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AN ASYMPTOTIC PRESERVING SCHEME FOR STRONGLY
ANISOTROPIC ELLIPTIC PROBLEMS

PIERRE DEGOND†‡ , FABRICE DELUZET†‡ , AND CLAUDIA NEGULESCU§

Abstract. In this article we introduce an asymptotic preserving scheme designed to compute
the solution of a two dimensional elliptic equation presenting large anisotropies. We focus on an
anisotropy aligned with one direction, the dominant part of the elliptic operator being supplemented
with Neumann boundary conditions. A new scheme is introduced which allows an accurate resolution
of this elliptic equation for an arbitrary anisotropy ratio.
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1. Introduction. The objective of this paper is to introduce an efficient and
accurate numerical scheme to solve a highly anisotropic elliptic problem of the form

{ −∇ · (A∇φ) = f , on Ω

φ = 0 on ∂ΩD , ∂zφ = 0 on ∂Ωz ,
(1.1)

where Ω ⊂ R
2 or Ω ⊂ R

3 is a domain, with boundary ∂Ω = ∂ΩD ∪ ∂Ωz and the
diffusion matrix A is given by

A =

(

A⊥ 0
0 1

εAz

)

.

The terms A⊥ and Az are of the same order of magnitude, whereas the parameter
0 < ε < 1 can be very small, provoking thus the high anisotropy of the problem. In
the present paper the considered anisotropy direction is fixed and is aligned with the
z-axis of a Cartesian coordinate system. The method presented here is extended in
some forthcoming works to more general anisotropies [9].
Anisotropic problems are common in mathematical modeling and numerical simula-
tion. Indeed they occur in several fields of applications such as flows in porous me-
dia [3,16], semiconductor modelling [24], quasi-neutral plasma simulations [11], image
processing [28, 27], atmospheric or oceanic flows [26], and so on, the list being not
exhaustive. More specifically high anisotropy aligned with one direction may occur in
shell problems or simulation in stretched media. The initial motivation for the present
work is closely related to magnetized plasma simulations such as atmospheric [18,21]
or inertial fusion plasmas [7, 12] or plasma thrusters [1]. In this context, the medium
is structured by the magnetic field. Indeed, the motion of charged particles in planes
perpendicular to the magnetic field is governed by a fast gyration around the mag-
netic field lines. This explains the large number of collisions the particles encounter
in the perpendicular plane, whereas the dynamic in the parallel direction is rather
undisturbed. As a consequence the particle mobilities in the perpendicular and par-
allel directions differ by many orders of magnitude. In the context of ionospheric
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plasma modelling [6, 17], the ratio of the aligned and transverse mobilities (denoted
in this paper by ε−1) can be as huge as ten to the power ten. The relevant boundary
conditions in many fields of application are periodic (for instance in simulations of
tokamak plasmas on a torus) or Neumann boundary conditions (see for instance [5] for
atmospheric plasmas). The system (1.1) is thus a good model to elaborate a robust
numerical method.

The main difficulties with the resolution of problem (1.1) are of numerical nature,
as solving this singular perturbation problem for small 0 < ε ≪ 1 is rather delicate.
Indeed, replacing in the anisotropic elliptic equation ε by zero, yields an ill-posed
problem. This feature is translated in the discrete case (after the discretization of
the problem) into a linear system, which is very ill-conditioned for ε ≪ 1, due to
the different order of magnitudes of the various terms. As a consequence standard
numerical methods for the resolution of linear systems lead to important numerical
costs and unacceptable numerical errors.
To overcome this difficulty, two different approaches are possible. The first approach,
intensively investigated in literature, is based on numerical techniques, that means the
introduction of efficient and robust numerical methods to solve the problematic, highly
anisotropic equation (1.1). Depending on the underlying physics, distinct numerical
methods are developed. For example domain decomposition (Schur complement) and
multigrid techniques, using multiple coarse grid corrections are adapted to anisotropic
equations in [14,22] and [13,25]. For anisotropy aligned with one (or two directions),
point (or plane) smoothers are shown to be very efficient [23]. A problem very similar
to (1.1) is addressed in [15], treated via a parametrisation technique, and seems to give
good results for rather large anisotropy ratios. However, these techniques are only
developed in the context of an elliptic operator with a dominant part supplemented
with Dirichlet boundary conditions.
The second approach for dealing with highly anisotropic problems is based on a math-
ematical reformulation of the continuous problem, in order to obtain a more harmless
problem, which can be solved numerically in an uncomplicated manner. In this cat-
egory can be situated for example asymptotic models, describing for small values of
the asymptotic parameter ε the evolution of an approximation φ̃ of the solution of
(1.1) [5,20]. However, these asymptotic models are precise only for ε≪ 1, and cannot
be used on the whole range of values covered by the physical parameter ε. Thus model
coupling methods have to be employed. In sub-domains where the limit model is no
more valid, the original model has to be used which means that a model coupling
strategy has to be developed. However the coupling strategy requires the existence of
an area where both models are valid and still demands an accurate numerical method
for the resolution of the original model (i.e. the anisotropic elliptic problem) with
large anisotropies. This can be rather fastidious.

In this paper, we present an original numerical algorithm, belonging to the second
approach. A reformulation of the continuous problem (1.1) will permit to solve this
problem in an inexpensive way and accurately enough, independently on the pa-
rameter ε. This scheme is related to the Asymptotic Preserving numerical method
introduced in [19]. These techniques are designed to provide computations in various
regimes without any restriction on the discretization meshes and with the additional
property to converge towards the solution of the limit problem when the asymptotic
parameter goes to zero. The derivation of such Asymptotic Preserving methods re-
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quires first the identification of the limit model. For singular perturbation problems,
a reformulation of the problem is required in order to derive a set of equations con-
taining both the initial and the limit model with a continuous transition from one
regime to another, according to the values of the parameter ε. This reformulated
system of equations sets the foundation of the AP-scheme. Other singular pertur-
bations have already been explored in previous studies, for instance quasi-neutral or
gyro-fluid limits [10,12]. These techniques have been first introduced for non station-
ary systems of equations, for which the time discretization must be studied with care
in order to guaranty the asymptotic preserving property. For the anisotropic elliptic
equation investigated in this article, we only need to precise the reformulated system
and provide a discretization of this one.

The outline of this paper is the following. Section 2 of this article presents first the
initial anisotropic elliptic model. In the remainder of this paper, it will be referred
to as the Singular-Perturbation model (P-model). The reformulated system (referred
to as the Asymptotic Preserving formulation or AP-formulation) is then derived. It
relates on a decomposition of the solution φ(x, z) according to its mean part φ̄(x)
along the z coordinate and a fluctuation φ′(x, z) consisting of a correction to the
mean part needed to recover the full solution. The mean part φ̄(x) is solution of an
ε-independent elliptic problem, and the fluctuation φ′(x, z) = φ(x, z) − φ̄(x) is given
by a well-posed ε-dependent elliptic problem. The advantage is that the ε-dependent
problem for the fluctuation is well-posed and solvable in an inexpensive way, and this
uniformly in ε. In the limit ε → 0 the AP-formulation reduces to the so called Limit
model (L-model), whose solution is an acceptable approximation of the P-model solu-
tion for ε≪ 1. The present derivation is carried out in the framework of an anisotropy
aligned along one axis of a Cartesian coordinate system. In the context of magnetized
plasma simulations, this initial work is extended in a forthcoming work for the three
dimensional case in curvilinear coordinates, designed to fit a more complex magnetic
field topology (i.e. anisotropy direction) [6]. The main constraints of this method
reside in the construction of the mean part which necessitates the integration of the
solution along the anisotropy direction. This operation is easily carried out in the
context of coordinates adapted with the anisotropy direction. However, an extension
of the here presented techniques is also developed for non-adapted coordinates [9].
Section 3 is devoted to the numerical implementation of the AP-formulation. Nu-
merical results are then presented for a test case, and the three approaches (AP-
formulation, straight discretization and resolution of the P-model and L-model) are
compared according to the precision of the approximation for different values of ε.
In section 4 we shall rigorously analyse the convergence of the AP-scheme. Error
estimates will be established which underline the advantages of the AP-scheme as
compared to the initial Singular Perturbation model and the Limit model.

2. The asymptotic preserving formulation. For simplicity we shall con-
sider in this paper the two-dimensional problem, posed on a rectangular domain
Ω = Ωx × Ωz , where Ωx ⊂ R and Ωz ⊂ R are intervals. The ideas exposed here
can be extended without any problems to the more physical three-dimensional do-
main, with two transverse directions (x, y) and an anisotropy direction aligned with
the z-direction. Let us present in this section the Singular Perturbation Model, the
Limit Model and introduce the Asymptotic Preserving formulation.

2.1. The Singular Perturbation Model (P-model). The main concern of
this paper is the numerical resolution of the following anisotropic, elliptic problem,
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called in the sequel Singular Perturbation Model

(P )











−∇ · (A∇φ) = f , on Ω ,

∂φ

∂z
= 0 on Ωx × ∂Ωz , φ = 0 on ∂Ωx × Ωz .

(2.1)

The anisotropy of the media is modeled via the definition of the diffusion matrix A

A =

(

A⊥ 0
0 1

εAz

)

, (2.2)

where A⊥(x, z) and Az(x, z) are given functions with comparable order of magnitudes.
The source term f(x, z) is given and the parameter ε is small compared to both A⊥

as well as Az . The medium becomes more anisotropic as the value of ε goes to zero.

2.2. The limit regime (L-model). In this section we establish that in the
limit ε → 0 the solution of the perturbation model converges towards φ̄ solution of
the L-model defined by

(L)







− ∂

∂x

(

Ā⊥

∂φ̄

∂x

)

= f̄(x) , on Ωx ,

φ̄ = 0 on ∂Ωx ,

(2.3)

where overlined quantities designate averages over the z-coordinate :

f̄(x) =
1

Lz

∫ Lz

0

f(x, z) dz.

First we can rewrite the P-model as

(P )















− ∂

∂x

(

A⊥

∂φ

∂x

)

− 1

ε

∂

∂z

(

Az
∂φ

∂z

)

= f , on Ω ,

∂φ

∂z
= 0 on Ωx × ∂Ωz , φ = 0 on ∂Ωx × Ωz ,

(2.4)

and integrating along the z-coordinate gives

∂

∂x

(

A⊥

∂φ

∂x

)

= f̄(x) . (2.5)

This equation holds for any ε > 0. Now, letting formally ε tend to zero in (2.4) yields
the reduced model (R-model)

(R)















− ∂

∂z

(

Az
∂φ

∂z

)

= 0 , on Ω ,

∂φ

∂z
= 0 on Ωx × ∂Ωz , φ = 0 on ∂Ωx × Ωz .

(2.6)

The functions verifying this ill-posed R-model are constant along the z-coordinate.
Thus including this asymptotic limit property into equation (2.5) gives rise to the
L-model (2.3), verified by the solution of the Singular Perturbation model in the limit
ε→ 0.

Remark 2.1. The L-model is the singular limit of the original P-model (2.1). It
provides an accurate approximation of the P-solution only for small values of ε. The
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P-model is valid for all 0 < ε < 1, but numerically impracticable for ε ≪ 1. Indeed
working with a finite precision, the asymptotic model degenerates into the R-model
defined by (2.6) as ε vanishes. This R-model is ill-posed since it exhibits an infinite
amount of solutions φ = φ̃(x), depending only on the variable x. This implies that
the discretization matrix derived from the P-model is very ill-conditioned for small
0 < ε ≪ 1. This point is addressed by the numerical experiments of section 3.2.
Consequently, in a domain where ε varies significantly, a model coupling method has
to be developed in order to exploit the validity of each model, the P- and L-model. This
can be rather fastidious. In the next section we shall present an alternative approach,
which is based on a reformulation of the Singular-Perturbation model providing a
means of computing an accurate numerical approximation of the solution for all values
0 < ε < 1.

2.3. The Asymptotic Preserving reformulation (AP-formulation). In
order to circumvent the just described numerical difficulties in handling the Singular
Perturbation model, we introduce a reformulation, which permits a transition from
the initial P -model to its singular limit (L-model), as ε→ 0.
For this, we shall decompose each quantity f(x, z) into its mean value f̄(x) along the
z coordinate and a fluctuation part f ′(x, z). For simplicity reasons let in the following
Ωx := [0, Lx] and Ωz := [0, Lz]. Then

f(x, z) = f̄(x) + f ′(x, z) , (2.7)

with

f̄(x) :=
1

Lz

∫ Lz

0

f(x, z)dz , f ′(x, z) := f(x, z) − f̄(x) . (2.8)

Note that we have the following properties

f̄ ′ = 0 , (∂f/∂x) = ∂f/∂x , fg = f̄ ḡ + f ′g′ , (2.9)

∂f/∂z = ∂f ′

/∂z , (∂f/∂x)
′
= ∂f ′

/∂x , (fg)′ = f ′g′ − f ′g′ + f̄g′ + f ′ḡ . (2.10)

Taking now the mean of the elliptic equation (2.4) along the z-coordinate, we get
thanks to (2.9) and (2.10), an equation for the evolution of the mean part φ̄(x)

(AP1)











− ∂

∂x

(

Ā⊥

∂φ̄

∂x

)

= f̄ +
∂

∂x

(

A′
⊥

∂φ′

∂x

)

, on Ωx ,

φ = 0 on ∂Ωx .

(2.11)

Substracting from (2.4) this mean equation (2.11), gives rise to the evolution equation
for the fluctuation part φ′(x, z)

(AP2)











































− ∂

∂z

(

Az
∂φ′

∂z

)

− ε
∂

∂x

(

A⊥

∂φ′

∂x

)

+ ε
∂

∂x

(

A′
⊥

∂φ′

∂x

)

=

εf ′ + ε
∂

∂x

(

A′
⊥

∂φ

∂x

)

, onΩ ,

∂φ′

∂z
= 0 on Ωx × ∂Ωz , φ′ = 0 on ∂Ωx × Ωz ,

φ′ = 0 , on Ωx .

(2.12)
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Thus we have replaced the resolution of the initial Singular Perturbation model (2.4)
by the resolution of the system (2.11)-(2.12), which will be done iteratively. Starting
from a guess function φ′, equation (2.11) gives the mean value φ(x), which inserted
in (2.12) shall give the fluctuation part φ′(x, z) and so on.

The constraint φ′ = 0 in (2.12) (which is automatic for ε > 0, as explained in
Remark 2.2) has the essential consequence that the conditioning of the discretized
system becomes ε-independent, because the problem (2.12) reduces in the limit ε→ 0
to the system



























− ∂

∂z

(

Az
∂φ′

∂z

)

= 0 , on Ω ,

∂φ′

∂z
= 0 on Ωx × ∂Ωz , φ′ = 0 on ∂Ωx × Ωz ,

φ̄′ = 0 on Ωx ,

(2.13)

which is uniquely solvable, with the solution φ′ ≡ 0. Inserting this solution in (2.11),
we conclude that the solution of the AP formulation converges for ε→ 0 towards the
mean value part φ̄(x), computed thanks to the Limit model

(L)







− ∂

∂x

(

Ā⊥

∂φ̄

∂x

)

= f̄(x) , on Ωx ,

φ̄ = 0 on ∂Ωx .

(2.14)

The just introduced AP reformulation (2.11)-(2.12) is equivalent to the Singular
Perturbation problem (2.4) and is therefore valid for all 0 < ε < 1. This new for-
mulation guarantees that, working with a finite precision arithmetic, the computed
solution converges in the limit ε → 0 towards the solution of the limit model (2.3).
This is a huge difference with the original Singular Perturbation model which degen-
erates into an ill-posed problem. We thus can expect by using the AP-formulation,
the computation of an accurate numerical solution, and this uniformly in ε.
For the detailed mathematical proofs, we refer to the next section.

Remark 2.2. The condition φ′ = 0 in (2.12) is automatically verified for ε > 0,
since the right hand side has zero average along the z-coordinate. Indeed, let ψ be the
solution of















− ∂

∂z

(

Az
∂ψ

∂z

)

− ε
∂

∂x

(

A⊥

∂ψ

∂x

)

+ ε
∂

∂x

(

A′
⊥

∂ψ

∂x

)

= εg′ , on Ω ,

∂ψ

∂z
= 0 on Ωx × ∂Ωz , ψ = 0 on ∂Ωx × Ωz ,

(2.15)

with g′ = 0. Taking the average along z, we get







− ∂

∂x

(

Ā⊥

∂ψ̄

∂x

)

= 0 , on Ωx ,

ψ̄ = 0 on ∂Ωx ,

and thus ψ ≡ 0, which is nothing but the constraint added in (2.12).
The computations of the fluctuating part φ′ via the equation (2.12) requires the dis-
cretization of an integro-differential operator. This means that the discretization ma-
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trix will contain dense blocks. However, using (2.11) the system (AP2) can be rewrit-
ten as

(AP2′)











































− ∂

∂z

(

Az
∂φ′

∂z

)

− ε
∂

∂x

(

A⊥

∂φ′

∂x

)

=

εf + ε
∂

∂x

(

A⊥

∂φ

∂x

)

, on Ω ,

∂φ′

∂z
= 0 on Ωx × ∂Ωz , φ′ = 0 on ∂Ωx × Ωz ,

φ′ = 0 , on Ωx .
(2.16)

In this expression the right and side is no more of zero mean value along the z-
coordinate, but the integro-differential operator has disappeared. The associated dis-
cretization matrix is thus sparser than that one obtained from the system (2.11).
Systems (2.11)-(2.12) and (2.11)-(2.16) are equivalent.

2.4. Mathematical study of the AP-formulation. We establish in this sec-
tion the mathematical framework of the AP-formulation (2.11)-(2.12) and study its
mathematical properties. Let us thus introduce the two Hilbert-spaces

V := {ψ(·, ·) ∈ H1(Ω) / ψ = 0 on ∂Ωx×Ωz} , W := {ψ(·) ∈ H1(Ωx) / ψ = 0 on ∂Ωx} ,

with the corresponding scalar-products

(φ, ψ)V := ε(∂xφ, ∂xψ)L2 + (∂zφ, ∂zψ)L2 , (φ, ψ)W := (∂xφ, ∂xψ)L2 .

For simplicity reasons, we denote in the sequel the L2 scalar-product simply by the
bracket (·, ·). Defining the following bilinear forms

a0 (φ′, ψ′) :=

∫ Lz

0

∫ Lx

0

Az(x, z)
∂φ′

∂z
(x, z)

∂ψ′

∂z
(x, z)dxdz ,

a1 (φ′, ψ′) :=

∫ Lz

0

∫ Lx

0

A⊥(x, z)
∂φ′

∂x
(x, z)

∂ψ′

∂x
(x, z)dxdz ,

a2

(

φ̄, ψ̄
)

:=

∫ Lx

0

Ā⊥(x)
∂φ̄

∂x
(x)

∂ψ̄

∂x
(x)dx ,

c
(

φ′, ψ̄
)

:=

∫ Lz

0

∫ Lx

0

A′
⊥(x, z)

∂φ′

∂x
(x, z)

∂ψ̄

∂x
(x)dxdz ,

d(φ′, ψ′) :=
1

Lz

∫ Lx

0

∫ Lz

0

∫ Lz

0

A′
⊥(x, z)

∂φ′

∂x
(x, z)

∂ψ′

∂x
(x, ζ) dzdζdx ,

b(P̄ , ψ′) :=

∫ Lx

0

P̄ (x)

∫ Lz

0

ψ′(x, z)dzdx ,

a(φ′, ψ′) := a0 (φ′, ψ′) + εa1 (φ′, ψ′) − εd(φ′, ψ′) ,

(2.17)

permits to rewrite the AP system (2.11)-(2.12) under the weak form

(AP )



















a2

(

φ̄, ψ̄
)

= (f̄ , ψ̄) − 1

Lz
c
(

φ′, ψ̄
)

, ∀ψ̄ ∈ W ,

a (φ′, ψ′) + b(P̄ , ψ′) = ε(f ′, ψ′) − εc
(

ψ′, φ
)

, ∀ψ′ ∈ V ,

b(Q̄, φ′) = 0 , ∀Q̄ ∈ W ,

(2.18)
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where φ′(x, z) ∈ V , φ̄(x) ∈ W as well as P̄ (x) ∈ W are the unknowns and ψ′ ∈ V ,
ψ̄ ∈ W and Q̄ ∈ W the test functions. It can be observed that the constraint φ̄′ = 0
was introduced via the Lagrange multiplier P̄ . We will see in the next theorem that
the weak formulation (2.18) is equivalent for ε > 0 to the system











a2

(

φ̄, ψ̄
)

= (f̄ , ψ̄) − 1

Lz
c
(

φ′, ψ̄
)

, ∀ψ̄ ∈ W , (2.19)

a (φ′, ψ′) = ε(f ′, ψ′) − εc
(

ψ′, φ
)

, ∀ψ′ ∈ V , (2.20)

where the explicit constraint φ̄′ = 0 does not appear. Let us assume in the sequel

Hypothesis A Let the diffusion functions A⊥ ∈ L∞(Ω) and Az ∈ L∞(Ω) satisfy

0 < c⊥ ≤ A⊥(x, z) ≤M⊥ , 0 < cz ≤ Az(x, z) ≤Mz , f.a.a. (x, z) ∈ Ω ,

with some positive constants c⊥, cz,M⊥,Mz. Let moreover f ∈ L2(Ω).

The next theorem analyzes the well-posedness of the AP-formulation.

Theorem 2.1. For every ε > 0 the problem (2.19)-(2.20) admits under Hypoth-
esis A a unique solution (φ′ε, φε) ∈ V ×W, where φε := φ′ε +φε is the unique solution
of the Singular Perturbation model (2.4). The function φ′ε is of zero mean value along
the z-coordinate, i.e. φ′ε = 0 for every ε > 0.
Consequently, (φ′ε, φε) ∈ V ×W is the unique solution of (2.19)-(2.20) if and only if
(φ′ε, φε, P ε) ∈ V × W × W is a solution of the AP-formulation (2.18). In this last
case, we have P ε = 0.
Finally, these solutions satisfy the bounds

||φε||H1(Ω) ≤ C||f ||L2(Ω) , ||φ′ε||H1(Ω) ≤ C||f ||L2(Ω) , ||φε||H1(Ωx) ≤ C||f ||L2(Ω) ,

with an ε-independent constant C > 0. In the limit ε → 0 there exist some functions
(φ′0, φ0) ∈ V ×W, such that

φ′ε →ε→0 φ
′
0 in H1(Ω) , φε →ε→0 φ0 in H1(Ωx) ,

where φ′0 ≡ 0 and φ0 is the unique solution of the Limit model (2.3).

Proof: The Singular Perturbation model (2.4) and the Limit model (2.3) are stan-
dard elliptic problems and posses under Hypothesis A (and for every ε > 0) unique
solutions φε ∈ V , respectively φ ∈ W . It is then a simple consequence of the decompo-
sition (2.8), that the problem (2.19)-(2.20) admits a unique solution (φ′ε, φε) ∈ V×W,

where φε(x) := 1
Lz

∫ Lz

0 φε(x, z)dz is the mean and φ′ε := φε − φε the fluctuation part.

Thus we have also φ′ε = 0. This property can also be understood from the fact that
the right hand side of (2.12), denoted in the sequel by g

g(x, z) := f ′(x, z) +
∂

∂x

(

A′
⊥(x, z)

∂φ

∂x
(x)

)

,

is of zero mean value along the z-coordinate. Indeed, taking in (2.20) test functions
ψ′(x) ∈ V depending only on x, yields immediately that φ′ε = 0 for all ε > 0.
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Standard stability results for elliptic problems, yield now the ε-independent estimate
for the solution of the Singular Perturbation model (2.4)

||φε||2H1(Ω) ≤ ||∂xφε||2L2(Ω) +
1

ε
||∂zφε||2L2(Ω) ≤ C||f ||2L2(Ω) ,

implying then ||φε||2H1(Ωx) ≤ C||f ||2L2(Ω) and ||φ′ε||2H1(Ω) ≤ C||f ||2L2(Ω), with a constant

C > 0 independent on ε > 0. Thus there exist some functions (φ′0, φ0) ∈ V ×W, such
that, up to a subsequence φ′ε ⇀ε→0 φ

′
0 in H1(Ω) and φε ⇀ε→0 φ0 in H1(Ωx). Hence

we have

∫ Lx

0

∫ Lz

0

φ′ε(x, z)ψ(x, z)dx dz →ε→0

∫ Lx

0

∫ Lz

0

φ′0(x, z)ψ(x, z)dx dz , ∀ψ ∈ V .

Taking here ψ(x) ∈ V depending only on the x-coordinate, we observe that the feature
φ′ε ≡ 0 yields the crucial property of the limit solution φ′0 ≡ 0. Passing now to the
limit ε→ 0 in (2.20), we get that φ′0 is solution of

a0(φ
′
0, ψ

′) = 0 , ∀ψ′ ∈ V , with φ′0 = 0 on Ωx ,

which is the weak form of (2.13) and implies φ′0 ≡ 0. Finally, passing to the limit in
(2.19), yields that φ0 is the unique solution of the Limit model (2.3). Because of the
uniqueness of the limit (φ′0, φ0), we deduce that the whole sequence (φ′ε, φε) converges
weakly towards this limit. To conclude the first part of the proof, we shall show that
this sequence converges even strongly. For this, taking in (2.20) φ′ε as test function
and passing to the limit ε → 0, yields ∂zφ

′
ε → 0 in L2(Ω). As φ′ε ∈ V and φ̄′ε = 0,

the Poincaré inequality implies then that φ′ε → 0 in H1(Ω). Now we remark that
φ̄ε − φ̄0 ∈ W is solution of

a2(φ̄ε − φ̄0, ψ̄) = − 1

Lz
c(φ′ε, ψ̄) , ∀ψ̄ ∈ W .

Choosing ψ̄ := φ̄ε − φ̄0 yields ||φ̄ε − φ̄0||L2(Ω) ≤ C||∂xφ
′
ε||L2(Ω) → 0. Again by the

Poincaré inequality we deduce φ̄ε → φ̄0 in H1(Ωx).
It remains finally to prove the equivalence between (2.18) and (2.19)-(2.20). This is
immediate. Indeed, if (φ′ε, φε) ∈ V × W is solution of (2.19)-(2.20), then (φ′ε, φε, 0)
is solution of (2.18). And if (φ′ε, φε, P ε) ∈ V ×W ×W satisfies (2.18), then P ε ≡ 0
(obvious by taking as test function in (2.18) ψ′(x) ∈ V depending only on x) and
(φ′ε, φε) solves hence (2.19)-(2.20).

The subject of the next section will be the numerical resolution of the AP-formulation
(2.11)-(2.12) (or (2.18)) and this shall be done iteratively via a fixed point application.
Let us thus introduce here the fixed point map, construct an iterative sequence and
analyze its convergence. In the rest of this section, the parameter ε > 0 shall be
considered as fixed. Due to the fact that the two systems (2.18) and (2.19)-(2.20) are
equivalent, we shall concentrate on the simplier one, i.e. (2.19)-(2.20). Let us define
the Hilbert space

U := {ψ(·, ·) ∈ V / ψ = 0} ,

associated with the same scalar product as on V . The fixed point map T : U → U is de-
fined as follows: To φ′ ∈ U we associate φ ∈ W , solution of (2.19). Then constructing
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the right hand side of (2.20) via this φ ∈ W , we define T (φ′) as the corresponding so-
lution of (2.20). Denoting by (φ′∗, φ∗) ∈ V×W the unique solution of (2.19)-(2.20), we
remark by theorem 2.1 that φ′∗ ∈ U and that it is the unique fixed point of the map T .

Theorem 2.2. Let ε > 0 be fixed and let φ′∗ ∈ U be the unique fixed point of the
application T : U → U constructed as follows

φ′ ∈ U (2.19)−−−−→ φ ∈ W (2.20)−−−−→ T (φ′) ∈ U .

Then for every starting point φ′0 ∈ U , the sequence φ′k := T (φ′k−1) = T k(φ′0) converges
in V towards the fixed point φ′∗ ∈ U of T .

The proof of this theorem is based on the following

Lemma 2.3. [8] Let (U , || · ||V) be a normed space and T : U → U a contractive
application, i.e.

||T (φ) − T (ψ)||V < ||φ− ψ||V , ∀φ, ψ ∈ U with φ 6= ψ .

Then the set of fixed points of T, denoted by FP (T ), is identical with the set of ac-
cumulation points of the sequences {T k(φ)}k∈N, with φ ∈ U , set which is denoted by
AP (T ). Moreover, these two spaces contain at most one element.

Proof of theorem 2.2 :

The linear application T is well-defined. The first step φ′ ∈ U (2.19)−−−−→ φ ∈ W
is immediate by the Lax-Milgram theorem. For the second step, we remark that for
given φ ∈ W the equation

a(θ, ψ′) = ε(f ′, ψ′) − εc(ψ′, φ) , ∀ψ′ ∈ V , (2.21)

has a unique solution θ ∈ U . Indeed, we notice first (by taking test functions only
depending on the x-coordinate) that θ = 0. This enables to consider instead of (2.21),
the variational formulation

m(θ, ψ′) = ε(f ′, ψ′) − εc(ψ′, φ) , ∀ψ′ ∈ V , (2.22)

where the bilinear form a(·, ·), which is not coercive, was replaced by the coercive
bilinear form m(·, ·), given by

m(θ, ψ′) := a(θ, ψ′) +
εM⊥

Lz

∫ Lx

0

[

∫ Lz

0

∂xθ(x, z)dz

] [

∫ Lz

0

∂xψ
′(x, z)dz

]

dx . (2.23)

Indeed, due to the property θ = 0, the two equations (2.21) and (2.22) are equivalent
and this time m(·, ·) is a continuous, coercive bilinear form, as for all ψ′ ∈ V we have

m(ψ′, ψ′) ≥
∫ Lx

0

∫ Lz

0

Az |∂zψ
′|2 dzdx+ ε

∫ Lx

0

∫ Lz

0

A⊥|∂xψ
′|2 dzdx ≥ C||ψ′||2V .

Thus the Lax-Milgram theorem implies the existence and uniqueness of a solution
θ ∈ U of the continuous problem (2.22) and hence also of problem (2.21). We have
shown by this that T is a well-defined mapping.
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Furthermore we know that T admits for fixed ε > 0 a unique fixed point, denoted by
φ′∗ ∈ U . Let us now suppose that we have shown that T is contractive. Then lemma
2.3 implies that FP (T ) = AP (T ) = {φ′∗}. Thus choosing an arbitrary starting point
φ′0 ∈ U , and constructing the sequence φ′k := T (φ′k−1) = T k(φ′0), we deduce that this
sequence has a unique accumulation point φ′∗ in U . This means that the sequence
{φ′k}k∈N converges in V towards φ′∗.

It remains to show that T is contractive. For this let φ′1, φ
′
2 ∈ U be two given,

distinct functions. Denoting by φ′ := φ′1 − φ′2, φ := φ1 − φ2 (where φi ∈ W are the
corresponding solutions of (2.19)) and θ′ := T (φ′1) − T (φ′2), we have to show that
||θ′||V < ||φ′||V . First we observe that φ solves

a2(φ̄, ψ̄) = − 1

Lz
c(φ′, ψ̄) , ∀ψ̄ ∈ W , (2.24)

and θ′ is solution of

a(θ′, ψ′) = −εc
(

ψ′, φ
)

, ∀ψ′ ∈ V . (2.25)

Taking in (2.24) φ as test function, gives rise to

∫ Lx

0

A⊥|∂xφ(x)|2 dx = −
∫ Lx

0

[

1

Lz

∫ Lz

0

A′
⊥∂xφ

′(x, z)dz

]

∂xφ(x) dx

= −
∫ Lx

0

[

1

Lz

∫ Lz

0

A⊥∂xφ
′(x, z)dz

]

∂xφ(x) dx

≤ 1√
Lz

[

∫ Lx

0

∫ Lz

0

A⊥|∂xφ
′|2dzdx

]1/2 [
∫ Lx

0

A⊥|∂xφ|2dx
]1/2

.

Thus
[

∫ Lx

0

A⊥|∂xφ(x)|2dx
]1/2

≤ 1√
Lz

[

∫ Lx

0

∫ Lz

0

A⊥|∂xφ
′|2dzdx

]1/2

.

Equally, taking in (2.25) θ′ as test function gives rise to
∫ Lx

0

∫ Lz

0

Az |∂zθ
′|2dzdx + ε

∫ Lx

0

∫ Lz

0

A⊥|∂xθ
′|2dzdx ≤ −ε

∫ Lx

0

∫ Lz

0

A⊥∂xφ∂xθ
′dzdx

≤ ε

[

∫ Lx

0

∫ Lz

0

A⊥|∂xφ|2dzdx
]1/2[

∫ Lx

0

∫ Lz

0

A⊥|∂xθ
′|2dzdx

]1/2

≤ ε
√

Lz

[

∫ Lx

0

A⊥|∂xφ|2dx
]1/2[

∫ Lx

0

∫ Lz

0

A⊥|∂xθ
′|2dzdx

]1/2

.

(2.26)
This last inequality yields
∫ Lx

0

∫ Lz

0

Az|∂zθ
′|2dzdx + ε

∫ Lx

0

∫ Lz

0

A⊥|∂xθ
′|2dzdx ≤ εLz

∫ Lx

0

A⊥|∂xφ|2dx

≤ ε

∫ Lx

0

∫ Lz

0

A⊥|∂xφ
′|2dzdx

<

∫ Lx

0

∫ Lz

0

Az |∂zφ
′|2dzdx+ ε

∫ Lx

0

∫ Lz

0

A⊥|∂xφ
′|2dzdx .
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In this last step we would have the “equality” if and only if
∫ Lx

0

∫ Lz

0
Az|∂zφ

′|2dzdx = 0.
This is however only possible for functions depending exclusively on the x-coordinate,
φ′(x), which is in contradiction with the fact that φ′ = 0 and φ′ 6= 0. Thus we have
shown that ||T (φ′)||V < ||φ′||V for φ′ 6= 0, φ′ ∈ U , which means that T is a contractive
application on U .

3. Numerical discretization and simulation results. This part of the paper
is concerned with the numerical discretization of the AP-scheme (2.11)-(2.12) and the
comparison of the simulation results with those obtained via the Singular Perturbation
model (2.4) and the Limit model (2.3).

3.1. Discretization. The numerical resolution of the Asymptotic Preserving
system (2.11)-(2.12) is done by means of the standard finite element method.
Let us recall the variational formulation of the AP-formulation



















a2

(

φ̄, ψ̄
)

= (f̄ , ψ̄) − 1

Lz
c
(

φ′, ψ̄
)

, ∀ψ̄ ∈ W ,

a (φ′, ψ′) + b(P̄ , ψ′) = ε(f ′, ψ′) − εc
(

ψ′, φ
)

, ∀ψ′ ∈ V ,

b(Q̄, φ′) = 0 , ∀Q̄ ∈ W ,

(3.1)

with the notations of section 2. Here φ′(x, z) ∈ V , φ̄(x) ∈ W as well as P̄ (x) ∈ W are
the unknowns and ψ′ ∈ V , ψ̄ ∈ W and Q̄ ∈ W the test functions.
The introduction of the Lagrange multiplier P (x) was explained in a simplistic manner
in the preceding sections and will be analyzed in more details in section 4. Due to the
equivalence of (3.1) and (2.19)-(2.20), one can comment that the introduction of P (x)
is superfluous, but this is not the case for the discretized equations. The property
φ′ = 0 is indeed automatically fulfilled since the right hand side of equation (2.20)
has a zero mean value along the z-coordinate. However the discrete implementation
of this quantity introduces round-off errors which probably will destroy the zero mean
value property and justify the introduction of the Lagrange multiplier.
For simplicity reasons we omitted here the ε-index of the solution (φ′ε, φε), the pa-
rameter ε > 0 being considered as fixed.

To discretize now the system (3.1) we introduce the grid

0 = x1 ≤ · · · ≤ xn ≤ · · · ≤ xNx
= Lx , 0 = z1 ≤ · · · ≤ zk ≤ · · · ≤ zNz

= Lz

and denote the cells by In := [xn, xn+1] and Jk := [zk, zk+1]. The finite dimensional
spaces Vh ⊂ V and Wh ⊂ W are constructed as usual, by means of the hat functions
(Q1 finite elements)

χn(x) :=



















x− xn−1

xn − xn−1
, x ∈ In−1 ,

xn+1 − x

xn+1 − xn
, x ∈ In ,

0 , else

, κk(x) :=



















z − zk−1

zk − zk−1
, z ∈ Jk−1 ,

zk+1 − z

zk+1 − zk
, z ∈ Jk ,

0 , else

.

Thus we are searching for approximations φ′h ∈ Vh, φ̄h ∈ Wh and P̄h ∈ Wh, which
can be written under the form

φ′h(x, z) =

Nx
∑

n=1

Nz
∑

k=1

αnkχn(x)κk(z) , φ̄h(x) =

Nx
∑

n=1

βnχn(x) , P̄h(x) =

Nx
∑

n=1

γnχn(x) .
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Inserting these decompositions in the variational formulation (3.1) and taking as test
functions the hat-functions χn and κk gives rise to the following linear system to be
solved in order to get the unknown coefficients αnk, βn and γn

A2β = w , (3.2)
(

A0 + ε (A1 −D) B
Bt 0

)(

α
γ

)

= ε

(

v
0

)

, (3.3)

where the matrices A2 ∈ R
Nx×Nx , A0, A1, D ∈ R

NxNz×NxNz and B ∈ R
NxNz×Nx

correspond to the bilinear forms (2.17) and the right hand sides are defined by

wn := (f̄ , χn) − 1

Lz
c(φ′, χn) , vnk := (f ′, χnκk) − c(χnκk, φ̄) = (g, χnκk) ,

for all n = 1, · · · , Nx ; k = 1, · · ·Nz . Solving iteratively the linear systems (3.2)-
(3.3) permits finally to get the unknown function φh(x, z) = φ̄h(x) + φ′h(x, z). The
convergence of the iterations was proved for the continuous case in theorem 2.2 and
can be identically adapted for the discrete case.

3.2. Numerical results. In this section we shall compare the numerical results
obtained by the discretization of the Singular Perturbation model, the Limit model
and the just presented Asymptotic Preserving reformulation. To this aim, we consider
a test case where the exact solution is known. Let thus

φe(x, z) := sin

(

2π

Lx
x

)

+ ε cos

(

2π

Lz
z

)

sin

(

2π

Lx
x

)

, (3.4)

be the exact solution of problem (2.4), where we choose A⊥(x, y) = c1 + xz2 and
Az(x, z) = c2 + xz, with two constants c1 > 0, c2 > 0. The exact right hand side
f is computed by inserting (3.4) in (2.4). We denote by φP , φL and φA respectively
the numerical solutions of the Singular Perturbation model (2.4), the Limit model
(2.3) and the Asymptotic Preserving formulation (2.11)-(2.12). The comparison will
be done in the l2-norm, that means

||φe − φnum||2 =
1√
N

(

∑

i∈G

|φe(Xi) − φnum,i|2
)1/2

, (3.5)

where φnum stands for one of the numerical solutions and φe(Xi) is the exact solution
evaluated in the grid pointXi. The index i covers all possible grid indices, reassembled
in the set G and N is the total number of grid points. The linear systems obtained
after the discretization of either the P-model, the L-model or the AP-formulation are
solved thanks to the same numerical algorithm (MUMPS [2]). The purpose here is
not to design a specific preconditioner for the resolution of these linear systems, but
to point out the efficiency of the presently introduced AP-method to deal with a large
range of anisotropy ratios.
As can be seen from Table 3.1 and Figure 3.1, the finite element resolution of the
Singular Perturbation model is precise only for large 0 < ε < 1, whereas the Limit
model is accurate for small ε ≪ 1. The range of ε-values in which both the Singular
Perturbation and the Limit models provide an accurate approximation of the solution
shrinks as the mesh size is refined. For a coarse grid (with 50 × 50 points see fig-
ure 3.1(a)) this domain ranges from 10−12 to 10−3 while it is reduced to 10−9 − 10−5
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Fig. 3.1. Absolute error in the l2 norm between the computed solutions φP , φL, φA and the
exact solution φe, as a function of ε and on different grids.
Dashed lines : (S) Standard scheme : discretization of the P-model; Stars : (AP) AP-scheme;
Circles : (L) discretization of the L-model.

ε 10 1 10−1 10−4 10−14 10−16

AP-scheme 3.4 · 10−2 7.8 · 10−3 3.8 · 10−3 2.7 · 10−3 2.7 · 10−3 2.7 · 10−3

S-scheme 2.8 · 10−2 4.5 · 10−3 2.8 · 10−3 2.7 · 10−3 6.6 · 10−2 1.2
L-model 9.9 1.0 · 101 1.0 · 10−1 2.8 · 10−3 2.7 · 10−3 2.7 · 10−3

Table 3.1

Absolute error in the l∞ norm for the approximation computed thanks to the AP-scheme,
discretized Singular Perturbation and and Limit models (S-scheme and L-model) as compared to the
exact solution.

for the refined 500 × 500 grid (figure 3.1(b)). This question is determinant for the
development of a model coupling strategy. Indeed it requires an intermediate area
where both discretized models furnish an accurate approximation and we observe that
for refined meshes this area may not exist. This reduction of the validity domain can
be explained for both the L-model and P-model but for quite different reasons.

The numerical approximation computed via the Limit model is altered by both the
discretization error of the numerical scheme and the approximation error introduced
by the reduction of the initial Singular Perturbation problem to the Limit problem.
For coarse grids, the global error is rapidly dominated by the scheme discretization
error, but as the mesh is refined, the approximation error becomes preponderant, as
the Limit model is precise only for small ε-values. The schemes implemented here are
of second order, thus when the mesh size is divided by ten, the discretization error is
reduced by one hundred. The global error for the L-model displayed on figure 3.1(a)
does not depend on ε as soon as ε < 10−3. Below this limit the L-model is able to
furnish a better approximation of the solution with vanishing ε, however the numerical
scheme is not precise enough and consequently the global error does not decrease. For
the refined mesh, this discretization error is lowered by two order of magnitudes and
the global error is a function of ε as long as its value is greater than 10−5 (Fig. 3.1(b)).

The analysis for the Singular Perturbation model is quite complementary. The
accuracy of the approximation provided by the P-model is good for large ε-values
and deteriorates rapidly for small ones. This can be explained by the conditioning
of the linear system obtained by the P-model discretization. An estimate of the
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condition number for the matrix is displayed on figure 3.2 for two different grid sizes.
This conditioning deteriorates with vanishing ε-parameter, which is coherent with
the fact that, working with a finite precision arithmetic, the Singular Perturbation
model degenerates into an ill-posed problem. This also explains the blow up of the
error displayed on figure 3.1 as soon as the conditioning of the matrix approaches the
critical value of the double precision (materialized by the level 1015 on Fig. 3.2). This
limit is reached on more refined meshes for larger ε-values (ε ≈ 10−12 on a 50 × 50
grid and ε ≈ 10−10 on a 200 × 200 grid). As expected, the P-model, though valid
for all ε-values, cannot be exploited numerically for small ε. The ε-region where both
the P-model and the L-model are accurate all-together, shrinks dramatically with the
size of the mesh, fact which motivates the development of the AP-method.
The condition number estimate of the linear system providing the approximation of
the solution for the AP-scheme is also plotted on Figure 3.2. The conditioning of the
system is rather ε independent and this is due to the introduction of the Lagrange
multiplier, which forces the system in the limit to remain well-posed. The accuracy of
the AP-scheme is totally comparable to the P-model for the large values of ε and to
the L-model for the smallest ones. The AP-formulation is a good tool for computing
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Fig. 3.2. Condition number estimate
for the discretization matrices of the Stan-
dard (S) and AP schemes (computed by LA-
PACK [4]) as a function of ε. Different
grids of 50×50 and 200×200 points and dif-
ferent ε-values are used. Dashed/Plain lines :
200×200 / 50×50 grid ; Stars : AP-scheme.
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Fig. 3.3. The l2 absolute error between
the exact solution and the numerical solution
computed with the AP-scheme, as a function
of the iteration number, with ε = 10 and a
200 × 200-mesh. Dashed line : mean part of
the solution; Plain line : fluctuating part.

an approximation for the solution which is accurate uniformly in 0 < ε < 1 and
is therefore of great practical interest. Note that this approximation is obtained
thanks to an iterative sequence {φ′k}k∈N, constructed with the fixed point mapping
T defined in theorem 2.2. The convergence of this iterative process is analysed on
figure 3.3 on a 200× 200 grid for a large value of ε. The l2 absolute error between the
mean respectively the fluctuating parts of the exact solution and the approximation
provided by the AP-scheme are plotted as a function of the iteration number. The
sequence is initiated with the zero function and is gradually improved until a plateau
is reached. The convergence of this sequence may be improved thanks to classical
relaxation techniques.
Finally we investigate the positivity of the AP-scheme. To this aim the anisotropic
elliptic problem is solved with a positive source term, in this case an approximation
of the Dirac δ-function. This function denoted δh

a has a support included in a subset
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([−a, a] × [−a, a], with 0 < a < 1) of the simulation domain [−1, 1] × [−1, 1]. Two
different parameters a are chosen, a = 10−1 and a = 10−2.

The simulation domain is discretized by a 500× 500 mesh. For the smallest value
of a the support of the function is reduced to 5 cells in each direction. The source
term δh

a is normalized, such that the maximal value of δh
a grows with vanishing a-

parameter. In table 3.2 the maxima and minima of the numerical approximations
computed by the AP-scheme (φA) and the discretized Singular Perturbation model
(φP ) are gathered for the two source functions δh

a . Only large ε-values are considered
to verify the positivity of the numerical approximations. Indeed for very small ε
the solution is reduced to its mean part which is the solution of a classical elliptic
problem preserving the maximum principle. This means that the relevant question is
related to configurations where the fluctuating part φ′ has a significant contribution
to the elliptic problem solution. In this range of large and intermediate ε values,
both approximations are comparable. Only slight differences can be observed on
the maxima for the smallest ε-parameters. The results of table 3.2 demonstrate the
positivity of the approximations computed by either the AP-scheme or the Singular
Perturbation model.

ε 102 10 1 10−1 10−2 10−3

a
=

1
0
−

1 max(φP ) 77.58 3.82 1.63 8.93 7.22 6.93

max(φA) 77.58 3.82 1.63 8.93 6.89 6.89

min(φP ) 1.9 10−7 2.5 10−7 2.4 10−2 2.4 10−2 2.8 10−2 2.8 10−2

min(φA) 1.9 10−7 2.5 10−7 2.4 10−2 2.4 10−2 2.8 10−2 2.8 10−2

a
=

1
0
−

2 max(φP ) 1.8 102 7.1 101 2.6 101 1.2 101 8.29 7.34

max(φA) 1.8 102 7.1 101 2.6 101 1.2 101 7.14 7.11

min(φP ) 1.6 10−7 2.5 10−3 2.4 10−2 2.8 10−2 2.8 10−2 2.8 10−2

min(φA) 1.6 10−7 2.5 10−3 2.4 10−2 2.8 10−2 2.8 10−2 2.8 10−2

Table 3.2

Maxima and minima of the numerical solutions computed thanks to the AP-scheme (φA) and
the Singular Perturbation model (φP ). The elliptic problem is solved with the Dirac δh

a function as
a source term on a 500 × 500 mesh.

4. Numerical analysis of the AP-scheme. In this last part of the paper we
shall concentrate on the numerical analysis of the Q1 finite element scheme introduced
in section 3.1 for solving















− ∂

∂z

(

Az
∂φ

∂z

)

− ε
∂

∂x

(

A⊥

∂φ

∂x

)

+ ε
∂

∂x

(

A′
⊥

∂φ

∂x

)

= εg , on Ω ,

∂φ

∂z
= 0 on Ωx × ∂Ωz , φ = 0 on ∂Ωx × Ωz ,

(4.1)

where g ∈ L2(Ω) is a given function, with mean value along the z-coordinate equal
to zero, g = 0. Moreover we shall explain why we have to introduce the Lagrange
multiplier in order to solve numerically this equation. Remark that in contrast to
section 3, we omitted for simplicity reasons the primes for φ, which indicated the
fluctuation functions with zero mean value.
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The weak form of (4.1) writes

a(φ, ψ) = ε(g, ψ) , ∀ψ ∈ V , (4.2)

or equivalently

m(φ, ψ) = ε(g, ψ) , ∀ψ ∈ V , (4.3)

where m(·, ·) is the coercive bilinear form defined in (2.23). Let us now consider the
corresponding discrete problem

a(φh, ψh) = ε(g, ψh) , ∀ψh ∈ Vh , (4.4)

where the finite dimensional space Vh ⊂ V was introduced in section 3.1. It can be
seen that the property g = 0 induces also in the discrete case that φh = 0. Thus,
following the same arguments as for the continuous case, we can show that equation
(4.4) is equivalent to

m(φh, ψh) = ε(g, ψh) , ∀ψh ∈ Vh . (4.5)

The Lax-Milgram theorem implies then the existence and uniqueness of a discrete
solution φh ∈ Vh. The next theorem gives an estimate of the discretization error
||φ− φh||V .

Theorem 4.1. Let φ ∈ V be the unique solution of the continuous problem (4.2)
and φh ∈ Vh the unique solution of the discrete problem (4.4). Both solutions are
elements of the Banach space (U , || · ||U ), where

U := {ψ(·, ·) ∈ V / ψ = 0} with ||ψ||U := ||∂zψ||L2(Ω) .

Then we have the following discretization error estimate

||φ− φh||2V = ||∂zφ− ∂zφh||2L2 + ε||∂xφ− ∂xφh||2L2 ≤ Ch2 , (4.6)

with a constant C > 0 independent on ε > 0. Moreover, as φ, φh ∈ U , we have

||φ− φh||2U ≤ Ch2 .

Proof: The fact that both solutions φ and φh belong to the space U , is an immediate
consequence of the fact that the right hand side of the equation (4.2) (resp. (4.4))
satisfies g = 0. The discretization error estimate is rather standard. Denoting by φI

the interpolant of φ in the finite dimensional space Vh, i.e.

φI(x, z) :=

Nx
∑

n=1

Nz
∑

k=1

φ(xn, zk)χn(x)κk(z) ,

we have due to the coercivity of the bilinear form m(·, ·)

c||φ− φh||2V ≤ m(φ− φh, φ− φh) = m(φ− φh, φ− φI) ≤ c||φ− φh||V ||φ− φI ||V .

Thus

||φ− φh||V ≤ c||φ− φI ||V .
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Standard Q1 finite element interpolation results yield for the interpolation error

||∂xφ− ∂xφI ||2L2 + ||∂zφ− ∂zφI ||2L2 ≤ ch2(||∂xxφ||2L2 + ||∂zzφ||2L2) ,

and regularity results for the solution φ of (4.2), imply ε2||∂xxφ||2L2 + ||∂zzφ||2L2 ≤ cε2,
such that we have with a constant c > 0 independent on ε > 0

ε||∂xφ− ∂xφh||2L2 + ||∂zφ− ∂zφh||2L2 ≤ ch2 .

What is important to observe from the error estimate (4.6) is that for ε→ 0 the error
||φ− φh||H1 in the standard ε-independent H1-norm blows up. This is one argument
why the Singular Perturbation model is inaccurate for ε ≪ 1. However, in the case
where φ and φh are elements of the space U , we have ||φ−φh||U ≤ Ch2 independently
on ε, which means that we have convergence of the scheme uniformly in ε > 0. The
AP-scheme is thus equally accurate for every value of 0 < ε < 1.

The discretization error φ− φh is not the only error we are introducing when solving
numerically (4.4) instead of (4.2). Indeed, (4.4) is nothing but a linear system

Mα = v , (4.7)

to be solved to get the unknowns αnk := φh(xn, zk), where vnk := ε(g, χnκk) and the
discrete solution of (4.4) is then reconstructed as

φh(x, z) =

Nx
∑

n=1

Nz
∑

k=1

αnkχn(x)κk(z) .

Unfortunately the implementation of the system (4.7) introduces round-off as well
as approximation errors due for example to the numerical calculus of a(χnκk, χrκp).
Thus the numerical resolution of (4.7) does not yield the exact solution, but an ap-
proximation (α̃nk)nk, solution of the slightly perturbed system

Mα̃ = ṽ . (4.8)

We are now interested in the error estimate ||φh − φ̃h||V , as a function of the pertur-
bation ||v − ṽ||2, where || · ||2 denotes the euclidean norm in R

NxNz .

Theorem 4.2. Let α be the exact solution of (4.7) and α̃ the exact solution of the
perturbed system (4.8). Let φh ∈ Vh and φ̃h ∈ Vh denote the corresponding functions

φh(x, z) =

Nx
∑

n=1

Nz
∑

k=1

αnkχn(x)κk(z) , φ̃h(x, z) =

Nx
∑

n=1

Nz
∑

k=1

α̃nkχn(x)κk(z) .

Then we have

ε||∂xφh − ∂xφ̃h||2L2 + ||∂zφh − ∂zφ̃h||2L2 ≤ c

ε
||v − ṽ||22 , (4.9)

with a constant c > 0 independent on ε > 0 and h > 0. However, if both functions φh

and φ̃h belong to U , then we have the ε-independent estimate

||φh − φ̃h||U ≤ c||v − ṽ||2 .
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Proof: Let us denote within this proof Enk := αnk − α̃nk for n = 1, · · · , Nx,
k = 1, · · · , Nz and eh(x, z) := φh(x, z) − φ̃h(x, z), such that

eh(x, z) =

Nx
∑

n=1

Nz
∑

k=1

Enkχn(x)κk(z) .

Moreover let N := NxNz and Y ∈ R
N be an arbitrary vector associated with the func-

tion yh(x, z) =
∑Nx

n=1

∑Nz

k=1 Ynkχn(x)κk(z). Then we have with (·, ·)2 the euclidean
scalar product in R

N and M the discretization matrix of (4.7)

||ME||2 = sup
Y ∈RN ,Y 6=0

(Y,ME)2
||Y ||2

= sup
Y ∈RN ,Y 6=0

m(yh, eh)

||Y ||2
.

Due to the fact that

||Y ||2 ≤ c||yh||L2 ≤ c√
ε
||yh||V ,

we have

||ME||2 = sup
Y ∈RN ,Y 6=0

m(yh, eh)

||Y ||2
≥ c

√
ε sup

yh∈Vh ,yh 6=0

m(yh, eh)

||yh||V
≥ c

√
ε||eh||V .

Thus we get with a constant c > 0 independent on ε

||eh||V ≤ c√
ε
||ME||2 =

c√
ε
||v − ṽ||2 .

In the case the two functions φh and φ̃h belong to U , i.e. eh ∈ U , we can exploit the
fact that in U the standard norm || · ||H1 and the norm || · ||U are equivalent, giving
rise for yh ∈ U to ||Y ||2 ≤ c||yh||L2 ≤ c||yh||U . This yields, as m(·, ·) is also coercive
on U , that

||ME||2 = sup
Y ∈RN ,Y 6=0

m(yh, eh)

||Y ||2
≥ c sup

yh∈U ,yh 6=0

m(yh, eh)

||yh||U
≥ c||eh||U .

and thus the ε-independent estimate is proved.

Similarly as for the discretization error, we can deduce from the round off error esti-
mate (4.9) , that for ε→ 0, the standard H1-norm ||φh − φ̃h||H1 explodes. However if
we impose that both solutions φh and φ̃h are elements of the space U , space of func-
tions with mean value along the z-coordinate equal to zero, then we have the uniform
estimate ||φh − φ̃h||U ≤ c||v − ṽ||2. Unfortunately even if we know that φh ∈ U , this
is not necessarily true for φ̃h, if we discretize (4.1). But it can be achieved by forcing

the numerical solution φ̃h to satisfy φ̃h = 0. Indeed, this can be done by introducing
explicitly in the discrete problem (4.4) the constraint φh = 0, such that it is much
more ingenious to solve instead

{

a(φh, ψh) + b(Ph, ψh) = ε(g, ψh) , ∀ψh ∈ Vh ,

b(Qh, φh) = 0 , ∀Qh ∈ Wh ,
(4.10)
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where Wh ⊂ W was constructed in section 3.1. As mentioned in the continuous case
this problem is equivalent for ε > 0 with the discrete problem (4.4). If φh ∈ Vh is
the unique solution of (4.4), then (φh, 0) ∈ Vh × Wh is a solution of (4.10). And if
(φh, Ph) ∈ Vh × Wh solves (4.10), then Ph ≡ 0 and φh ∈ Vh is the unique solution
of (4.4). This last statement is immediately proved, by taking in the variational
formulation (4.10) only x-dependent test functions ψh(x) ∈ Vh. By doing this, we can

be sure that the numerical solution φ̃h of (4.10) satisfies φ̃h = 0, such that the error
||φh− φ̃h||U is uniformly bounded. This proves that the introduction of the constraint
φh = 0 in the AP-formulation is crucial and avoids the numerical difficulties associated
with the original P-model.

5. Conclusion. In this paper we have introduced an Asymptotic Preserving
formulation for the resolution of a highly anisotropic elliptic equation. We have shown
the advantages of the AP-formulation as compared to the initial Singular Perturbation
model and to its limit model, when the asymptotic parameter goes to zero. It came
out that the AP-scheme is a powerful tool for the resolution of elliptic problems
presenting huge anisotropies along one coordinate, and gives access to the simulation
in a very easy and precise manner. The Asymptotic-Preserving method developed
here relies on the decomposition of the solution in its mean part along the anisotropy
direction, and a fluctuation part. This integration along the anisotropy direction is
easily performed in the context of Cartesian coordinate systems with one coordinate
aligned with the direction of the anisotropy. In a forthcoming work [9] this procedure
is extended to more general anisotropies.
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