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 for the case with a Laplace term. Here we generalize the assumptions on the initial data and prove the same result for the integro-differential equation.

Introduction

We continue the study, initiated in [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF], of the asymptotic behavior of Lotka-Volterra parabolic equations. The model we use describes the dynamics of a population density. Individuals respond differently to the environment, i.e. they have different abilities to use the available resources. To take this fact into account, population models can be structured by a parameter, representing a physiological (phenotypical) trait inherited from the parent, and that we denote by x ∈ R d . We denote by n(t, x) the density of trait x. The mathematical modeling in accordance with Darwin's theory consists of two effects: natural selection and mutations between the traits (see [START_REF] Diekmann | Beginner's guide to adaptive dynamics[END_REF][START_REF] Geritz | Dynamics of adaptation and evolutionary branching[END_REF][START_REF] Meszéna | Link between population dynamics and dynamics of Darwinian evolution[END_REF][START_REF] Geritz | Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF] for literature in adaptive evolution). We represent the birth and death rates of the phenotypical traits bya net growth rate R(x, I). The term I(t) is an ecological parameter that corresponds to a measure of the total population, whatever the trait, and that represents in the simpler possible way the resources (more precisely the inverse of it). We use two different models for mutations. A first possibility is to represent them by a Laplacian and, in an extreme and irrealistic simplification, we take them independent of birth, so as to write

∂ t n ǫ -ǫ△n ǫ = nǫ ǫ R(x, I ǫ (t)), x ∈ R d , t ≥ 0, n ǫ (t = 0) = n 0 ǫ ∈ L 1 (R d ), n 0 ǫ ≥ 0, (1) 
I ǫ (t) = R d ψ(x) n ǫ (t, x)dx. ( 2 
)
Here ǫ is a small term that we introduce to consider only rare mutations. It is also used to re-scale time to consider a much larger time than a generation scale.

A more natural way to model mutations is to use, instead of a Laplacian, an integral term that describes directly the mutation probability to generate a new-born of trait x from a mother with trait y. This yields

∂ t n ǫ = nǫ ǫ R(x, I ǫ (t)) + 1 ǫ 1 ǫ d K( y-x ǫ ) b(y, I ǫ ) n ǫ (t, y) dy, x ∈ R d , t ≥ 0, n ǫ (t = 0) = n 0 ǫ ∈ L 1 (R d ), n 0 ǫ ≥ 0, (3) 
I ǫ (t) = R d n ǫ (t, x)dx. (4) 
Both types of models can be derived from individual based stochastic processes in the limit of large populations depending on the scales in mutations birth and death (see [START_REF] Champagnat | Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models[END_REF][START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF]).

In this paper, we study the asymptotic behavior of equations ( 1)-( 2) and ( 3)-(4) when ǫ vanishes. Our purpose is to show that under some assumptions on R(x, I), n ǫ (t, x) concentrates as a sum of Dirac masses that are traveling. In biological terms, at every moment one or several dominant traits coexist while other traits disappear. The dominant traits change in time due to the presence of mutations.

We use the same assumptions as [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]. We assume that there exist two constants ψ m , ψ M such that

0 < ψ m < ψ < ψ M < ∞, ψ ∈ W 2,∞ (R d ). (5) 
We also assume that there are two constants 0 < I m < I M < ∞ such that min

x∈R d R(x, I m ) = 0, max x∈R d R(x, I M ) = 0, (6) 
and there exists constants K i > 0 such that, for any x ∈ R d , I ∈ R,

-K 1 ≤ ∂R ∂I (x, I) ≤ -K -1 1 < 0, (7) 
sup

Im 2 ≤I≤2I M R(•, I) W 2,∞ (R d ) < K 2 . ( 8 
)
We also make the following assumptions on the initial data

I m ≤ R d ψ(x)n 0 ǫ (x) ≤ I M , and ∃ A, B > 0 , n 0 ǫ ≤ e -A|x|+B ǫ , (9) 
and that there exist a point x 0 ∈ R d and positive constants L 0 and M 0 such that

e -M 0 ǫ ≤ n 0 ǫ (x), for all |x -x 0 | ≤ L 0 , (10) 
Note that assumption [START_REF] Barles | Front propagation for reaction-diffusion equations arising in combustion theory[END_REF] means that initially we have some kind of biodiversity since it can be interpreted as different traits being sufficiently represented in the population.

Here we take ψ(x) ≡ 1 for equations ( 3)-( 4) because replacing n by ψn leaves the model unchanged. For equation [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] we assume additionally that the probability kernel K(z) and the mutation birth rate b(z) verify

0 ≤ K(z), K(z) dz = 1, K(z)e |z| 2 dz < ∞, (11) 
b m ≤ b(z, I) ≤ b M , |∇ x b(z, I)| < L 1 b(z, I), |b(x, I 1 ) -b(x, I 2 )| < L 2 |I 1 -I 2 |, (12) 
where b m , b M , L 1 and L 2 are positive constants. Finally for equation (3) we replace ( 6) and ( 7) by min

x∈R d R(x, I m ) + b(x, I m ) = 0, max x∈R d R(x, I M ) + b(x, I M ) = 0, (13) 
|R(x, I 1 ) -R(x, I 2 )| < K 3 |I 1 -I 2 | and -K 4 ≤ ∂(R + b) ∂I (x, I) ≤ -K -1 4 < 0, ( 14 
)
where K 3 and K 4 are positive constants.

In both cases, in the limit we expect n(t, x) = 0 or R(x, I) = 0, where n(t, x) is the weak limit of n ǫ (t, x) as ǫ vanishes. If we suppose that the latter is possible at only isolated points, we expect n to concentrate as Dirac masses. Following earlier works on the similar issue [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Barles | Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics[END_REF][START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Metz | Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction[END_REF], in order to study n, we make a change of variable n ǫ (t, x) = e uǫ(t,x) ǫ

. It is easier to study the asymptotic behavior of u ǫ instead of n ǫ . In section 5 we study the asymptotic behavior of u ǫ while ǫ vanishes. We show that u ǫ , after extraction of a subsequence, converge to a function u that satisfies a constrained Hamilton-Jacobi equation in the viscosity sense (see [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF][START_REF] Evans | Partial Differential Equations[END_REF][START_REF] Crandall | Users guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Fleming | Controlled markov processes and vicosity solutions[END_REF] for general introduction to the theory of viscosity solutions). Our main results are as follows.

Theorem 1.1. Assume ( 5)- [START_REF] Barles | Front propagation for reaction-diffusion equations arising in combustion theory[END_REF]. Let n ǫ be the solution of ( 1)-( 2), and u ǫ = ǫ ln(n ǫ ). Then, after extraction of a subsequence, u ǫ converges locally uniformly to a function u ∈ C((0, ∞)×R d ), a viscosity solution to the following equation:

   ∂ t u = |∇u| 2 + R(x, I(t)), max x∈R d u(t, x) = 0, ∀t > 0, (15) 
I ǫ (t) -→ ǫ→0 I(t) a.e., ψ(x)n(t, x)dx = I(t) a.e.. (16) 
In particular, a.e. in t, supp n(t, •) ⊂ {u(t, •) = 0}. Here the measure n is the weak limit of n ǫ as ǫ vanishes. If additionally (u 0 ǫ ) ǫ := ǫ ln(n 0 ǫ ) is a sequence of uniformly continuous functions which converges locally uniformly to

u 0 then u ∈ C([0, ∞) × R d ) and u(0, x) = u 0 (x) in R d .
Theorem 1.2. Assume ( 8)- [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF], and (u 0 ǫ ) ǫ is a sequence of uniformly Lipschitz-continuous functions which converges locally uniformly to u 0 . Let n ǫ be the solution of ( 3)-( 4) with n 0 ǫ = e uǫ 0 ǫ , and u ǫ = ǫ ln(n ǫ ). Then, after extraction of a subsequence, u ǫ converges locally uniformly to a function u ∈ C([0, ∞) × R d ), a viscosity solution to the following equation:

       ∂ t u = R(x, I(t)) + b(x, I(t)) K(z)e ∇u•z dz, max x∈R d u(t, x) = 0, ∀t > 0, u(0, x) = u 0 (x), (17) 
I ǫ (t) -→ ǫ→0 I(t) a.e., n(t, x)dx = I(t) a.e.. (18) 
In particular, a.e. in t, supp n(t, •) ⊂ {u(t, •) = 0}. As above, the measure n is the weak limit of n ǫ as ǫ vanishes.

These theorems improve previous results proved in [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics[END_REF][START_REF] Perthame | Transport equations in biology[END_REF] in various directions. For the case where mutations are described by a Laplace equation, i.e. ( 1)-( 2), Theorem 1.1 generalizes the assumptions on the initial data. This generalization derives from regularizing effects of Eikonal Hamiltonian (see [START_REF] Lions | Regularizing effects for first-order Hamilton-Jacobi equations[END_REF][START_REF] Barles | Regularity results for first-order Hamilton-Jacobi equations[END_REF][START_REF] Barles | A weak Bernstein method for fully nonlinear elliptic equations[END_REF]). But our motivation is more in the case of equations ( 3)-(4) where mutations are described by an integral operator. Then we can treat cases where the mutation rate b(x, I) really depends on x, which was not available until now. The difficulty here is that Lipschitz bounds on the initial data are not propagated on u ǫ and may blow up in finite time (see [START_REF] Brändle | Large deviations estimates for some non-local equations I. fast decaying kernels and explicit bounds[END_REF][START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF][START_REF] Chasseigne | The Dirichlet problem for some nonlocal diffusion equations[END_REF] for regularity results for integral Hamiltonian). However, we achieve to control the Lipschitz norm by -u ǫ , that goes to infinity as |x| goes to +∞. We do not discuss the uniqueness for equations [START_REF] Chasseigne | The Dirichlet problem for some nonlocal diffusion equations[END_REF] and [START_REF] Desvillettes | On mutation-selection dynamics[END_REF] in this paper. The latter is studied, for some particular cases, in [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics[END_REF].

A related, but different, situation arises in reaction-diffusion equations as in combustion (see [START_REF] Barles | Wavefront propagation for reaction diffusion systems of PDE[END_REF][START_REF] Barles | A remark on the asymptotic behavior of the solution of the KPP equation[END_REF][START_REF] Barles | Front propagation for reaction-diffusion equations arising in combustion theory[END_REF][START_REF] Evans | A PDE approach to geometric optics for certain reactiondiffusion equations[END_REF][START_REF] Fleming | PDE-viscosity solution approach to some problems of large deviations[END_REF][START_REF] Souganidis | Front propagation: theory and applications, CIME course on 'viscosity solutions[END_REF]). A typical example is the Fisher-KPP equation, where the solution is a progressive front. The dynamics of the front is described by a level set of a solution of a Hamilton-Jacobi equation.

The paper is organized as follows. In section 2 we state some existence results and bounds on n ǫ and I ǫ . In section 3 we prove some regularity results for u ǫ corresponding to equations (1)- [START_REF] Barles | A weak Bernstein method for fully nonlinear elliptic equations[END_REF]. We show that u ǫ are locally uniformly bounded and continuous. In section 4 we prove some analogous regularity results for u ǫ corresponding to equations (3)-(4). Finally, in section 5 we describe the asymptotic behavior of u ǫ and deduce the constrained Hamilton-Jacobi equation ( 15)-( 16).

Preliminary results

We recall the following existence results for n ǫ and a priori bounds for I ǫ (see also [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Desvillettes | On mutation-selection dynamics[END_REF]).

Theorem 2.1. With the assumptions ( 5)- [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF], and I m -Cǫ 2 ≤ I ǫ (0) ≤ I M + Cǫ 2 , there is a unique solution n ǫ ∈ C(R + ; L 1 (R d )) to equations (1)-( 2) and it satisfies

I ′ m = I m -Cǫ 2 ≤ I ǫ (t) ≤ I M + Cǫ 2 = I ′ M , ( 19 
)
where C is a constant. This solution, n ǫ (t, x), is nonnegative for all t ≥ 0.

We recall a proof of this theorem in Appendix A. We have an analogous result for equations (3)-(4):

Theorem 2.2. With the assumptions ( 8), ( 11)-( 14), and I m ≤ I ǫ (0) ≤ I M , there is a unique solution

n ǫ ∈ C(R + ; L 1 ∩ L ∞ (R d ))
to equations ( 3)-( 4) and it satisfies

I m ≤ I ǫ (t) ≤ I M . (20) 
This solution, n ǫ (t, x), is nonnegative for all t ≥ 0.

This theorem can be proved with similar arguments as Theorem 2.1. A uniform BV bound on I ǫ (t) for equations ( 1)-( 2) is also proved in [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]: Theorem 2.3. With the assumptions ( 5)-( 9), we have additionally to the uniform bounds [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF], the locally uniform BV and sub-Lipschitz bounds

d dt I ǫ (t) ≥ -ǫ C + e -Lt ǫ ψ(x)n 0 ǫ (x) R(x, I 0 ǫ ) ǫ dx, (21) 
d dt ̺ ǫ (t) ≥ -Ct + (1 + ψ(x))n 0 ǫ (x) R(x, I 0 ǫ ) ǫ dx, (22) 
where C and L are positive constants and ̺ ǫ (t) = R d n ǫ (t, x)dx. Consequently, after extraction of a subsequence, I ǫ (t) converges a.e. to a function I(t), as ǫ goes to 0. The limit I(t) is nondecreasing as soon as there exists a constant C independent of ǫ such that

ψ(x)n 0 ǫ (x) R(x, I 0 ǫ ) ǫ ≥ -Ce o (1) 
ǫ .

We also have a local BV bound on I ǫ (t) for equations ( 3)-( 4):

Theorem 2.4. With the assumptions ( 8)-( 14), we have additionally to the uniform bounds [START_REF] Evans | Partial Differential Equations[END_REF], the locally uniform BV bound

d dt I ǫ (t) ≥ -C ′ + e -L ′ t ǫ n 0 ǫ (x) R(x, I 0 ǫ ) + b(x, I 0 ǫ ) ǫ dx, (23) 
T 0 | d dt I ǫ (t)|dt ≤ 2C ′ T + C ′′ , ( 24 
)
where C ′ , C ′′ and L ′ are positive constants. Consequently, after extraction of a subsequence, I ǫ (t) converges a.e. to a function I(t), as ǫ goes to 0.

This theorem is proved in Appendix B.

3 Regularity results for equations ( 1)-( 2)

In this section we study the regularity properties of u ǫ = ǫ ln n ǫ , where n ǫ is the unique solution of equations ( 1)-( 2). We have

∂ t n ǫ = 1 ǫ ∂ t u ǫ e uǫ ǫ , ∇n ǫ = 1 ǫ ∇u ǫ e uǫ ǫ , △n ǫ = 1 ǫ △u ǫ + 1 ǫ 2 |∇u ǫ | 2 e uǫ ǫ .
Consequently u ǫ is a smooth solution to the following equation

∂ t u ǫ -ǫ△u ǫ = |∇u ǫ | 2 + R(x, I ǫ (t)), x ∈ R, t ≥ 0, u ǫ (t = 0) = ǫ ln n 0 ǫ . (25) 
We have the following regularity results for u ǫ .

Theorem 3.1. Assume ( 5)-( 10) and let T > 0 be given.

Set D = B + (A 2 + K 2 )T . Then we have u ǫ ≤ D 2 . For all t 0 > 0, v ǫ = √ 2D 2 -u ǫ are locally uniformly bounded and Lipschitz in [t 0 , T ] × R d , |∇v ǫ | ≤ C(T )(1 + 1 √ t 0 ), ( 26 
)
where C(T ) is a constant depending on T , K 1 , K 2 , A and B. Moreover, if we assume that (u 0 ǫ ) ǫ := ǫ ln(n 0 ǫ ) is a sequence of uniformly continuous functions, then u ǫ are locally uniformly bounded and continuous in [0, ∞[×R d .

We prove Theorem 3.1 in several steps. We first prove an upper bound, then a regularizing effect in x, then local L ∞ bounds, and finally a regularizing effect in t.

An upper bound for u ǫ

From assumption [START_REF] Barles | A remark on the asymptotic behavior of the solution of the KPP equation[END_REF] we have u 0

ǫ (x) ≤ -A|x| + B. We claim that, with C = A 2 + K 2 , u ǫ (t, x) ≤ -A|x| + B + Ct, ∀t ≥ 0. ( 27 
)
Define φ(t, x) = -A|x| + B + Ct. We have

∂ t φ -ǫ△φ -|∇φ| 2 -R(x, I ǫ (t)) ≥ C + ǫ A(d -1) |x| -A 2 -K 2 ≥ 0.
Here K 2 is an upper bound for R(x, I) according to [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]. We have also φ(0, x) = -A|x| + B ≥ u 0 ǫ (x). So φ ǫ is a super-solution to [START_REF] Geritz | Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF] and ( 27) is proved.

Regularizing effect in space

Let u = f (v), where f is chosen later. We have

∂ t u = f ′ (v)∂ t v, ∂ x u = f ′ (v)∂ x v, △u = f ′ (v)△v + f ′′ (v)|∇v| 2 .

So equation (25) becomes

∂ t v -ǫ△v -ǫ f ′′ (v) f ′ (v) + f ′ (v) |∇v| 2 = R(x, I) f ′ (v) . ( 28 
)
Define p = ∇v. By differentiating (28) we have

∂ t p i -ǫ△p i -2 ǫ f ′′ (v) f ′ (v) + f ′ (v) ∇v • ∇p i -ǫ f ′′′ (v) f ′ (v) -ǫ f ′′ (v) 2 f ′ (v) 2 + f ′′ (v) |∇v| 2 p i = - f ′′ (v) f ′ (v) 2 R(x, I)p i + 1 f ′ (v) ∂R ∂x i .
We multiply the equation by p i and sum over i:

∂ t |p| 2 2 -ǫ (△p i )p i -2 ǫ f ′′ (v) f ′ (v) + f ′ (v) ∇v • ∇ |p| 2 2 -ǫ f ′′′ (v) f ′ (v) -ǫ f ′′ (v) 2 f ′ (v) 2 + f ′′ (v) |p| 4 = - f ′′ (v) f ′ (v) 2 R(x, I)|p| 2 + 1 f ′ (v) ∇ x R • p.
First, we compute i (△p i )p i .

i

(△p i )p i = i △ p 2 i 2 - |∇p i | 2 = △ |p| 2 2 - |∇p i | 2 = |p|△|p| + |∇|p|| 2 - i |∇p i | 2 .
We also have

|∇|p|| 2 = i |p • ∂ x i p| 2 |p| 2 ≤ i |∂ x i p| 2 = i,j |∂ x i p j | 2 = j |∇p j | 2 .

It follows that

i

(△p i )p i ≤ |p|△|p|.
We deduce

∂ t |p| -ǫ△|p| -2 ǫ f ′′ (v) f ′ (v) + f ′ (v) p • ∇|p| -ǫ f ′′′ (v) f ′ (v) -ǫ f ′′ (v) 2 f ′ (v) 2 + f ′′ (v) |p| 3 (29) ≤ - f ′′ (v) f ′ (v) 2 R(x, I)|p| + 1 f ′ (v) ∇ x R • p |p| .
From [START_REF] Meszéna | Link between population dynamics and dynamics of Darwinian evolution[END_REF] we know that, for 0

≤ t ≤ T , u ǫ ≤ D(T ) 2 , where D(T ) = √ B + CT . Then we define f (v) = -v 2 + 2D 2 ,
for v positive, and thus

D(T ) ≤ v, f ′ (v) = -2v, and | 1 f ′ (v) | = 1 2v ≤ 1 2D , f ′′ (v) = -2, and | f ′′ (v) f ′ (v) 2 | = 1 2v 2 ≤ 1 2D 2 , f ′′′ (v) = 0, -ǫ f ′′′ (v) f ′ (v) -ǫ f ′′ (v) 2 f ′ (v) 2 + f ′′ (v) = 2 + ǫ 1 v 2 > 2.
From (29), Theorem 2.1, assumption [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] and these calculations we deduce

∂|p| ∂t -ǫ△|p| -2 ǫ f ′′ (v) f ′ (v) + f ′ (v) p • ∇|p| + 2|p| 3 - K 2 2D 2 |p| - K 2 2D ≤ 0.
Thus for θ(T ) large enough we can write

∂|p| ∂t -ǫ△|p| -2 ǫ f ′′ (v) f ′ (v) + f ′ (v) p • ∇|p| + 2(|p| -θ) 3 ≤ 0. ( 30 
)
Define the function

y(t, x) = y(t) = 1 2 √ t + θ.
Since y is a solution to [START_REF] Souganidis | Front propagation: theory and applications, CIME course on 'viscosity solutions[END_REF], and y(0) = ∞ and |p| being a sub-solution we have

|p|(t, x) ≤ y(t, x) = 1 2 √ t + θ. Thus for v ǫ = √ 2D 2 -u ǫ , we have |∇v ǫ |(t, x) ≤ 1 2 √ t + θ(T ), 0 < t ≤ T. (31) 
See Appendix C for more details on the comparison principle used above.

Regularity in space of u ǫ near t = 0

Assume that u 0 ǫ are uniformly continuous. We show that u ǫ are uniformly continuous in space on [0, T ] × R d .

For δ > 0 we prove that for h small |u ǫ (t,

x + h) -u ǫ (t, x)| < δ. To do so define w ǫ (t, x) = u ǫ (t, x + h) -u ǫ (t, x). Since u 0 ǫ are uniformly continuous, for h small enough |w ǫ (0, x)| < δ 2 .
Besides w ǫ satisfies the following equation:

∂ t w ǫ (t, x) -ǫ△w ǫ (t, x) -(∇u ǫ (t, x + h) + ∇u ǫ (t, x)) • ∇w ǫ (t, x) = R(x + h, I ǫ (t)) -R(x, I ǫ (t)).
From Theorem 2.1 and using assumption [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] we have

∂ t w ǫ (t, x) -ǫ△w ǫ (t, x) -(∇u ǫ (t, x + h) + ∇u ǫ (t, x)) • ∇w ǫ (t, x) ≤ K 2 |h|.
Therefore by the maximum principle we arrive at max

R d |w ǫ (t, x)| < max R d |w ǫ (0, x)| + K 2 |h|t. So for h small enough |u ǫ (t, x + h) -u ǫ (t, x)| < δ on [0, T ] × R d .

Local bounds for u ǫ

We show that u ǫ are bounded on compact subsets of ]0, ∞[×R d . We already know from section 3.1 that u ǫ is locally bounded from above. We show that it is also bounded from below on C = [t 0 , T ] × B(0, R), for all R > 0 and 0 < t 0 < T .

From section 3.1 we have u ǫ (t, x) ≤ -A|x| + B + CT . So for R large enough there exists ǫ 0 such that for ǫ < ǫ 0

|x|>R e uǫ ǫ dx < |x|>R e -A|x|+B+CT ǫ dx < I ′ m 2ψ M .
We have also from [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF] that

R d e uǫ ǫ dx > I ′ m ψ M .
We deduce that for R large enough and for all 0

< ǫ < ǫ 0 |x|<R e uǫ ǫ dx > I ′ m 2ψ M .
Therefore there exists ǫ 1 > 0 such that, for all ǫ < ǫ 1

∃x 0 ∈ R d ; |x 0 | < R, u ǫ (t, x 0 ) > -1, thus v ǫ (t, x 0 ) < 2D 2 + 1.
From Section 3.2 we know that v ǫ are locally uniformly Lipschitz

|v ǫ (t, x + h) -v ǫ (t, x)| < C(T ) + 1 2 √ t 0 |h|,
Thus for all (t, x) ∈ C and ǫ < ǫ

1 v ǫ (t, x) < E(t 0 , T, R) := 2D 2 (T ) + 1 + 2 C(T ) + 1 2 √ t 0 R.
It follows that

u ǫ (t, x) > 2D 2 (T ) -E 2 (t 0 , T, R).
We conclude that u ǫ are uniformly bounded from below on C.

If we assume additionally that u 0 ǫ are uniformly continuous, with similar arguments we can show that u ǫ are bounded on compact subsets of [0, ∞[×R d . To prove the latter we use uniform continuity of u ǫ instead of the Lipschitz bounds of v ǫ .

Regularizing effect in time

From the above uniform bounds and continuity results we can also deduce uniform continuity in time i.e. for all η > 0, there exists θ > 0 such that for all (t, s, x)

∈ [0, T ] × [0, T ] × B(0, R
2 ), such that 0 < ts < θ, and for all ǫ < ǫ 0 we have:

|u ǫ (t, x) -u ǫ (s, x)| ≤ 2η.
We prove this with the same method as that of Lemma 9.1 in [START_REF] Barles | A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations[END_REF] (see also [START_REF] Benachour | Sharp decay estimates and vanishing viscosity for diffusive Hamilton-Jacobi equations[END_REF] for another proof of this claim). We prove that for any η > 0, we can find positive constants A, B large enough such that, for any x ∈ B(0, R 2 ), s ∈ [0, T ] and for every ǫ < ǫ 0 ,

u ǫ (t, y) -u ǫ (s, x) ≤ η + A|x -y| 2 + B(t -s), for every (t, y) ∈ [s, T ] × B(0, R), (32) 
and

u ǫ (t, y) -u ǫ (s, x) ≥ -η -A|x -y| 2 -B(t -s), for every (t, y) ∈ [s, T ] × B(0, R). ( 33 
)
We prove inequality (32), the proof of (33) is analogous. We fix (s, x) in [0, T [×B(0, R 2 ). Define

ξ(t, y) = u ǫ (s, x) + η + A|y -x| 2 + B(t -s), (t, y) ∈ [s, T [×B(0, R),
where A and B are constants to be determined. We prove that, for A and B large enough, ξ is a super-solution to (25) on [s, T ]×B(0, R) and ξ(t, y) > u ǫ (t, y) for (t, y) ∈ {s}×B(0, R)∪[s, T ]×∂B(0, R).

According to section 3.4, u ǫ are locally uniformly bounded, so we can take A a constant such that for all ǫ < ǫ 0 ,

A ≥ 8 u ǫ L ∞ ([0,T ]×B(0,R)) R 2 .
With this choice, ξ(t, y) > u ǫ (t, y) on [0, T ] × ∂B(0, R), for all η, B and x ∈ B(0, R 2 ). Next we prove that, for A large enough, ξ(s, y) > u ǫ (s, y) for all y ∈ B(0, R). We argue by contradiction. Assume that there exists η > 0 such that for all constants A there exists y A,ǫ ∈ B(0, R) such that

u ǫ (s, y A,ǫ ) -u ǫ (s, x) > η + A|y A,ǫ -x| 2 . ( 34 
)
It follows that

|y A,ǫ -x| ≤ 2M A ,
where M is a uniform upper bound for u ǫ L ∞ ([0,T ]×B(0,R)) . Now let A → ∞. Then for all ǫ, |y A,ǫ -x| → 0. According to Section 3.3, u ǫ are uniformly continuous on space. Thus there exists

h > 0 such that if |y A,ǫ -x| ≤ h then |u ǫ (s, y A,ǫ ) -u ǫ (s, x)| < η 2
, for all ǫ. This is in contradiction with (34). Therefore ξ(s, y) > u ǫ (s, y) for all y ∈ B(0, R). Finally, noting that R is bounded we deduce that for B large enough, ξ is a super-solution to [START_REF] Geritz | Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF] in [s, T ] × B(0, R). Since u ǫ is a solution of [START_REF] Geritz | Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF] we have

u ǫ (t, y) ≤ ξ(t, y) = u ǫ (s, x) + η + A|y -x| 2 + B(t -s) for all (t, y) ∈ [s, T ] × B(0, R).
Thus (32) is satisfied for t ≥ s. We can prove (33) for t ≥ s analogously. Then we put x = y and we conclude taking θ < η B .

4 Regularity results for equations ( 3)-( 4)

In this section we study the regularity properties of u ǫ = ǫ ln n ǫ , where n ǫ is the unique solution of equations ( 3)-( 4) as given in Theorem 2.2. From equation (3) we deduce that u ǫ is a solution to the following equation

∂ t u ǫ = R(x, I ǫ (t)) + K(z)b(x + ǫz, I ǫ )e uǫ(t,x+ǫz)-uǫ(t,x) ǫ dz, x ∈ R, t ≥ 0, u ǫ (t = 0) = ǫ ln n 0 ǫ . (35) 
We have the following regularity results for u ǫ .

Theorem 4.1. Let n ǫ be the solution of ( 3)-( 4) with n 0 ǫ = e uǫ 0 ǫ , and u ǫ = ǫ ln(n ǫ ). With the assumptions ( 8)-( 14), and if we assume that (u 0 ǫ ) ǫ is a sequence of uniformly bounded functions in W 1,∞ , then u ǫ are locally uniformly bounded and Lipschitz in [0, ∞[×R d .

As in section 3 we prove Theorem 4.1 in several steps. We first prove an upper and a lower bound on u ǫ , then local Lipschitz bounds in space and finally a regularity result in time.

Upper and lower bounds on u ǫ

From assumption (9) we have u 0 ǫ (x) ≤ -A|x| + B. As in section 3.1 we claim that

u ǫ (t, x) ≤ -A|x| + B + Ct, ∀t ≥ 0. ( 36 
) Define v(t, x) = -A|x| + B + Ct, where C = b M K(z)e A|z| dz + K 2 .
Using ( 8) and ( 12) we have

∂ t v -R(x, I ǫ (t)) -K(z)b(x + ǫz, I ǫ )e v(t,x+ǫz)-v(t,x) ǫ dz ≥ C -K 2 -b M K(z)e A|z| dz ≥ 0.
We also have v(0, x) = -A|x| + B ≥ u 0 ǫ (x). So v is a supersolution to (35). Since (3) verifies the comparison property, equation (35) verifies also the comparison property, i.e. if v and u are respectively super and subsolutions of (35) then u ≤ v. Thus (36) is proved.

To prove a lower bound on u ǫ we assume that u 0 ǫ are locally uniformly bounded. Then from equation (35) and assumption [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] we deduce

∂ t u ǫ (t, x) ≥ -K 2 ,
and thus

u ǫ (t, x) ≥ -u 0 ǫ L ∞ (B(0,R)) -K 2 t, ∀x ∈ B(0, R).
Moreover, |∇u 0 ǫ | being bounded, we can give a lower bound in

R d u ǫ (t, x) ≥ inf ǫ u 0 ǫ (0) -∇u 0 ǫ L ∞ |x| -K 2 t, ∀x ∈ R d . ( 37 
)

Lipschitz bounds

Here we assume that u ǫ is differentiable in x (See [START_REF] Chasseigne | The Dirichlet problem for some nonlocal diffusion equations[END_REF]). See also Appendix D for a proof without any regularity assumptions on u ǫ .

Let p ǫ = ∇u ǫ • χ, where χ is a fixed unit vector. By differentiating (35) with respect to χ we obtain dz.

∂ t p ǫ (t, x) = ∇R(x, I ǫ (t)) • χ + K(z)∇b(x + ǫz, I ǫ ) • χ e uǫ(t
Thus, using assumptions ( 8) and ( 12), we have 

∂ t p ǫ (t, x) ≤ K 2 + L 1 K(z)b(x + ǫz, I ǫ )e uǫ(t
∂ t w ǫ -K 2 (1 + L 1 ) -K(z)b(x + ǫz, I ǫ ) w ǫ (t, x + ǫz) -w ǫ (t, x) ǫ e ∆ǫ(t,x,z) dz ≤ 2L 1 K(z)b(x + ǫz, I ǫ )e ∆ǫ(t,x,z) dz -L 1 K(z)b(x + ǫz, I ǫ )∆ ǫ (t, x, z)e ∆ǫ(t,x,z) dz = L 1 K(z)b(x + ǫz, I ǫ )e ∆ǫ(t,x,z) 2 -∆ ǫ (t, x, z) dz ≤ L 1 b M e,
noticing that e is the maximum of the function g(t) = e t (2t) in R. Therefore by the maximum principle, with

C 1 = K 2 (1 + L 1 ) + L 1 b M e, we have w ǫ (t, x) ≤ C 1 t + max R d w ǫ (0, x).
It follows that

p ǫ (t, x) ≤ C 1 t+ ∇u 0 ǫ L ∞ +L 1 (B + Ct) + L 1 ∇u 0 ǫ L ∞ |x| + K 2 t -u 0 ǫ (x = 0) (39) = C 2 t + C 3 |x| + C 4 ,
where C 2 , C 3 and C 4 are constants. Since this bound is true for any |χ| = 1, we obtain a local bound on |∇u ǫ |.

Regularity in time

In section 4.2 we proved that u ǫ is locally uniformly Lipschitz in space. From this we can deduce that ∂ t u ǫ is also locally uniformly bounded.

Let C = [0, T ] × B(x 0 , R) and S 1 be a constant such that u ǫ L ∞ (C) < S 1 for all ǫ > 0. Assume that R ′ is a constant large enough such that we have u ǫ (t, x) < -S 1 in [0, T ] × R d \B(x 0 , R ′ ). According to (36) there exists such constant R ′ . We choose a constant S 2 such that ∇u ǫ L ∞ ([0,T ]×B(x 0 ,R ′ )) < S 2 for all ǫ > 0. We deduce

|∂ t u ǫ | ≤ |R(x, I ǫ (t))| + K(z)b(x + ǫz, I ǫ )e uǫ(t,x+ǫz)-uǫ(t,x) ǫ 1 |x+ǫz|<R ′ + 1 |x+ǫz|≥R ′ dz ≤ K 2 + b M K(z)e S 2 |z| 1 |x+ǫz|<R ′ dz + b M K(z)1 |x+ǫz|≥R ′ dz ≤ K 2 + b M 1 + K(z)e S 2 |z| dz .
This completes the proof of Theorem 4.1.

Asymptotic behavior of u ǫ

Using the regularity results in sections 3 and 4, we can now describe the asymptotic behavior of u ǫ and prove Theorems 1.1 and 1.2. Here we prove Theorem 1.1. The proof of Theorem 1.2 is analogous, except the limit of the integral term in equation [START_REF] Desvillettes | On mutation-selection dynamics[END_REF]. The latter has been studied in [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Brändle | Large deviations estimates for some non-local equations I. fast decaying kernels and explicit bounds[END_REF][START_REF] Barles | Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics[END_REF][START_REF] Perthame | Transport equations in biology[END_REF].

Proof of theorem 1.1. step 1 (Limit) According to section 3, u ǫ are locally uniformly bounded and continuous. So by Arzela-Ascoli Theorem after extraction of a subsequence, u ǫ converges locally uniformly to a continuous function u.

step 2 (Initial condition) We proved that if u 0 ǫ are uniformly continuous then u ǫ will be locally uniformly bounded and continuous in [0, T ] × R d . Thus we can apply Arzela-Ascoli near t = 0 as well. Therefore we have u(0, x) = lim ǫ→0 u ǫ (0, x) = u 0 (x). step 3 max x∈R d u = 0 Assume that for some t, x we have 0 < a ≤ u(t, x). Since u is continuous u(t, y) ≥ a 2 on B(x, r), for some r > 0. Thus we have n ǫ (t, y) → ∞, while ǫ → 0. Therefore I ǫ (t) → ∞ while ǫ → 0. This is a contradiction with [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF].

To prove that max x∈R d u(t, x) = 0, it suffices to show that lim ǫ→0 n ǫ (t, x) = 0, for some x ∈ R d . From [START_REF] Meszéna | Link between population dynamics and dynamics of Darwinian evolution[END_REF] we have

u ǫ (t, x) ≤ -A|x| + B + Ct.
It follows that for M large enough lim = 0 and thus lim ǫ→0 |x|≤M n ǫ (t, x)dx = 0. This is a contradiction with (40). It follows that max

x∈R d u(t, x) = 0, ∀t > 0.
step 4 (supp n(t, •) ⊂ {u(t, •) = 0}) Assume that u(t 0 , x 0 ) = -a < 0. Since u ǫ are uniformly continuous in a small neighborhood of (t 0 , x 0 ), (t, x) ∈ [t 0δ, t 0 + δ]× B(x 0 , δ), we have u ǫ (t, x) ≤ -a 2 < 0 for ǫ small. We deduce that [t 0 -δ,t 0 +δ]×B(x 0 ,δ) n dtdx = [t 0 -δ,t 0 +δ]×B(x 0 ,δ) lim ǫ→0 e uǫ(t,x) ǫ dtdx = 0. Therefore we have supp n(t, •) ⊂ {u(t, •) = 0} for almost every t.

step 5 (Limit equation) Finally we recall, following [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF], how to pass to the limit in the equation. Since u ǫ is a solution to [START_REF] Geritz | Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF], it follows that φ ǫ (t, x) = u ǫ (t, x) -t 0 R(x, I ǫ (s))ds is a solution to the following equation

∂ t φ ǫ (t, x) -ǫ△φ ǫ (t, x) -|∇φ ǫ (t, x)| 2 -2∇φ ǫ (t, x) • t 0 ∇R(x, I ǫ (s))ds = ǫ t 0 △R(x, I ǫ (s))ds + | t 0 ∇R(x, I ǫ (s))ds| 2 .
Note that we have I ǫ (s) → I(s) for all s ≥ 0 as ǫ goes to 0, and on the other hand, the function R(x, I) is smooth. It follows that we have the locally uniform limits lim According to step 1, u ǫ (t, x) converge locally uniformly to the continuous function u(t, x) as ǫ vanishes. Therefore φ ǫ (t, x) converge locally uniformly to the continuous function φ(t, x) = u(t, x) -t 0 R(x, I(s))ds as ǫ vanishes. It follows that φ(t, x) is a viscosity solution to the equation

∂ t φ(t, x) -|∇φ(t, x)| 2 -2∇φ(t, x) • t 0 ∇R(x, I(s))ds = | t 0 ∇R(x, I)ds| 2 .
In other words u(t, x) is a viscosity solution to the following equation

∂ t u(t, x) = |∇u(t, x)| 2 + R(x, I(t)).

A Proof of theorem 2.1 A.1 Existence

Let T > 0 be given and A be the following closed subset:

A = {u ∈ C [0, T ], L 1 (R d ) , u ≥ 0, u(t, •) L 1 ≤ a}, where a = n 0 ǫ dx e K 2 T
ǫ . Let Φ be the following application:

Φ : A → A u → v,
where v is the solution to the following equation

∂ t v -ǫ△v = v ǫ R(x, I u (t)), x ∈ R, t ≥ 0, v(t = 0) = n 0 ǫ . (41) 
I u (t) = R d ψ(x)u(t, x)dx, (42) 
and R is defined as below

R(x, I) =      R(x, I) if Im 2 < I < 2I M , R(x, 2I M ) if 2I M ≤ I, R(x, Im 2 ) if I ≤ Im 2 .
We prove that (a) Φ defines a mapping of A into itself, (b) Φ is a contraction for T small.

With these properties, we can apply the Banach-Picard fixed point theorem and iterate the construction with T fixed.

Assume that u ∈ A. In order to prove (a) we show that v, the solution to (41), belongs to A. By the maximum principle we know that v ≥ 0. To prove the L 1 bound we integrate (41)

d dt vdx = v ǫ R(x, I u (t))dx ≤ 1 ǫ max x∈R d R(x, I u (t)) vdx ≤ K 2 ǫ vdx,
and we conclude from the Gronwall Lemma that

v L 1 ≤ n 0 ǫ dx e K 2 T ǫ = a.
Thus (a) is proved. It remains to prove (b). Let u 1 , u 2 ∈ A, v 1 = Φ(u 1 ) and v 2 = Φ(u 2 ). We have

∂ t (v 1 -v 2 ) -ǫ△(v 1 -v 2 ) = 1 ǫ (v 1 -v 2 ) R(x, I u 1 ) + v 2 R(x, I u 1 ) -R(x, I u 2 ) . Noting that v 2 L 1 ≤ a, and | R(x, I u 1 ) -R(x, I u 2 )| ≤ K 1 |I u 1 -I u 2 | ≤ K 1 ψ M u 1 -u 2 L 1 we obtain d dt v 1 -v 2 L 1 ≤ K 2 ǫ v 1 -v 2 L 1 + aK 1 ψ M ǫ u 1 -u 2 L 1 . Using v 1 (0, •) = v 2 (0, •) we deduce v 1 -v 2 L ∞ t L 1 x ≤ aK 1 ψ M K 2 (e K 2 T ǫ -1) u 1 -u 2 L ∞ t L 1 x .
Thus, for T small enough such that e

K 2 T ǫ (e K 2 T ǫ -1) < K 2 2K 1 ψ M n 0 ǫ
, Φ is a contraction. Therefore Φ has a fixed point and there exists n ǫ ∈ A a solution to the following equation

∂ t n ǫ -ǫ△n ǫ = nǫ ǫ R(x, I(t)), x ∈ R, 0 ≤ t ≤ T, n ǫ (t = 0) = n 0 ǫ . I(t) = R d ψ(x)n ǫ (t, x)dx,
With the same arguments as A.2 we prove that Im 2 < I(t) < 2I M and thus n ǫ is a solution to equations ( 1)-( 2) for t ∈ [0, T ]. We fix T small enough such that e

K 2 T ǫ (e K 2 T ǫ -1) < K 2 ψm 4K 1 ψ M I M .
Then we can iterate in time and find a global solution to equations ( 1)-(2).

A.2 Uniform bounds on I ǫ (t)

We have

dI ǫ dt = d dt R d ψ(x)n ǫ (t, x)dx = ǫ R d ψ(x)△n ǫ (t, x)dx + 1 ǫ R d ψ(x)n ǫ (t, x)R(x, I ǫ (t))dx.
We define

ψ L = χ L • ψ ∈ W ∞ 2,c (R d )
, where χ L is a smooth function with a compact support such that χ L | B(0,L) ≡ 1, χ L | R\B(0,2L) ≡ 0. Then by integration by parts we find

R d ψ L (x)△n ǫ (t, x)dx = R d △ψ L (x)n ǫ (t, x)dx. As L → ∞, ψ L converges to ψ in W 2,∞ loc (R d ). Therefore we obtain lim L→∞ R d △ψ L (x)n ǫ dx = R d △ψ(x)n ǫ dx, lim L→∞ R d ψ L (x)△n ǫ (t, x)dx = R d ψ(x)△n ǫ (t, x)dx.
From these calculations we conclude

dI ǫ dt = ǫ R d △ψ(x)n ǫ (t, x)dx + 1 ǫ R d ψ(x)n ǫ (t, x)R(x, I ǫ (t))dx.
It follows that B A locally uniform BV bound on I ǫ for equations ( 3)- [START_REF] Barles | A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations[END_REF] In this appendix we prove Theorem 2.4. We first integrate (3) over R d to obtain

-ǫ C 1 ψ m I ǫ + 1 ǫ I ǫ min x∈R d R(x, I ǫ ) ≤ dI ǫ dt ≤ ǫ C 1 ψ m I ǫ + 1 ǫ I ǫ max x∈R d R(x, I ǫ ). Let C = C 1 K 1 ψm . As soon as I ǫ overpasses I M + Cǫ 2 , we have R(x, I ǫ ) < -Cǫ 2 K 1 = -ǫ
d dt I ǫ (t) = 1 ǫ n ǫ (t, x) R (x, I ǫ (t)) + b (x, I ǫ (t)) dx.
Define J ǫ (t) = d dt I ǫ (t). We differentiate J ǫ and we obtain

d dt J ǫ (t) = 1 ǫ J ǫ (t) n ǫ (t, x) ∂(R + b) ∂I (x, I ǫ (t))dx + 1 ǫ 2 R(x, I ǫ ) + b(x, I ǫ ) n ǫ (t, x)R(x, I ǫ ) + K ǫ (y -x)b(y, I ǫ )n ǫ (t, y)dy dx.
We rewrite this equality in the following form

d dt J ǫ (t) = 1 ǫ J ǫ (t) n ǫ (t, x) ∂(R + b) ∂I x, I ǫ (t) dx + 1 ǫ 2 n ǫ (t, x) R x, I ǫ (t) + b x, I ǫ (t) 2 dx + 1 ǫ 2 K ǫ (y -x) R x, I ǫ (t) -R y, I ǫ (t) b y, I ǫ (t) n ǫ (t, y)dydx + 1 ǫ 2 K ǫ (y -x) b x, I ǫ (t) -b y, I ǫ (t) b y, I ǫ (t) n ǫ (t, y)dydx. It follows that d dt J ǫ (t) ≥ 1 ǫ J ǫ (t) n ǫ (t, x) ∂(R + b) ∂I x, I ǫ (t) dx + 1 ǫ 2 n ǫ (t, x) R x, I ǫ (t) + b x, I ǫ (t) 2 dx - K 2 + b M L 1 ǫ K(z)|z|b x + ǫz, I ǫ (t) n ǫ (t, x + ǫz)dzdx ≥ 1 ǫ J ǫ (t) n ǫ (t, x) ∂(R + b) ∂I x, I ǫ (t) dx + 1 ǫ 2 n ǫ (t, x) R x, I ǫ (t) + b x, I ǫ (t) 2 dx - C 1 ǫ ,
where C 1 is a positive constant. Consequently, using ( 14) we obtain

d dt (J ǫ (t)) -≤ C 1 ǫ - C 2 ǫ (J ǫ (t)) -,
with (J ǫ (t)) -= max(0, -J ǫ (t)). From this inequality we deduce

(J ǫ (t)) -≤ C 1 C 2 + (J ǫ (0)) -e -C 2 t ǫ .
With similar arguments we obtain

(J ǫ (t)) + ≥ - C ′ 1 C ′ 2 + (J ǫ (0)) + e -C ′ 2 t ǫ ,
with (J ǫ (t)) + = max(0, J ǫ (t)). Thus ( 23) is proved. Finally, we deduce the locally uniform BV bound ( 24)

T 0 | d dt I ǫ (t)|dt = T 0 d dt I ǫ (t)dt + 2 T 0 ( d dt I ǫ (t)) -dt ≤ I M -I m + 2C ′ T + O(1).
C Complement to the proof of the regularizing effect [START_REF] Lions | Regularizing effects for first-order Hamilton-Jacobi equations[END_REF] In this section, we provide some details for the comparison principle used in the proof of [START_REF] Lions | Regularizing effects for first-order Hamilton-Jacobi equations[END_REF]. In Subsection 3.2 we proved that p = ∇v satisfies the following (see the inequality [START_REF] Souganidis | Front propagation: theory and applications, CIME course on 'viscosity solutions[END_REF])

∂|p| ∂t -ǫ△|p| -2 ǫ v -2v p • ∇|p| + 2(|p| -θ) 3 ≤ 0.
To apply the comparison principle we first claim the following lemma that we will prove at the end of this section.

Lemma C.1. Assume ( 8) and [START_REF] Barles | Front propagation for reaction-diffusion equations arising in combustion theory[END_REF]. Then, there exist positive constants A 1 , B 1 and D 1 such that, for all t 1 > 0 and ǫ ≤ 1,

- A 1 |x| 2 + B 1 + D 1 t t 1 ≤ u ǫ (t, x), for (t, x) ∈ (t 1 , +∞) × R d . (43) 
The above lemma implies that

D(T ) ≤ v ǫ ≤ 2D 2 + 1 t 1 (B 1 + D 1 T + A 1 |x| 2 ), for (t, x) ∈ (t 1 , +∞) × R d .
We deduce that, for some positive constants A 2 and D 2 (T ),

∂|p| ∂t -ǫ△|p| - 1 √ t 1 [A 2 |x| + D 2 (T )] |p| • ∇|p| + 2(|p| -θ) 3 ≤ 0, for (t, x) ∈ (t 1 , +∞) × R d . (44)
Define, for (t, x) ∈ (t 1 , T ] × B R (0) and for A 3 to be chosen later,

z(t, x) = 1 2 √ t -t 1 + A 3 R 2 √ t 1 (R 2 -|x| 2 ) + θ.
We prove that, for A 3 = A 3 (T ) chosen large enough, z is a strict supersolution of (44) in (t 1 , T ]×B R (0). To this end, we compute

∂ t z(t, x) = - 1 4(t -t 1 ) √ t -t 1 , ∇z(t, x) = 2A 3 R 2 x √ t 1 (R 2 -|x| 2 ) 2 , ∆z(t, x) = 2A 3 R 2 √ t 1 (R 2 -|x| 2 ) 2 + 8A 3 R 2 |x| 2 √ t 1 (R 2 -|x| 2 ) 3 .
We then replace this in (44) to obtain

∂z ∂t -ǫ∆z -1 √ t 1 (A 2 |x| + D 2 (T ))|z∇z| + 2(z -θ) 3 = - 1 4(t-t 1 ) √ t-t 1 -ǫ 2A 3 R 2 √ t 1 (R 2 -|x| 2 ) 2 + 8A 3 R 2 |x| 2 √ t 1 (R 2 -|x| 2 ) 3 -1 √ t 1 (A 2 |x| + D 2 )( 1 2 √ t-t 1 + A 3 R 2 √ t 1 (R 2 -|x| 2 ) + θ) 2A 3 R 2 |x| √ t 1 (R 2 -|x| 2 ) 2 +2( 1 2 √ t-t 1 + A 3 R 2 √ t 1 (R 2 -|x| 2 )) 3 ≥ -ǫ 2A 3 R 2 √ t 1 (R 2 -|x| 2 ) 2 + 8A 3 R 4 √ t 1 (R 2 -|x| 2 ) 3 -1 √ t 1 (A 2 R + D 2 )( 1 2 √ t-t 1 + A 3 R 2 √ t 1 (R 2 -|x| 2 ) + θ) 2A 3 R 3 √ t 1 (R 2 -|x| 2 ) 2 +( 3 √ t-t 1 ) A 2 3 R 4 t 1 (R 2 -|x| 2 ) 2 + 2 A 3 3 R 6 t 1 √ t 1 (R 2 -|x| 2 ) 3 ,
where we have used that |x| ≤ R. One can verify that the r.h.s. of the above equality, for R > 1, ǫ ≤ 1, t 1 ≤ 1 and A 3 = A 3 (T ) large enough, is strictly positive. Therefore, z is a strict supersolution of (44) in (t 1 , T ] × B R (0) and for ǫ ≤ 1.

We next prove that

|p(t, x)| ≤ z(t, x), in (t 1 , T ] × B R (0).
To this end, we notice that z(t, x) goes to +∞ as |x| → R or as t → t 1 . Therefore, |p|(t, x)z(t, x) attains its maximum at an interior point of (t 

≤ ∂ t (|p|(t m , x m ) -z(t m , x m )), 0 ≤ -∆(|p|(t m , x m ) -z(t m , x m )), |p|(t m , x m )∇|p|(t m , x m ) = z(t m , x m )∇z(t m , x m ).
Combining the above properties with the facts that |p| and z are respectively sub and strict supersolution of (44), we obtain that

2(|p|(t m , x m ) -θ) 3 -2(z(t m , x m ) -θ) 3 < 0. It follows that |p|(t m , x m ) < z(t m , x m ),
which is in contradiction with the choice of (t m , x m ). We deduce that

|p(t, x)| ≤ z(t, x) = 1 2 √ t -t 1 + A 3 (T )R 2 √ t 1 (R 2 -|x| 2 ) + θ(T ), in (t 1 , T ] × B R (0).
The above equality holds for all R > 1. We let R → ∞ to obtain

|p(t, x)| ≤ 1 2 √ t -t 1 + A 3 (T ) √ t 1 + θ(T ), in (t 1 , T ] × R d .
It follows that

|p(t, x)| ≤ A 4 (T ) √ t 1 + θ(T ), in (2t 1 , T ] × R d .
Finally, choosing t 1 = t 0 2 we obtain [START_REF] Lions | Regularizing effects for first-order Hamilton-Jacobi equations[END_REF].

We conclude by providing the proof of Lemma C.1:

Proof of Lemma C.1. We first notice thanks to (8) that n ǫ satisfies -K 2 n ǫ ≤ ǫ∂ t n ǫǫ 2 ∆n ǫ .

Using the heat kernel and assumption [START_REF] Barles | Front propagation for reaction-diffusion equations arising in combustion theory[END_REF], we obtain that 

ǫ d 2 (4πt)

D Lipschitz bounds for equations (3)-(4)

Here we prove that u ǫ are locally uniformly Lipschitz without assuming that the latter are differentiable. The proof follows the same ideas as in section 4. From assumptions [START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] and ( 12) it follows that We deduce 

  n ǫ (t, x)dx ≥ I ′ m ψ M .If u(t, x) < 0 for all |x| < M then lim ǫ→0 e uǫ(t,x) ǫ

  , I ǫ (s))ds = t 0 △R(x, I(s))ds, for all t ≥ 0. Moreover the functions t 0 R(x, I(s))ds, t 0 ∇R(x, I(s))ds and t 0 △R(x, I(s))ds are continuous.

2 .

 2 Let c = 2L 1 b M bm . From (35) we have∂ t u ǫ (t, x + h)u ǫ (t, x) + ch 2u ǫ (t, x + h)u ǫ (t, x) -(1 + 2ch)R(x + h, I ǫ ) + (1 + ch)R(x, I ǫ ) = K(z)b(x + h + ǫz, I ǫ )e uǫ(t,x+h+ǫz)-uǫ(t,x+h) ǫ dz -K(z)b(x + ǫz, I ǫ )e uǫ(t,x+ǫz)-uǫ(t,x) ǫ dz + ch K(z)2b(x + h + ǫz, I ǫ )e uǫ(t,x+h+ǫz)-uǫ(t,x+h) ǫ dz -K(z)b(x + ǫz, I ǫ )e uǫ(t,x+ǫz)-uǫ(t,x) ǫ dz Define α = uǫ(t,x+ǫz)-uǫ(t,x) ǫ , β = uǫ(t,x+h+ǫz)-uǫ(t,x+h) ǫ , ∆(t, x) = 2u ǫ (t, x+h)-u ǫ (t, x) and w ǫ (t, x) = uǫ(t,x+h)-uǫ(t,x) h+ c∆(t, x). Using the convexity inequalitye β ≤ e α + e β (βα),we deduceh∂ t w ǫ (t, x) -(1 + 2ch)R(x + h, I ǫ ) + (1 + ch)R(x, I ǫ ) ≤ K(z)b(x + h + ǫz, I ǫ ) e α + e β (βα) dz -K(z)b(x + ǫz, I ǫ )e α dz + ch 2K(z)b(x + h + ǫz, I ǫ )e β dz -K(z)b(x + ǫz, I ǫ )e α dz ≤ K(z) b(x + h + ǫz, I ǫ )b(x + ǫz, I ǫ ) e α dz + K(z)b(x + h + ǫz, I ǫ )e β βα + ch ∆(t, x + ǫz) -∆(t, x) ǫ dz + ch K(z)b(x + h + ǫz, I ǫ )e β (2 -2β + α)dzch K(z)b(x + ǫz, I ǫ )e α dz.

∂ 2 -

 2 t w ǫ (t, x) ≤ K(z)b(x + h + ǫz, I ǫ )e β w ǫ (t, x + ǫz)w ǫ (t, x) ǫ dz+ K 2 + 3cK 2 + K(z) cb M e β (2 -2β + α) + (L 1 b Mcb m )e α dz.Notice thatcb M e β (2 -2β + α) + (L 1 b Mcb m )e α = cb M e β (2 -2β + α) -L 1 b M e α ,is bounded from above. Indeed if we first maximize the latter with respect to β and then with respect to α we obtaincb M e β (2 -2β + α) -L 1 b M e α ≤ 2cb M e α L 1 b M e α ≤ b M c 2 L 1 .

∂

  t w ǫ (t, x) ≤ K(z)b(x + h + ǫz, I ǫ )e β w ǫ (t, x + ǫz)w ǫ (t, x) ǫ dz + G,where G is a constant. Therefore by the maximum principle, (36) and (37), we havew ǫ (t, x) ≤ Gt+ ∇u 0 ǫ L ∞ -2cA|x + h| + 2cBcu 0 ǫ (x = 0) + c ∇u 0 ǫ L ∞ |x|.Using again (36) and (37) we conclude thatu ǫ (t, x + h)u ǫ (t, x) h ≤ (G + 2cK 2 )t + c -A+ ∇u 0 ǫ L ∞ |x| + 2|x + h|(45)+ 3cB+ ∇u 0 ǫ L ∞ -3c inf u 0 ǫ (x = 0).

  2 C 1 ψm and thus dIǫ dt becomes negative. Similarly, as soon as I ǫ becomes less than I m -Cǫ 2 , dIǫ dt becomes positive. Thus (19) is proved.

  [START_REF] Barles | Regularity results for first-order Hamilton-Jacobi equations[END_REF] , T ]×B R (0). We choose t m ≤ T such that the maximum of |p|(t, x)z(t, x) in the set (t 1 , t m ] × B R (0) is equal to 0. If such t m does not exist, we are done.

Let x m such that |p|(t, x)z(t, x) ≤ |p|(t m , x m )z(t m , x m ) = 0 for all (t, x) ∈ (t 1 , t m ) × B R (0)

. At such point, we have 0

  ≤ n ǫ (t, x), ∀(t, x) ∈ R + × R d , |B L 0 (x 0 )|) -|x| 2 + (L 0 + |x 0 |) 2 2t -(M 0 + K 2 t) ≤ u ǫ (t, x), ∀(t, x) ∈ R + × R d . |B L 0 (x 0 )|) -|x| 2 + (L 0 + |x 0 |) 2 2t 1 -(M 0 + K 2 t) ≤ u ǫ (t, x), ∀(t, x) ∈ (t 1 , +∞) × R d .Finally (43) follows for ǫ ≤ 1, choosing constants A 1 , B 1 and D 1 large enough and noticing that log(t) goes more slowly that t to the infinity.

	We deduce that	
				ǫ (4πt) d 2	d 2	|B L 0 (x 0 )|e -2|x| 2 +2(L 0 +|x 0 |) 2 4ǫt	-	M 0 +K 2 t ǫ
	and hence			
	ǫ log(	d 2 (4πt) ǫ	d 2
	It follows that	
	ǫ log(	d 2 (4πt) ǫ	d 2	

d 2 |y-x 0 |≤L 0 e -(x-y) 2 4ǫt -M 0 +K 2 t ǫ dy ≤ n ǫ (t, x), ∀(t, x) ∈ R + × R d .