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Abstract Characterizing the behaviour of multivariate or spatial extreme values is of
fundamental interest to understand how extreme events tend to occur. In this paper
we propose to test for the asymptotic independence of bivariate maxima vectors. Our
test statistic is derived from a madogram, a notion classically used in geostatistics to
capture spatial structures. The test can be applied to bivariate vectors, and a general-
ization to the spatial context is proposed. For bivariate vectors, a comparison to the
test by Falk and Michel (2006) is conducted through a simulation study. In the spatial
case, special attention is paid to pairwise dependence. A multiple test procedure is
designed to determine at which lag asymptotic independence takes place. This new
procedure is based on the bootstrap distribution of the number of times the null hy-
pothesis is rejected. It is then tested on maxima of three classical spatial models and
finally applied to two climate datasets.

Keywords Bivariate extremes - Asymptotic independence - Max-stable random
fields - Spatial processes

1 Introduction

For a wide class of environmental and climate studies, spatial extreme values are
of fundamental interest since extreme events may have dramatic consequences. If
standard geostatistic approaches perform well for statistical inference on the mean
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behaviour of spatial processes, it is well known that these ones are of poor inter-
est when dealing with extreme realizations. As in the univariate case, the mean and
the extremes of a spatial process are essentially of different nature and spatial de-
pendencies related to mean values and to extreme ones can be very different. As a
consequence, specific approaches and models have to be developped to infer on the
extremal behaviour of spatial processes.

Problems concerning environmental extremes are multivariate in character because
data sets are more often spatialized. The multivariate extreme value theory (MEVT)
offers various notions to capture the main characteristics of the underlying depen-
dence structure (see for example Beirlant et al. (2004) and the references therein).
A useful one is asymptotic independence. Roughly speaking, a random vector has
its components asymptotically independent if the componentwise maxima are ulti-
mately independent. In practice, asymptotic independence is difficult to detect and
may lead to erroneous conclusions concerning the prediction of extreme events if not
addressed properly. Typically, fitting a model under a wrong dependence assumption
in extreme values may result in a large extrapolation error.

In this paper, we are concerned with testing for pairwise independence of maxima
from spatial data. At first, a new and simple test for the asymptotic independence
of bivariate vectors of maxima is proposed. An extension to the spatial case is then
derived, leading to a test for asymptotic independence on several classes of distance.
It involves a standard geostatistical tool that is called a madogram (Matheron 1989).
The paper is organized as follows. Bivariate vectors of maxima are first considered.
In section 2, the notion of asymptotic independence for bivariate vectors is reminded
and classical statistical tests of asymptotic independence are presented. The test we
propose is introduced in section 3. Its performances are compared with that of Falk
and Michel (2006) using simulations. The spatial framework is then considered. A
test for asymptotic independence applicable to random fields of maxima is proposed
in section 4. Two cases are distinguished depending on whether a single or multiple
realizations are available. Because rejecting the null hypothesis of asymptotic inde-
pendence on several classes of distances requires a multi-test approach on (spatially)
correlated data, a bootstrap procedure controlling the False Discovery Rate (FDR)
is set up. This procedure is finally applied, firstly in section 4 on simulated random
fields with known asymptotic dependence behaviours, secondly in section 5 on two
real data sets (annual maximal temperatures of 29 French towns and annual maximal
precipitations over a 30 years period in the French region of Burgundy). Conclusions
are drawn and some perspectives for future work are discussed in section 6.

2 Bivariate extreme distributions and asymptotic independence

Let (X1,Y1), (X2,Y2) ...be independent copies of a bivariate random vector (X,Y)
with distribution function K and marginals Fy and Fy. The classical extreme bivariate
theory is concerned with the limit behaviour of

(M (X), M, (Y)) = (‘maan,-,iznlla)‘( Y;)

=1, seesll



as n — +oo. Because of the definition, the marginals of (M, (X),M,(Y)) belong to
the generalized extreme value (GEV) distribution family. The general form of a GEV
distribution is GV, (x) = exp (— [1+&54] /%) with u e R, 6> 0, £ € R
(Coles 2001).

From now onward, it is assumed without loss of generality that Fxy = Fy = F, where
F(+) is the unit Fréchet distribution F(z) = exp(—1/z), z > 0. Hence, the limit distri-
bution of M,,(X) and M, (Y) is also Fréchet.

The following theorem (de Haan and Resnick 1977) characterizes the limit joint dis-
tribution of (M,,(X),M,(Y)).

Theorem 1 [f P (M,(X) < nx,M,(Y) < ny) — G(x,y), where G is a non-degene-
rate distribution function, then G(-,-) takes the form G(x,y) = exp(—V (x,y)) with
! o l-o
Vix,y)= 2/ max | —,—— | dH(®)
0 X y
and H is a distribution on [0,1] with mean } (spectral measure).

Note that the marginal distributions of G are unit Fréchet. In the particular case where
H = (8 + 81)/2, then G(x,y) = F(x)F(y). We then say that X and Y are asymptoti-
cally independent. It has been established by Joe (1993) that (X,Y) are asymptotically
independent if and only if

. PX>zY>z) B
x:gigw—}L%P(Y>z|X>z)—O

Inference on y is difficult because few observations are available as z — oco. Using
the properties of V, it can be shown that y can be written as 2 — 0 where 1 < 6 <2
is a coefficient satisfying G(x,x) = exp(—8/x) = F(x)?. 6 is called the extremal
coefficient (see Schlather and Tawn (2003) for details). Asymptotic independence
corresponds to the case 6 = 2.

3 Testing for bivariate asymptotic independence
3.1 Two usual tests
Several methods to test for the bivariate asymptotic independence have been are pro-

posed in the literature. Only two of them are discussed here, namely a graphical test
by de Haan and de Ronde (1998) and a statistical test by Falk and Michel (2006).

3.1.1 A graphical test

Suppose that G is non-degenerate, and consider the function

E(x,y):limnP(l—F(X)<;£or1—F(Y)<%) x,y>0

n—oo



Its level sets 2. = {(x,y) | £(x,y) = c} satisfy a number of interesting properties es-
tablished by de Haan and de Ronde (1998). In particular, the curve 2. along with
the axes x = 0 and y = 0 delimits a convex domain D, such that ¢ < ¢’ = D. C D,.
Moreover the graph of this curve is closely related to the strength of the dependence
between X and Y. 2. is equal to {(x,y) |x+y = c} if X and Y are asymptotically
independent, and {(x,y) | max(x,y) = ¢} if X and Y are fully dependent. A graphical
test based on 2, curves with different ¢ values can be used: asymptotic indepen-
dence comes out as a straight line between (0,c¢) and (c,0). Such an approach is only
a graphical one but can be helpful in practical situations.

3.1.2 A statistical test

Originally set up for bivariate distributions with reverse exponential margins, the test
by Falk and Michel (2006) can be adapted to unit Fréchet margins. More specifically,
let e > 0and ¢ € [0,1]. When € tends to 0, the conditional distribution function

Ke()=P{X "4y <er | X T+r <)

tends to ¢ if X and ¥ are asymptotically independent, and ¢ otherwise. This result can
be used to test for the asymptotic independence of X and Y using classical goodness-
of-fit tests such as the Kolmogorov-Smirnov or the likelihood ratio ones as well as
the chi-square test.

Note that Frick et al. (2007) recently proposed a generalization of Falk and Michel’s
work, based on a second order differential expansion of the spectral decomposition
of G. They focused on the case of a null hypothesis of tail dependence against a com-
posite alternative representing the various degrees of tail independence. Since these
hypothesis differ notably from the ones we consider, we will restrict our comparison
to the Falk and Michel approach.

3.2 A statistical test based on a madogram

In this section, the test we propose for bivariate vectors is presented. Simulations are
then used to compare its performances with those of the two aforementioned tests.

3.2.1 A new statistical test for bivariate vectors

Suppose again that G is non-degenerate with spectral measure H, and consider the
random variable

W= 2| FX)~F(Y) |

Because F(X) and F(Y) are uniformly distributed on [0, 1], their dependence rela-
tionships specify the distribution of W. If X =Y almost surely, then the distribution
of W is a Dirac distribution at 0. If X and Y are independent, then W admits the p.d.f.
fw(z) =4—8z on [0, %[ Of course many intermediary situations are possible be-
tween perfect dependence and full independence. In other words, the distribution of
W provides information about the asymptotic dependence between X and Y. Cooley



et al. (2006) have shown that the mean of W is related to the extremal coefficient 0
by the formula
o 1e-1 _

This formula and some variations (Bel et al. 2008), can be used for estimating 6.
Regarding the variance of W, a proof is given in the appendix that

1 o1/6—1\> 1 /1 d
2
o= ) 5 —— 2
Y6 4<9+1) 2Jo [1+A@)° @

where A is the classical Pickands dependence function

At) = 2/0.l max (o(1 —1),(1 — o)) dH (o)

In the case of asymptotic independence, A(f) = 1 and 633, = %

Formula (1) shows that vy, is a strictly monotonic increasing function of 8 with
Vi = % if and only if 8 = 2. Accordingly, the asymptotic independence of X and Y
can be checked by testing the null hypothesis Hy : viy = % against Hy : vy < é. Let
(X1,11),...,(Xp,Y,) be a sequence of independent copies of (X,Y). Then a natural
estimator for vy, is

—~ 1 & 4 .
Viw =5~ 2 | F(X) —F (i) |
iz
where F is the empirical distribution function as provided by the X;’s and the ¥;’s.
It can be shown (Fermanian et al. (2004)) that

~
Vi "8 72 4 0,1) 3)
Oow

as n — oo under Hy, providing a straightforward test for the asymptotic independence
of bivariate random vectors.

As the expectation vy is related to the well-known madogram used in spatial
statistics, we call this test the madogram test.

3.2.2 Simulation study

Samples of independent bivariate vectors of maxima are simulated and the null hy-
pothesis asymptotic independence is tested against non asymptotic independence.
Four bivariate distributions G(-,-) are considered. The first three ones are bivariate
max-stable distributions whereas the last one is an empirical distribution of bivariate
gaussian maxima. The max-stable distributions considered are the following ones:



1. Logistic distribution (Tawn 1988)
Defined as

G(x,y):exp{— (xil/“—i—y*l/a)a} x,y >0,

this bivariate distribution depends on one parameter 0 < &¢ < 1. When o = 1, we
have G(x,y) = exp{—(x~! +y~!)}, which is the independence case. When o —
0, then we get G(x,y) — exp{—max(x~!,y~!)}, which is the perfect dependence
case.

2. Asymmetric logistic distribution (Tawn 1988)
This generalization of the logistic distribution allows asymmetry and nonexchange-
ability. Its general form is given by

_ _ 1/ /o o
G(x,y)exp{lxll,llyllfz<(l?) “+(l/;2> ) } x,y>0

It depends on 3 parameters, namely 0 < @ < 1 and 0 < yp, ¥, < 1. Independence
corresponds to & = 1 or Y1y, = 0, whereas perfect dependence is obtained when
iy, =1and a — 0.

3. Hiisler-Reiss distribution (1989)
This bivariate distribution is defined as

1 1 o, vy 1 1 a, x
G = ——P| —4+=log= | ——P( —+ —log- 0
(x,y) exp{ . <a+20gx) 5 <a+2ogy>} X,y >0,
where ¢(-) is the standard normal distribution function. It depends on one pa-

rameter o > 0. Independence and perfect dependence are limit cases respectively
obtained when o0 — 0 and ¢ — co.

500 samples of size 500 are simulated per model. For the first three models, the
samples are drawn using the R-package evd Stephenson (2002) with specified param-
eter values. Regarding the gaussian model, each sample is generated by taking 500
times the componentwise maxima over 2000 realizations of a bigaussian vector.

Figure 1 shows how the graphical test performs on those 500x500 samples. It
can be checked that the fourth model produces straight contour lines, which is not the
case for the three max-stable models.

Asymptotic independence is now tested using 4 different statistics, namely the
madogram statistic and three other statistics derived from the Falk and Michel (2006)
test procedure (Neyman-Pearson, Kolmogorov-Smirnov and Chi-square statistics).
This procedure requires a constant € that has been chosen as the 90% quantile of the
distribution of X 4-Y.

The power function, that is P(rejecting Hy | &), is calculated on the three max-
stable models using various parameter values. For the logistic and asymmetric logistic
models, ¢ varies from 0.1 to 0.9 by steps of 0.1, and from 0.90 to 0.99 by steps of
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Fig. 1 de Haan graphical test for models a) logistic (& = 0.2), b) asymmetric logistic (y; = y, =0.3), ¢)
Hiisler-Reiss (o = 0.9), d) Gaussian (p = 0.5)

0.01. The two parameters ¥ and y» of the asymmetric model are set to 0.4. For the
Hiisler-Reiss model, o varies from 0.01 to 0.09, from 0.1 to 1.0 and from 1. to 3. by
respective steps of 0.01, 0.1 and 1.

The type I error, that is P(accepting Hy | p), is calculated on a gaussian simula-
tion because the maxima of bigaussian vectors are well-known to be asymptotically
independent. The correlation p varies from -0.9 to 0.9 by steps of 0.1 and from 0.90
to 0.99 by steps of 0.01.

Results for the power functions are presented in Figures 2, 3 and 4. Despite its
simplicity, the madogram test based appears often as the most powerful. The Falk
and Michel procedure using the Neyman-Pearson goodness of fit test is slightly less
powerful meanwhile Chi-square and Kolmogorov-Smirnov tests are not powerful at
all. Regarding the gaussian case, Figure 5 shows that when p is growing the type I
error increases, and this more pronounced for the madogram test and the Neyman-
Pearson version of the Falk and Michel test.
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dependence and asymmetry parameters are fixed to 0.4.

4 The spatial framework
4.1 A test for spatial asymptotic independence
Let Z(-) be a stationary, isotropic random field with unit Fréchet marginal distribu-

tion. In geostatistics, it is usual to characterize spatial dependence using the semi-
variogram y(h) = $E(Z(s+h) — Z(s))*. However second order moments may not be
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adapted for extremes and in the sequel the madogram v (h) = 1E | Z(s+h) — Z(s) |
is considered instead. In order to determine whether asymptotic independence takes
place at lag h, the previous results on bivariate random vectors (section 3) can be
applied to all pairs (Z(sx),Z(s¢)) of samples such that ||sy — s¢|| = h or more gener-
ally h — & < ||sx — s¢|| < h+ € for some prespecified € > 0. Two different situations
are considered depending on whether a single realization or more than one indepen-
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dent realizations of the random field are available at each (sampled) site because the
procedure for testing asymptotic independence is not the same.

4.1.1 Case of multiple realizations

Let C be one class of distances. In order to test asymptotic independence (AI) on C,
we are faced with a problem of multiple hypothesis testing that needs to be carefully
handled. Controlling a global type I error, say ¢, under multiple hypothesis testing
is known to be difficult, and the false discovery rate (FDR) approach (Benjamini and
Hochberg 1995) appears as one of the most relevant to cope with it.

The FDR is defined as the expected proportion of the rejected null hypotheses among
the rejected hypotheses. Starting from the p-values associated to all pairs of sites of
class C, the FDR approach makes it possible to determine which p-values are sig-
nificant while controlling the fixed global type I error. In order to decide whether
the AI hypothesis is admissible or not, we need to assess how many pairs would be
wrongly rejected under the null hypothesis of global AI. A decision rule could be,
for instance, that there are less than a fixed proportion o of significant p-values. In
fact, this procedure would be justified if the p-values distribution was uniform un-
der the null hypothesis. In our case, the test statistics are spatially dependent, so that
the p-value distribution is unknown under the null hypothesis. A way to cope with
this problem is to resort to a bootstrap procedure. The test statistics that we consider
satisfy the PRDS property!, so that the standard Benjamini-Hochberg procedure for
determining significant p-values controls the FDR as in an independent framework
(Benjamini and Yekutieli 2001). Let R be the (data based) number of individual hy-
pothesis rejected using this approach. The following procedure aims at simulating the
distribution of R under the null hypothesis of Al while preserving the spatial depen-
dence structure. In this procedure, S, stands for the set of all sites whose distance to
a given site sy belongs to class C. Its cardinality is denoted by my.

1. Let Z(sy) = (Zi'(s[),i: 1,...,n) be the vector of realizations at s; and denote
by Z*(s¢) = (Z™(s¢),i=1,...,n) the resampling vector at s; obtained from a
standard bootstrap on L(sy);

n

— 1
2. for each site s; € Sy compute V*p(z)(s¢,5;) = ™ Z
i3

. compute the vector of the associated p-values (p7,...,p}, 4);

4. assign successively the role of sy to each sampled site and repeat (1) to (3). For
each particular site sy, pairs of sites which have been already taken into account
along the procedure are removed;

5. consider the complete sample of p-values obtained at the end of (4) and use the

FDR approach to count the number of rejected null hypotheses R* among all the

performed tests;

F(Z"(50) = F(Z(s)) |:

[9%)

' PRDS stands for Positive Regression Dependency on Subset. Let < be a partial order on R™. A subset
D of R™ is called an upper set if x € D and y > x implies y € D. Then the random vector X = (X,..., X))
is said to satisfy the PRDS property on Iy C {1,...,m} if for each upper set D and for each i € Iy, P(X €
D | X; = x) is a non-decreasing function in x.
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6. repeat (1) to (5) a large number of times and derive the empirical distribution of

R*.

Resampling values of one of the terms in the pair ensures the asymptotic inde-
pendence, while not resampling the other term will let the p-values being spatially
dependent. Hence this procedure gives an empirical distribution of the number R*
of rejected hypotheses under the assumption of global asymptotic independence in a
spatial dependent framework. It then suffices to compute empirically P(R* > R) to
conclude about the validity of this assumption.

4.1.2 Case of a single realization

When independent copies of the maxima field are not available, the stationarity prop-
erty of the field is to be used in order to calculate the estimators. Margin law is given
by F (2) = %Z;’:l Ii7(s;)<z) and the madogram is estimated in each distance class Cy
by
heCo  Ve(h)=5— ), |F(Z(s)—F(Z(st,)) |
" d(sg, 51,) €C

The asymptotic independence on each class can then be tested by the standard Benja-
mini-Hochberg procedure, but clearly the relevance of (3) will be affected because of
spatial dependencies.

4.2 Simulation study

Three random field models are considered, namely the gaussian model, the storm
model and the gaussian extremal model. Note that only the last two models are max-
stable. This prompted us to also consider random fields of maxima that are the max-
ima of 100 independent copies of a given random field. Independent copies of such
random fields of maxima are obviously obtained by repeating this procedure.

Gaussian model:

Let Z,2,,...,Z, be n independent copies of a 2-dimensional, stationary gaussian
random field with autocorrelation function p, and let M, = %max(Zl Za,y...,Zy). For
each site s € R?, the bivariate distribution of (M, (s), M, (s + h)) is asymptotically
independent. Accordingly 6 (h) = 2 as soon as & # 0.

Storm model:

Introduced by Smith (1990), this model is defined by Z(s) = sup;_;, §;g(x; —
5), s € R?, where ({;,x;); are the points of a Poisson process on ]0,0[xR? with in-
tensity measure dA ({,x) = {~2d{dx. The process Z is max-stable with unit Fréchet
margins. Here the deterministic function g is chosen as a bigaussian pdf with co-
variance matrix M. Let M,, = %max(Zl ,Zp,...,Zy) as before. Then the random vec-
tor (M, (s),M,(s+h)) is Hiisler-Reiss distributed with extremal coefficient function
0(h) = 2@(% WM *'h), where @ denotes the standard gaussian distribution func-
tion. As a consequence, asymptotic independence is expected as soon as & has its
modulus large enough.
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Extremal gaussian model:

Let Y be a stationary standard gaussian random field with correlation function p,
and let IT be a Poisson point process on |0,e0] with intensity measure dA({) =
V2r{2d{. The extremal gaussian process proposed by Schlather (2002) is de-
fined as Z(s) = maxgcgy §Y; (s), s € R%. It is asymptotically dependent with extremal

function 6(h) = 1+ /1 —p(h)/V/2. It should be pointed out that limj .. 6 (h) =
14+ 1/v/2 < 2, even if p(h) tends to 0 as the modulus |/| of & tends to oo. Therefore
asymptotic independence does not occur at any lag.

4.2.1 Case of multiple realizations

Results are presented on Figures 6 to 8. For the gaussian random field, the observed
value R of the number of rejected hypothesis fully agrees with the bootstrap distri-
bution of R*, and the global asymptotic independence is accepted at all lags. For
the gaussian storm process, the null hypothesis is rejected up to when || = 2.5 and
accepted beyond that distance. It can be mentioned that 6(2.5) = 1.79 with the cor-
relation matrix M = Id considered for this exercise. For the extremal gaussian model
with correlation function p(h) = exp(—|A|), the null hypothesis is always rejected,
whatever the class of distance considered, which was the expected conclusion as this
random field does not display asymptotic independence at any lag.

Gaussian model: repetitions case

[0; 2.5] [2.5; 5[ [5; 7.5
pv= 0.06 pv= 0.08 pv= 1
w2 ] w2
-
= =
= —
w w0
= =
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R bootstrap R bootstrap R bootstrap
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w = -
=
= =
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o o
=
= < L N R B
o 1 2 o 1 2 3 4 s o 1 2 3 4 s

R bootstrap R bootstrap R bootstrap

Fig. 6 Gaussian model, distribution of R*, number of rejected hypothesis under the null hypothesis for
some classes of distances. Bullet: observed R, pv=P(R* > R).



Storm model: repetitions case
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Fig. 7 Storm model, distribution of R*, number of rejected hypothesis under the null hypothesis for some
classes of distances. Bullet: observed R, pv=P(R* > R).

Extremal Gaussian model: repetitions case
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Fig. 8 Extremal gaussian model, distribution of R*, number of rejected hypothesis under the null hypoth-
esis for some classes of distances. Bullet: observed R, pv=P(R* > R).

4.2.2 Case of a single realization

For each random field of maxima, a p-value based on the madogram is computed
at each distance class. Then standard FDR procedure is applied to determine which
p-values are significant. The same operation is repeated 100 times. Tables 1 to 3 give
the number of significant and non significant p-values obtained on those realizations.
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Table 1 Gaussian model, number of significant and non significant p-values for several classes of dis-
tances in the spatial case.

Classes [0;25[ [2.5;5[ [5:;750 [7.5;100 [10;20[ [20;30[
significant 100 100 18 15 0 0
non significant 0 0 82 85 100 100

Table 2 Storm model, number of significative and non significant p-values for several classes of distances
in the spatial case.

Classes [0;17  [1:;2[ [2:;25] [25:;3] [3:;4] [4:5]
significative 100 84 33 17 12 8
non significative 0 16 67 83 88 92

Table 3 Extremal gaussian model, number of significant and non significant p-values for several classes
of distances in the spatial case.

Classes [0;10  [1;2[ [2:;25] [25:3] [3:;4] [4:5]
significative 100 92 69 49 44 26
non significative 0 8 31 51 56 74

For the gaussian random field and the first class of distances (2 < 0.05), the p-values
are given as significant for almost all copies. The correlation at small distances is too
high for asymptotic independence to be detected. For the storm model, the number of
non significant p-values becomes larger than that of significant p-values at distance
|| = 2.0, which is a bit smaller than what was obtained in the case of multiple re-
alizations. For the gaussian extremal model, the number of non significant p-values
becomes larger than that of significant p-values at a distance & = 0.3, which should
be never the case for this random field.

5 Applications: temperatures and precipitations
5.1 Temperature data

In this section, the spatial asymptotic independence of temperatures in France is in-
vestigated. The data consist of daily maxima temperature recorded at 29 locations for
more than 50 years, some of them up to 100 years. The closest sites are 40 km apart.
In order to have the data compatible with a stationary model, a spatiotemporal trend
was removed by calculating an annual profile X (z,s) at each site. The annual maxima
process considered for analysis is then the yearly block maximum

My(s):t:{n“g)g“{X(t,y,s)—X(t,s)}, ,V:l,,Y

where Y is the total number of years available for location s.

Figure 9 shows the distribution of R* produced by the bootstrap procedure under
the null hypothesis, together with the value of R observed on the data. The number of
rejected hypothesis is always very high whatever the class of distance (actually almost
all the p-values are significative even at large distances). We must conclude that the
field of temperature exhibits a very strong asymptotic dependence at all distances.
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Fig. 9 Maxima French temperatures, distribution of R*, number of rejected hypothesis under the null
hypothesis for some classes of distances. Bullet: observed R, pv=P(R* > R)

5.2 Precipitations data

The second example deals with the precipitations in the French region of Burgundy.
The basic data consist of maximum daily precipitations recorded at 146 locations
during 30 years. They were preprocessed by Meteo France research laboratory in
order to make them compatible with a stationary and isotropic random field. As a
result, only the maxima of the resultant field over the whole period were available,
which precluded an analysis based on several realizations.

A p-value is computed for each class of distances based on the estimated mado-
gram. Then the FDR procedure is performed to determine which p-values are signif-
icant, whereby one can derive the distance up to which the process shows asymptotic
dependence. Table 4 shows that this distance is about &2 = 50 km.

Table 4 Burgundy maxima precipitations, p — values function of distance in testing asymptotic indepen-
dence. Significant p-values are in bold fonts.

distance (km) | 0-7.5 7.5-15 15-225 225-30 30-40 40-60 60—80 80— 100

p-values 0.0 0.0 0.049 0.0 0.0 0.05 0.10 0.63

6 Conclusion

Prediction of spatial extreme events appears as a major challenge for various research
communities such as environmental ones. A possible way to predict spatial extreme
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events is to consider scenarios of extreme realizations using a simulation approach.
Such an approach needs a model to be specified, so that any information about the
type of extreme dependence at each lag is of fundamental interest for spatial mod-
eling. The test procedure that has been proposed allows us to discriminate between
asymptotic independence and asymptotic dependence on the basis of realizations of
maxima. It constitutes a first and helpful tool toward that goal.

APPENDIX

Let (X,Y) be a bivariate random vector with distribution G(-,-) and margins
Fréchet F(-). Denote by A(-) the related Pickands dependence function. Then,

G(x,y) =exp <<)1C - i)A <x-)lc-y)>

1l
E(UV)_E< / / 1u<U1V<Vdudv>
1
—/ / Y< )dudv
logv
logv
_/ / exp logu+logv)A(logu+logv>>dudv
The change of variables u = %, v = et gives
L0 4 z Z dzd
E(UV) = — (FmA))er™ = dadr
V)=~ [ [ ex oA e

/0 (1+A(r))?

leading to equation (2).
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