α D e β = a T α Λ • i (π) e β + a T β Λ • i (π) e α ≡ λ 2 α e T α i (π) e β + λ 2 β e T β i (π) e α (14) 
where

D = 1 2 ∂U ∂x + ∂U ∂x
T is the rate of deformation tensor corresponding to the mean flow. We denote the mixed product of three vectors {a, b, c} as (a, b, c) ≡ a T (b ∧ c). Hence, Eq. ( 14) yields

2λ α λ β e T α D e β = λ 2 α -λ 2 β e α , π, e β = λ 2 β -λ 2 α (π, e α , e β ) = λ 2 β -λ 2 α π T e γ ,
where {α, β, γ} is a cyclic permutation of the triplet {1, 2, 3}. Finally, we get

π T e γ = 2λ α λ β e T α D e β λ 2 β -λ 2 α . (15) 
Equation ( 12) can be written

λ α de α dt + dλ α dt e α + λ α ∂U ∂x e α -Λ • i (π) e α = 0, α ∈ {1, 2, 3}. ( 16 
) Since e T α de α dt = 0, e T α Λ • i (π) e α = λ α e T α i (π) e α = 0,
by multiplying the left side of Eq. ( 16) with e T α , we get dλ α dt + e T α D e α λ α = 0.

By multiplying the left side of Eq. ( 16) with the projector I -e α e T α , we get

λ α de α dt + λ α I -e α e T α ∂U ∂x e α -Λ • i (π) e α = 0.
We will prove that there exists a vector Π such that

de α dt = Π ∧ e α ,
Such a vector Π should verify the condition

λ α i (Π) e α + λ α I -e α e T α ∂U ∂x e α -Λ • i (π) e α = 0. ( 17 
)
By multiplying Eq. ( 17) with e T β where β = α, we get

λ α Π T e γ = λ β π T e γ -λ α e T β ∂U ∂x e α . (18) 
By replacing Rel. ( 15) into Eq. ( 18) we get

Π T e γ = λ 2 β e T α ∂U ∂x + ∂U ∂x T e β λ 2 β -λ 2 α -e T β ∂U ∂x e α = e T β λ 2 β ∂U ∂x T + λ 2 α ∂U ∂x e α λ 2 β -λ 2 α .
Now, we can formulate the result, Theorem 1. The Reynolds stress tensor can be written in the form

R = ρ 3 α=1 λ 2 α e α ⊗ e α .
The eigenvectors e α and the eigenvalues λ α verify the equations:

         de α dt = Π ∧ e α , α ∈ {1, 2, 3} d Ln λ 2 α dt = -2 µ α , (19) 
where

µ α = e T α D e α , Π T e γ = e T β λ 2 β ∂U ∂x T + λ 2 α ∂U ∂x e α λ 2 β -λ 2 α .
The triplet {α, β, γ} corresponds to a cyclic permutation of the triplet {1, 2, 3} .

Equation (19 1 ) is similar to the equations of a rigid body (see [START_REF] Marsden | Introduction to mechanics and symmetry[END_REF]). The vectors e α form a natural moving frame {e α } 3 α=1 whose evolution is determined by the mean rate of deformation tensor. The eigenvalues λ 2 α of the Reynolds stress tensor are determined by the evolution equation ( 192 ). Let us note that, if λ α are initially positive, they will be positive for any time. Hence, it means that the tensor P will always be positive definite. Due to the mass conservation law (2 1 ) and Eq. ( 192 ), we obtain the following quantity conserved along trajectories of mean flow:

d dt ρ -2 3 α=1 λ 2 α = 0.
Consequently, system (19) admits an invariant scalar along the trajectories of mean flow. This invariant was earlier obtained in [START_REF] Debiève | Momemtum and temperature fluxes in a shock wave-turbulence interaction[END_REF][START_REF] Debiève | Evolution of the Reynolds stress tensor in a shock wave-turbulence interaction[END_REF] in a different form. Let us introduce the turbulent specific energy

e T = 1 2 tr P = 1 2 3 α=1 λ 2 α .
In the incompressible (isochoric) case, we have d ρ /dt = 0; the turbulent energy is minimal in the isotropic case when the three eigenvalues λ 2 α are equal (λ 2 1 = λ 2 2 = λ 2 3 = λ 2 ). In this case, the orthonormal eigenvectors e α , α ∈ {1, 2, 3} of the Reynolds stress tensor P are also the orthonormal eigenvectors of the mean rate of deformation tensor D and µ α are the corresponding eigenvalues.

In the compressible isotropic case e T = ρ 2/3 κ, κ = 3λ 2 /(2 ρ 2/3 ), and κ is a classical invariant of isotropic compressible turbulence.

In presence of shock waves the quantity ρ -2 3 α=1 λ 2 α is not conserved through shocks; it increases like the classical entropy in compressible fluid dynamics. The estimation of the jump of turbulence entropy in isotropic case was given in [START_REF] Gavrilyuk | Estimation of the turbulence energy production across a shock wave[END_REF].

As a consequence, the governing equations ( 6) admit the energy conservation law

∂ ∂t ρ 1 2 |U| 2 + e i + e T +div ρ U 1 2 |U| 2 + e i + e T + ( p I + R) U = 0
where the internal specific energy e i is defined by

de i = -p d 1 ρ
and the mean pressure p is supposed to be a given function of ρ . Indeed, using (19 2 ) we immediately obtain

∂ ∂t ρ 1 2 |U| 2 + e i + e T + div ρ U 1 2 |U| 2 + e i + e T + ( p I + R) U = ρ de T dt + tr (R D) = ρ 2 d dt 3 α=1 λ 2 α + ρ tr 3 α=1 λ 2 α µ α = 0.
System ( 6) is a conservative and Galilean invariant system of equations which is the counterpart of the Euler equations for the turbulent compressible flows.

The equations for the Reynolds stress tensor ( 63 ) are rewritten in a simpler form admitting a clear physical interpretation.

An approximate model

In this Section, we derive a useful approximation of model ( 6) describing compressible turbulent flows for motions characterized by a small average vorticity.

Preliminaries

Equation ( 5) can be rewritten as :

dP dt + ∂U ∂x T P + P ∂U ∂x = [ i (rotU) , P ] (20) 
with

[ i (rotU) , P ] = P i (rotU) -i (rotU) P, i (rotU) = ∂U ∂x - ∂U ∂x T .
Let τ be a characteristic time scale and ω a characteristic value of the mean vorticity norm rotU ; we assume that

τ ω ≪ 1. ( 21 
)
Relation ( 21) is verified, in particular, for motions which are close to onedimensional ones. Equation ( 20) gets the form

dP dt + ∂U ∂x T P + P ∂U ∂x = 0. (22) 
Using the solution (7) when P 0 (X) = I, we consider the Reynolds stress tensor in the form

P = α ∇ ϕ α ⊗ ∇ ϕ α ,
where index α ranges over a finite number of integers and ϕ α are generalized Lagrangian coordinates :

dϕ α dt = 0. Covectors b T α = ∂ϕ α ∂x verify the identity db T α dt + b T α ∂U ∂x = 0,
corresponding to a zero Lie derivative of b T α with respect to the mass average velocity. In such a case, Eq. ( 22) is identically verified. Symmetric tensor P is determined by six scalar fields ϕ α , α ∈ {1, • • • , 6}. If, initially, vectors ∇ ϕ α , α ∈ {1, 2, 3} constitute an orthogonal system corresponding to the eigenvectors of P, we can choose ϕ α = 0, α ∈ {4, 5, 6} and consequently,

P = 3 α=1 ∇ ϕ α ⊗ ∇ ϕ α . (23) 
It is worth to note that since the Reynolds stress tensor is positive definite, it can be considered as a metric tensor of a Riemannian space associated with the metric

P ij = 3 α=1 ∂ϕ α ∂x i ∂ϕ α ∂x j .
This metric is flat because i,j

P ij dx i dx j = 3 α=1 (dϕ α ) 2
It is interesting to note that this special structure of the Reynolds stress tensor implies a variational structure of equations (6).

The Hamilton principle

The aim of this Section is to prove that in special form (23), System (6) admits a variational formulation which is similar to the one of capillary fluids [START_REF] Cahn | Free energy of a nonuniform system. I. Interfacial free energy[END_REF][START_REF] Casal | Capillarité interne en mécanique des milieux continus[END_REF][START_REF] Casal | La théorie du second gradient et la capillarité[END_REF][START_REF] Eglit | A generalization of the model of an ideal compressible fluid[END_REF][START_REF] Dell'isola | Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations[END_REF][START_REF] Truskinovsky | Equilibrium phase boundaries[END_REF][START_REF] Van Der Waals | The thermodynamic theory of capillarity under the hypothesis of a continuous density variation[END_REF]. However, in our case, the expression of the capillary energy is determined by the gradients of three scalar order parameters transported along the trajectories of the mean flow. We consider the specific internal energy in the form

e i = e i ( ρ ) .
The mean density is submitted to the constraint

∂ ρ ∂t + div ( ρ U) = 0.
Let us define the specific turbulent energy as

e T = 3 α=1 |∇ϕ α | 2 2 ,
where scalars ϕ α are submitted to the constraint

dϕ α dt = 0, α ∈ 1, 2, 3.
For a material volume D t of the mean motion, the Hamilton action calculated between times t 1 , t 2 is

a = t2 t1 Dt ρ L dv dt,
with the specific Lagrangian

L = 1 2 U T U -e i -e T .
The fluid motion is a C 2 -diffeomorphisme φ from a three-dimensional space D 0 into the physical space D t :

x = φ (X, t) or x i = φ i (X 1 , X 2 , X 3 , t) , i ∈ {1, 2, 3}.
Let a one-parameter family of virtual motions denoted by {φ ε }, possessing continuous derivatives up to the second order and expressed in the form :

x = Φ (X, t; ε) , with ε ∈ O, where O is an open interval containing 0 and such that Φ (X, t; 0) = φ (X,t) (the real motion of the continuous medium is obtained when ε = 0). The derivation with respect to ε when ε = 0 is denoted by δ. Derivation δ is named variation and the virtual displacement δφ is the variation of the motion of the medium. At time t, the virtual displacement of the particle x is δx obtained when δX = 0 and δε = 1 at ε = 0; the virtual displacement corresponds to the field of tangent vectors to

D t x ∈ D t → ζ = ψ(x) ≡ ∂Φ ∂ε | ε=0 ∈ T x (D t ) ,
where T x (D t ) is the tangent vector bundle to D t at x. The Hamilton principle reads : for each vector field of virtual displacements such that ζ and its derivatives vanish at the boundary ∂Ω of Ω, δa = 0.

We have the following general results (see [START_REF] Berdichevsky | Variational Principles of Continuum Mechanics, I. Fundamentals[END_REF][START_REF] Casal | Capillarité interne en mécanique des milieux continus[END_REF][START_REF] Gavrilyuk | A new form of governing equations of fluids arising from Hamilton's principle[END_REF][START_REF] Serrin | Mathematical principles of classical fluid mechanics[END_REF]) :

                             δ t2 t1 Dt ρ L dv dt = Ω ρ δL dv dt, δU = dζ dt , δ ρ = -ρ divζ, δ ∂ϕ α ∂x = - ∂ϕ α ∂x ∂ζ ∂x ,
where Ω = [t 1 , t 2 ]×D t and Ω is the quadruple integral in the time-space domain Ω. Consequently,

ρ δL = ρ U T dζ dt + ρ 2 ∂e i ∂ ρ divζ+ 3 α=1 ρ ∂ϕ α ∂x ∂ζ ∂x ∂ϕ α ∂x T .
Let us denote p = ρ 2 ∂e i /∂ ρ , the mean pressure scalar field of the fluid; due to the identities, the variational formulation of the approximate system is established.

                                 ρ U T dζ dt ≡ ∂ ρ U T ζ ∂t + div ρ U T ζ -ρ dU T dt ζ, p divζ ≡ div ( p ζ) - ∂ p ∂x ζ, 3 

Conclusion

The equations of fluid turbulent motions take three equations into account: the equation of mass balance (1 1 ), the balance equation of average momentum (1 2 ), and the Reynolds stress tensor equation of evolution (1 3 ); this last equation has been the object of our study. If the turbulent sources are neglected, the turbulent fluid motion is a superposition of the mean motion and turbulent fluctuations. The eigenvectors of the Reynolds stress tensor carry the fluctuations associated with the mean flow deformation. The amplitudes of turbulent deformations are defined by the eigenvalues of the Reynolds stress tensor. The equations for the directions of turbulent fluctuations are reminiscent of a gyroscopic type equation for the motion of a free rigid body (Equation (19 1 )). The amplitude evolution of turbulent deformations are determined by the diagonal values µ α of the mean rate of deformation tensor D expressed in the eigenvector basis of the Reynolds stress tensor. The turbulence increases with the time when µ α < 0, and decreases when µ α > 0. In the particular case of incompressible fluid motions we have tr D = 0, and hence there always exists a direction in which the turbulence is increasing while in other directions the turbulence is decreasing. Over the past two decades great progress has been made in understanding many aspects of the kinematics and dynamics of a wide variety of turbulent flows as a result of access to the mean velocity gradient tensor (see [START_REF] Ganapathisubramani | Experimental investigation of vortex properties in a turbulent boundary layer[END_REF][START_REF] Wallace | Twenty years of experimental and direct numerical simulation access to the velocity gradient tensor : What have we learned about turbulence?[END_REF]). Such an access could be used for an experimental determining these eigenvalues.

In the case of a small mean vorticity, a new approximate model admitting a variational formulation is derived.
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