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MULTIPLE FACES TRACKING USING LOCAL STATISTICS

Our project is to design algorithms to count people in vehicles such as buses from surveillance cameras' video streams. This article presents a method of detection and tracking of multiple faces in a video by using a model of first and second order local moments. The three essential steps of our system are the skin color modeling, the probabilistic shape model and bayesian decision, and the tracking. An iterative processus estimates the position and shape of multiple faces in images, and tracks them. Tracking updates an object history including all spatial and temporal information about this object. Location and size of these tracking object are predicted by constant speed motion analysis and learned trajectories. Results on office and buses video are promising.

Introduction

Estimating the number of people in a noisy environment is a central task in surveillance. A real-time count can be used to enforce the occupancy limit in a building, to manage transport traffic in real time, to actively manage city services and allocate resources for public events. Our project is to add a counting system for moving platforms such as buses, in an existing classical video recorder. Images are captured with a video camera and are analyzed to determine the number of people present. The background scene is therefore not static and vary in a large number of ways : variations in lighting levels, patterns of scene background, movements of objects that might appear or disappear in the scene. The point of view is defined by the location of the camera, in front of the people. This motivates our approach, which is to find people by finding faces.

Previous works

Finding people in images is a difficult task [START_REF] Ioffe | Probabilistic Methods for Finding People[END_REF] due to the high variability in the appearance of people. For human detection and tracking for surveillance, various approaches have been proposed in the past years [START_REF] Yang | Detecting face in images: a survey[END_REF][START_REF] Hjelmas | Face Detection: A Survey[END_REF]. We can dis-tinguish several main classes of approaches to the problem [START_REF] Yang | Detecting face in images: a survey[END_REF].

Background subtraction [START_REF] Haritaoglu | W4: A real-time system for detection and tracking of people and monitoring their activities[END_REF] is often a first step to find objects of interest such as faces. Unfortunately, this approach needs a stationary background as well as interframe motion based approaches [START_REF] Collins | A System for Video Surveillance and Monitoring: VSAM Final Report[END_REF]. Expert systems and structural methods try to represent and recognize face by rules [START_REF] Yang | Human face detection in complex background[END_REF], more often describing spatial relationships between parts of a face. Finding good rules is often an extremely difficult task in an unconstrained environment.

Classical Template matching methods require the learning of several patterns of the whole face [START_REF] Kwon | Face Detection Using Templates[END_REF]. Recent works [START_REF] Nanda | Probabilistic template based pedestrian detection in infrared videos[END_REF][START_REF] Stauffer | Similarity templates for detection and recognition[END_REF] on template matching deal with variation in scale, pose, or shape, in the context of pedestrian detection. In their acquisition conditions, the great variability of human is dramatically reduced.

Feature based approaches extract invariant structural features from one or more images, and then classify extracted objects with statistical classifiers such as Support Vector Machines [START_REF] Xu | Pedestrian Detection and Tracking with Night Vision[END_REF], neural Networks [START_REF] Rowley | Neural Network-Based Face Detection[END_REF], probabilistic approach [START_REF] Schneiderman | Probabilistic Modeling of Local Appearance and Spatial Relationships for Object Recognition[END_REF], or cascade of filters [START_REF] Viola | Robust Real-Time Face Detection[END_REF]. Features are designed to be invariant to some changes in illumination and pose. Several works use Harr wavalets [START_REF] Viola | Robust Real-Time Face Detection[END_REF], DCT [START_REF] Hafed | Face Recognition Using the Discrete Cosine Transform[END_REF] or local descriptors [START_REF] Vogelhuber | Face Detection based on Generic Local Descriptors and Spatial Constraints[END_REF]. However, the largest adopted feature is skin color [START_REF] Yang | Detecting face in images: a survey[END_REF][START_REF] Hjelmas | Face Detection: A Survey[END_REF]. Human skin color forms a relatively tight cluster in color spaces, even when considering darker and brighter skins. Color allows fast processing and is robust to changes in pose and illumination.

The main problem of methods base on skin color is the determination of a probability threshold to be used on each pixel for deciding which pixels correspond to the skin: this is a segmentation step which gives a binary mask for further processing. Our method solves this problem by using a Bayesian approach and reporting the decision to upper stage of processing, combining that real valued information with temporal information. The essential steps of our system are the skin color modeling, the probabilistic shape model and bayesian decision, and the tracking.

System overview

The system overview is illustrated by the data flow (figure 1). The detection can be summarize by steps 1,2,3 un-less tracking is represented by step 4,5,6,. Motion of each object is computed in this step.

5. step 5 predicts the next location of objects from motion.

6. step 6 computes and stores trajectories and also predicts face location in next image using a learning method.

Figure 1. System overview : Data flow chart

In this system, two data levels are defined :

1. Pixel level : skin and face detection are based upon bayesian classifiers and their results are probabilities maps. Such maps are easily combined and merged to enhance or decrease probabilities values. At this level, every results will be given under this format.

2. Object level : after decisions step, objects are obtained, i.e. symbolic representation of face and human. Object tracking is a high level process on these representation and is translated in probabilities map to be merged at the pixel level during the next frame analysis.

Skin Model

A skin color model is needed in order to decide whether a pixel is of skin color or not. Skin chrominance is very specific, as opposed to its luminance, which has a large variability. Numerous works have been done on skin models and several color spaces have been tested [START_REF] Yang | Detecting face in images: a survey[END_REF][START_REF] Hjelmas | Face Detection: A Survey[END_REF]. None of them seems to be really a better choice. In practice, intensity illumination invariant space (Normalized RGB, Lab, Yuv,..) have quite similar performances. Moreover, none of these space is color illumination invariant, which is the major variability in our application (bright sunlight, light in tunnel, sodium light in night, etc). Thus our model is defined in a chrominance color space so that skin pixels are represented in a small portion of the space. The normalizedrgb color space is used here because it is a 2D model, and because with other space color have not out preformed this one on our real data.

Since r + g + b = 1, only two components (r,g) are used for the model. A bidimensionnal gaussian model g skin is obtained to represent skin color in the rg-space. Its parameters are learned from skin pixels from the FERET faces database.

This model is applied to an image to obtain a skin map S I where each value is the value of our bidimensionnal gaussian model at the corresponding pixel's color. For an image I, and skin model g skin , the corresponding skin map S I is :

S I (x, y) = g skin (I(x, y))
where (x, y) is a position in the image and I(x, y) is the color of I at this position, in normalized-rgb coordinates.

Shape Model and Bayesian Framework

Statistical Modeling

Our face detector is based on a statistical representation of the problem : a face is a skin region, parametrized by its position, shape and orientation.

Let x be a 5-dimensional random variable modeling the position and shape of a skin object, by its first and second order moments :

x = (µ x , σ x ) with µ x = (µ x1 , µ x2 ), σ x = σ x11 σ x12 σ x12 σ x22
Our face model can be seen as an ellipse centered in µ x with axes defined by covariance matrix σ x . This model has been introduced in [START_REF] Schwerdt | Robust face tracking using color[END_REF] for one single face tracking using color.

And let z be a random variable representing each observed image. That is to say, the realizations for z are the images where faces are to be detected. The face detection problem then involves computing the probablity density p(x/z), from which we can decide where faces are likely to be in the image.

Considering a bayesian framework, the a posteriori probability density p(x/z) is proportional to the product of the observation density p(z/x) by the a priori density p(x) :

p(x/z) ∝ p(z/x).p(x)
For now, x is assumed to be uniformely distributed, which means that any kind of skin colored object could be detected in the image, not restricted to faces only. p(x) is constant. It is always possible to choose another distribution for x if necessary.

Observation density

The observation probability density p(z/x) must now be defined. It represents the probability to observe the image z, knowing that a skin object parametrized by x is present. The number of skin objects in the image is not known, and p(z/x) should allow the estimation of the number of objects and their parameters. Since random variable x is defined as the parameters of only one object, it is 5-dimensional, which is reasonable, but it doesn't allow directly the estimation of many objects. Thus p(z/x) is defined so that there is a local maximum for each x corresponding to a skin object in the image.

The function chosen for the observation probability is the correlation function between the skin map S z of image z and the bidimensional gaussian g x parametrized by x :

p(z/x) ∝ S z (t).g x (t)dt
where t is a bidimensional variable.

p(z/x) has local maxima for each skin object in z, under the hypothesis that objects are well separated from each others. The proof involves approximation of S z with a bidimensional gaussian functions mixture, and studying the behavior of p(z/x) for values of x in the neighbourhood of each skin object. 

Skin objects detection

From this point, there are several ways to detect the objects in our image, including the exhaustive search of local maxima in the 5-dimensional function x -→ p(z/x), or sampling algorithms like Condensation [START_REF] Isard | Condensation -conditional density propagation for visual tracking[END_REF]. We propose a method that doesn't require the calculation of p(z/x) for all values.

The random variable x can be seen as two random variables µ x and σ x which represent the first and second order moments of the object respectively. The method proposed here estimates µ x by using a priori information about σ x , then estimates σ x for each detected object, using an iterative process.

First order moment estimation

The detection of the first order moments µ x of objects in the image involves an a priori estimation of σ x . σ m is defined as the average covariance matrix representing a face. With this assumption, the observation density becomes :

p(z/µ x , σ x = σ m ) ∝ S z (t).g µx,σm (t)dt p(z/µ x , σ x = σ m ) ∝ S z (t).g 0,σm (t -µ x )dt
The observation density with fixed σ x = σ m is proportianal to the 2-dimensional convolution product of S z by a gaussian function with covariance matrix σ m , which is an inexpensive computation. Objects' first order moments are detected by finding the local maxima of the function.

Iterative second order moment estimation

Suppose that an object x 0 is present in the image, with first order moment µ x0 . Its second order moment σ x0 must be estimated so that p(z/x 0 ) is a local maxima.

If there is only one skin object in the image, the problem is simply resolved by computing the second order moment of the whole skin map :

σ 2 x0 = (t -µ x0 ) 2 .S z (t)dt
where t is a bidimensional variable.

Since the number of objects in the image is unknown, this method doesn't apply. Our method is to estimate σ x0 by using local moments iteratively. Let W be a 2-dimensional window defined in the same space as S z , with W (t)dt = 1. The second order local moment of S z centered in µ x0 is defined as :

σ 2 Sz,W = (t -µ x0 ) 2 .S z (t)W (t)dt
A sequence of local moments is defined as :

σ 0 = 1 σ 2 n+1 = σ 2 Sz,g(µx 0 ,α.σn) (1) 
where g(µ x0 , α.σ n ) is the bidimensional gaussian window of first and second order moments µ x0 and α.σ n respectively, with α > 2.

Practically, the method consists in starting with a window centered in µ x0 with a size smaller than the expected object size, computing the local moments of S z in this window, then using the result multiplied by a constant α as the next window covariance matrix. This sequence converges to the second order moment of the skin object. By using local moments, the computation of σ x0 is not disturbed by the other objects in the image. The detection of multiple skin objects in the image can then be achieved. Figure 2 shows the results obtained with this method.

Tracking

Tracking is based upon a global structure named history, in which all information about existing and past objects and decision are stored. Tracking decision are done as soon as possible, using a prediction verification or observation scheme. When an object is present at any time, some hypothesis about its location in the next frame can be done, because motion is generally smooth. These object level hypotheses are translated at the pixel level and verified on the next frame, by comparing and merging this pixel level hypotheses with the pixel level detection (observation).

Most of the time, in our application, people pass through the left side to the right side of the camera corresponding to the previous prediction. Sometimes, people turn back and the previous prediction is no longer valid. Moreover, some trajectories are more frequent than others. A second prediction is defined to manage these situations, named learned trajectories prediction. From one location, the object location is predicted with different probabilities from all previous stored trajectories in its neighboring. Probability maps are an elegant way to manage these multiple hypothesis, which are easily combined with the motion prediction.

The observation step of skin objects tracking is tightly related to the recursive method used for the second order local moment estimation.

History

The history is a spatio temporal representation of the scene Each detected object is stored, with the following informations:

current position and motion past positions and motions dates of birth and death predicted position photometric values shape : covariance matrix

Prediction step

The bayesian framework is a natural way to manage several methods for a same problem, merging the results in a numeric fusion. As previously mentioned, the prediction scheme is achieved by 2 different methods, given 2 probability maps. The final prediction is a weighted sum of these 2 probabilities.

p 1 (x) = 1 2 i=1 α i . 1 i=0 α i .p i (x) (2) 

Motion based prediction

As motion is generally smooth, objects are predicted with a smoothed constant speed by :

x t = x t-1 + 1 N . N i=1 v t-i , p 1 (x) = e -( x T t .σx. xt)
(3) If an object disappears, this prediction step is realized with the stored values unless this virtual object is predicted out of the field of view or when it has disappeared from a long time. Note that only one hypothesis is given by this method.

Learned trajectories prediction

As the point of view is fixed, all trajectories are learned to predict the next most probable location of an object. This is done for every position : the underlying idea is that some trajectories are more common than other and well predicted, but rare trajectories must also be predicted with lower probability. For example, in some buses, nearly all the movements are from the left side towards the right side because most of people go into the buses. But sometimes, a person goes out, and cross the field of view from the right side to the left side.

Note that for a given location, it may be possible that no objects have been detected exactly at the same place, due to real previous trajectories or due to poor segmentation accuracy. Then, the learned prediction is computed with all the previously detected neighboring trajectories. From the location x, all the movements given by the previous trajectories are reported on the current frame. Then, the probability is a mixture of gaussian, representing the object shape, weighted by decreasing distance function. All the past movements from location x are noted ( x k , v x,k ). possible locations f rom x :

x i = x t-1 + v x,i : p 2 (x) = 0 i=t-1 e -|| xi-v x,k || 2 .e - || x-x i || σx 2 (4) 
With this probability scheme, multiple hypotheses are man-

Figure 3. Prediction with multiple hypotheses

aged (figure 3)until the decision step.

Observation step

The observation step chooses and corrects the predicted position and shape of the object with respect to the observed image. The same iterative algorithm than those of skin object detection is used here. The gaussian function parametrized with the most probable predicted state (position and shape) defines the window in which the first and second order local moments of the object are computed. The initial values are :

µ 0 = 1 card(p(x).p skin ) . Image p(x).p skin σ 0 = 1 card(p(x).p skin ) Image (p(x).p skin -µ 0 ) 2
(5) This step is iterated by using the last computed local moments as the parameters of the gaussian window :

µ n+1 = µ Sz,g(µn,α.σn) , σ 2 n+1 = σ 2 Sz,g(µn,α.σn) (6) 
with µ Sz,g(µn,α.σn) the first order local moment of S z in the window g(µ n , α.σ n ), defined by : µ Sz,g(µn,α.σn) = t.S z (t).g(µ n , α.σ n )dt

In this sequence, the σ update step is the same as equation ( 1). This sequence converges to the first and second order moments of each object for the current image.

Occultation

One of the main feature in tracking system is the occultation problem, when people pass behind an obstacle or when people trajectories intersect. In the first case, the observation step will not find any real skin object at the predicted location (µ 0 is equal to zero in equation 5) and the object is just marked as disappeared in the history. This object is still present in the history and will be active in all step where it is necessary, such as prediction.

Figure 4. tracking example

In the second case, illustrated figure 4, the same scheme is followed : one object is marked as disappeared when the trajectories intersect, but is still present and predicted. In these cases, objects are kept in the history unless they are predicted out of the image or when they have disappeared from a long time. Moreover, the learned trajectories prediction with multiple hypotheses management, is able to track 2 persons crossing behind an obstacle.

Results

This tracking method has been tested under real conditions, on video streams from a transport vehicle or from an indoor office.

The office video stream has the following characteristics: 15' duration, spatial resolution 640x480 pixels, frame rate of 30 fps, and illumination conditions fairly controlled. In practice, some background objects have skin color at some moments. During this sequence, 72 persons are present in the temporal scene. Most of them (38) cross the image from left to right, 34 cross from right to left. One turns back. There are 37 intersections of trajectories. Some people have not a constant direction. In this sequence, generally more than 3 persons are visible on the same image. The bus video stream has the following characteristics: 2x3' duration, spatial resolution 702x576 pixels, frame rate of 6 fps, and illumination conditions uncontrolled. In practice, many background objects have skin color at some moments. During this sequence, 30 persons are presents in the temporal scene. 29 cross the image from left to right, 1 crosses from right to left.

Using an appropriate skin model, the detection and tracking of skin objects are efficient. figure 4 shows an example of the tracking of two faces (red and violet ellipses). One arm is also detected in the middle image (white ellipse), because it is a skin object. One part of the wall are sometimes detected as skin, when the sun lights it.

In these sequences, 90 % persons have been detected and tracked. During 2 crossings in the office video, such in figure 4, the tracking has been lost, one object been really suppressed and a new one created. The turn back is well tracked, as illustrated in figure 5.

Figure 5. Sequence with turn back tracking

Another method to validate this tracking system is the trajectories history (figure 6). Most of them are quite regular, with smooth variation. Trajectories in the bottom of the figure are arm trajectories, while faces are localized at the top of the figure. The red trajectory is a real turn back. One error can be seen with the black trajectory, in the middle of the figure : this is a part of the wall, which is skin colored. It is trapped by one person passing near this part and the detection step has included this part in the walking people face. In fact, the tracking is efficient because of good multiple prediction, if the frame rate and the time to life in the history are suitable.

Finally, faces are counted when crossing a predefined line in the images. Counter is incremented when crossing from left to right, decremented when crossing from right to left. The accuracy of the count is 85% compared to the real manual count on the office sequence, 90 % on the transport video. Most false positives were caused by arms being counted, and non-detections face were mainly caused by bad detection of skin pixels. 

Conclusion

In this paper, a multiple face tracker has been presented. Based upon the classical skin color detection, it is embedded in a bayesian framework which is an elegant way to manage several algorithms for a same task, like prediction in our tracker. The main feature is then the probability map, data structure shared by the algorithms. A spatio-temporal representation of the scene summarizes the essential information about objects. Reasoning at object level is translated at the image level, by example with the prediction probability map. Although there is no global optimization to find trajectories, multiple hypotheses are managed with an original method of prediction, based on a learning approach. Another interesting feature is the iterative local moments estimation which avoids classical thresholds, used by the skin and face detection algorithm. This approach has been applied to a counting application with promising results on out door videos.

To enhance the performance of the tracker, we are currently working on the fusion of several detection algorithm, including motion analysis and temporal difference, which can be easily integrated in our framework. Trajectories will be improved with a longer temporal and a global spatial analysis and consistency.
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 2 Figure 2. (a) original image, (b) skin map , (c) five detected objects
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 6 Figure 6. Detected trajectories in office video