
HAL Id: hal-00371387
https://hal.science/hal-00371387

Submitted on 27 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Indoor experiments of self-organization and localization
protocols for hybrid networks

Fabrice Theoleyre, Fabrice Valois

To cite this version:
Fabrice Theoleyre, Fabrice Valois. Indoor experiments of self-organization and localization protocols
for hybrid networks. Workshop on advanced EXPerimental activities ON WIRELESS networks &
systems, Jun 2007, Helsinki, Finland. pp.1-6, �10.1109/WOWMOM.2007.4351700�. �hal-00371387�

https://hal.science/hal-00371387
https://hal.archives-ouvertes.fr

1

Indoor experiments of self-organization and

localization protocols for hybrid networks
Fabrice Theoleyre∗† Fabrice Valois∗,

∗ CITI - INSA Lyon / INRIA, 21 av Jean Capelle, 69621 Villeurbanne Cedex, France
† LIG - INPG / IMAG / CNRS, 681 rue de la passerelle, 38402 St Martin d’Heres Cedex, France

Abstract—MANET protocols are often evaluated through sim-
ulations, not in a real radio environment. We describe here the
implementation and deployment of a complete testbed for hybrid
networks, allowing a seamless integration of an ad-hoc network
in the Internet. In particular, a self-organization protocol and the
mobility management protocol benefiting from this organization
were implemented. The performances demonstrate the feasibility
and usefulness of this scheme. Besides, this testbed offers a
detailed description of the requirements to constitute a wireless
testbed and to test any protocol for ad hoc or hybrid networks.

I. INTRODUCTION

Mobile Ad Hoc Networks (MANET) are literally networks

ready to work. All terminals can communicate with other

nodes via wireless communications: MANET are spontaneous

networks, without any fixed infrastructure. The network must

function autonomously, without any human intervention: the

self-configuration property is vital. In consequence, the nodes

must collaborate to set up all network functions like routing.

Because a source can be not in the radio range of the

destination, intermediary nodes must relay the packets along a

multihop path, each node being both router and client. Thus,

a distributed routing algorithm must be proposed, computing

efficient routes and dealing with network dynamicity. Ad-hoc

networks connected to the Internet are often called hybrid

networks, constituting multihop cellular networks. The most

static nodes will surely forward the packets of the mobile

nodes. In this paper, we focus our work on how to provide

an efficient hybrid network, connected to the Internet, and test

in one scenario the Internet access of a mobile node.

Recent works propose to self-organize the network via a

virtual structure before its utilization. Such a self-organization

is useful to give a macroscopic and stable view of the topology.

Moreover, the introduced hierarchy allows to deploy more

efficient protocols. Self-Organized Mobility Management pro-

tocol (SOMoM) [1] proposes a routing scheme to intercon-

nect seamlessly a MANET to the Internet thanks to a self-

organization. Routing caches are distributed in the backbone,

to create stable routes and to reduce the overhead: a self-

organization seems promising.

The protocols for ad hoc networks are mainly evaluated

through simulations, like SOMoM was. Simulations present

several assets in terms of reproducibility, financial cost,

deployment ease and flexibility. However, simulations sim-

plify the radio environment: fading, shadowing, reflections

or diffractions cannot be well modeled. A tradeoff between

accuracy and execution speed is therefore required.

The contribution of this article is to present a performances

evaluation of both a self-organization and a routing protocol

for hybrid networks. The performances are measured in a

real indoor radio environment, reflecting the expected perfor-

mances of an operational hybrid network. Thus, this solution

proposes the creation of a complete multihop cellular network.

In a more general manner, this article details the complete net-

work architecture and proposes consequently the description of

a generic testbed, reusable to evaluate the performances of any

protocol for hybrid networks. This approach could constitute

the first step to set up an efficient wireless testbed for any

research in this domain.

This work is organized as follows. Section II presents a

panorama of existing testbeds for wireless networks. Section

II-A gives a short overview of the protocol implemented here,

and section III details the design and the implementation of our

testbed. Results are given in section IV and a discussion about

the issues of current testbeds in section V. Finally, section VI

concludes this article and gives some perspectives.

II. RELATED WORK

[2] presents a pioneering work in the conception of a testbed

for MANET, measuring the performances of DSR, mainly the

delays and TCP throughput. The authors propose also a MAC

filtering to set up any topology. Similarly, [3] proposes to

deploy cables, shields and signal attenuators to control the

signal propagation: the reproducibility is total. However, such

a testbed cannot model a real-world environment, limiting

the utilization to debugging. In [4], AODV exhibits a 50%

dropping rate in their outdoor environment, which is much

lower than the performances obtained here. Recently, [5]

presents a complete platform of 37 nodes. Approximatively

10% of the pairs of nodes do not find any route because of

the lack of reliability of broadcasts. Recently, [6] proposed a

survey of the current testbeds used in the scientific community.

A. Overview of SOMoM

In [7], we introduced a self-organization based on a virtual

backbone: some mobile nodes are elected to form a connected

structure. The backbone consists in a tree structure, the Internet

gateway being the root of this tree. Procedures allow to react

to topology changes and to reconstruct locally the structure

when it is broken. In particular, some control packets are

periodically flooded in the backbone tree by the root to

maintain the connectivity. In the future such packets will

2

Fig. 1. General behavior of SOMoM

integrate information about the Internet connection parameters

(e.g. the IP subnet, the Foreign Agent address,etc.). However,

a tree could present problems of robustness: only one radio

link failure could potentially disconnect the structure. Conse-

quently, the meshed backbone could be used instead of the tree

structure: when a packet must be forwarded by the backbone,

it is forwarded through all the radio links between backbone

members, and not only through the radio links child→parent.

The algorithms for construction and maintenance are proved

to be self-stabilizing and highlight in particular properties of

stability and robustness.

[1] presents a routing protocol based on this backbone:

SOMoM. It creates a multihop cellular network (or hybrid

network): it integrates an ad hoc bubble in a wired network.

The backbone nodes form a distributed cache, and packets

are forwarded through the backbone from or to the Internet

gateway. The self-organization algorithms already maintain a

tree structure (child→parent in the backbone). This allows to

create a route toward the root of the backbone, i.e. the Internet

gateway. This constitutes a gratuitous proactive route to the

Internet, an upload route. Inversely, a localization process

is initiated when the Internet gateway receives a packet to

forward to the ad hoc area, if no route is present in the

routing cache for this particular destination. A localization

request is flooded but only through the backbone nodes:

it reduces largely the overhead. Then, a download route is

created distributively in the backbone. We adopted a cross-

layer approach: the self-organization and routing protocols

collaborate in order to flush obsolete information when the

backbone topology must be changed. Since the backbone

topology is more stable than the radio topology, this improves

the routing cache stability. SOMoM increases the route stability

and decreases the overhead. The SOMoM structure is depicted

in figure 1.

III. DESIGN AND IMPLEMENTATION

A. Software: somomd

We chose to implement SOMoM in a Linux testbed because

it is flexible and open-source. Moreover, Linux is extensively

used in the scientific community and allows to share easily

the different implementations. Additionally, we chose to im-

plement the totality of the protocol in user space: the code

is portable, with any Linux kernel, without modification. We

implemented a daemon which constructs and maintains the

virtual backbone, and the routing protocol SOMoM, described

above. This daemon is fully operational: the self-organization

is well-maintained and the localization protocol SOMoM

functions perfectly. In the following, we detail some key points

in our implementation available online [8].

a) Kernel / user space: Linux philosophy is to propose

a restricted and stable kernel. Programs should be executed in

a normal shell, not in kernel mode. However, this property

is rarely observed by developers. Indeed, Ad-Hoc Support

Library (ASL) [9] allows to implement ad hoc daemon in

user space but contains itself kernel modules, for example to

modify the routing table. [10] presents 3 methods to implement

a routing protocol in MANET. With the Netfilter method,

some filters are applied when packets arrive. Some packets

can be forwarded to a specific application when they are

treated by the IP layer. Alternatively, the daemon could be

implemented as a kernel module ([11] is one example of

such an implementation). Finally, a third method consists in

listening frames in the MAC layer. If an ARP request is

generated, it is intercepted and a route discovering is initiated

(ARP is in this case mandatory). Kernel implementations

seem for us intrusive and present several drawbacks (e.g.

kernel instability, implementation changes when the kernel

is upgraded). Our daemon is implemented integrally in user-

space, and was tested with the kernels 2.6.14 and 2.6.12.

b) Multi-threads: The daemon must monitor several ta-

bles (neighborhood table, routing table,. . .) and flush obso-

lete information. The maintenance is based on triggers and

timeouts. So, we chose a multi-threads implementation, each

thread monitoring one type of information. Naturally, the

implementation must take care of resource conflicts.

c) Addressing: Each ad hoc node is configured with a

static address with a 32 bits netmask (the network-netmask).

Therefore, a route in the routing table corresponds to one

single destination. All the nodes share a common logical

private IP subnet of 24 bits, called the somom-netmask. For

example, a node can have the IP address 192.168.1.15 with the

network netmask 255.255.255.255 and the somom-netmask

255.255.255.0. Other ad-hoc nodes will be configured in the

IP range 192.168.1.1-254.

The somom-netmask proves its usefulness for the Access

Point for example. The AP must distinguish the ad hoc

addresses and the Internet addresses. When the destination is

known, a 32 bits route exists in the routing table: the packet

is sent directly. On the contrary, if the AP has no route, it will

verify that the destination IP address owns to the ad hoc area

thanks to the somom-subnet (obtained from its IP address and

the somom-netmask).

d) Routing table: The kernel routing table was designed

for permanent and stable routes: a change is an exception.

But ad-hoc routing protocols add and delete continuously the

entries in the routing table, and handle timeouts. Hence, an

internal routing table maintained by somomd dialogs with the

kernel routing table and synchronizes its information (fig. 2).

In this way, the kernel routing table is not modified, rendering

the source code evolutive.

e) Protocol stack: The OSI model requires a strict inde-

pendence of different layers so that layers interchangeability

is facilitated. This independence allows flexibility but de-

creases performances: no information is shared. Moreover, an

information mutualization allows to reduce the overhead. For

example, DSR assumes the existence of an API which allows

a notification of the MAC layer when an unicast packet is well

3

Fig. 2. Software architecture of the protocol

delivered or dropped to improve the route maintenance.

The software architecture is described in figure 2. The

daemon is executed above the network layer and uses an UDP

socket to send control packets. However, the protocol needs

information about all received IP packets. Thus, the daemon

implements also a packet socket. This facility allows in Linux

to capture all MAC frames (like a promiscuous IP mode).

The program extracts IP packets, and information useful to

update routing tables for example. Eventually, the packet is

forwarded to the routing or self-organization threads if the

packet is intended to the UDP port registered by SOMoM. In

conclusion, when a packet is forwarded by a node, somomd

can update on the fly its routing table.

In particular, each node can add an entry in its routing table

for the source of each received packet when the source owns

to the somom-subnet (computed from the IP address and the

somom-netmask). In this way, a gratuitous inverse route is

learned each time a packet is forwarded by a node.

f) Reactive behavior: The code was implemented in the

user space. Each ad-hoc node has a default route pointing

to its parent in the backbone. If a specific route with a 32

bits prefix corresponds, it will be used. Else, the packet is

transmitted through the default route. Hop by hop, the packet

reaches the gateway if no route exists for this destination.

When the Access Point receives any packet to forward, it

can extract the location of the destination thanks to the somom-

subnet. If the destination is outside the ad hoc scope, the packet

is forwarded through the wired link. If the destination is in the

ad hoc area, two cases can occur. If a route (with a 32 bits

prefix) exists, the packet is sent through this route. Else, the

route toward a client node (a download route) must be learned

reactively. The process uses the TUN facility offered by Linux.

In the gateway, a route corresponding to the somom-subnet

points to the TUN device, and this TUN device points itself

to the somomd process. Moreover, when a packet is routed,

the linux kernel chooses the route matching with the longest

prefix. Hence, the default route is only used in the gateway

when no other route exists. Somomd will receive this packet,

buffer it in an internal queue, and send a route discovering. In

conclusion, we did not modify at all the Linux Kernel.

For a route discovering, the AP sends a Route Request

in multicast. All the backbone nodes which receive such a

packet must forward it in multicast if the destination is not

present in their neighborhood table. Else, a Route Reply

is generated and transmitted through the default route. Hop by

hop, the Route Reply is forwarded toward the gateway, and

creates in each hop an entry in the routing cache. When the AP

receives the Route Reply, somomd will extract the packets

from the internal queue for the corresponding destination and

just re-inject them in the normal routing process. The new

route will be used. In conclusion, we keep the whole IP routing

process without modification

B. Node equipment

The mesh network is constituted by 8 barebones (silent and

small PCs). Each node is equiped with an hard disk to store an

huge quantity of logs in order to extract performance results

of the experimentations. Besides, all the static nodes have a

wired NIC so that it can be monitored out-of-band, and so that

the management traffic does not interfere with experiments.

Only one mobile node is introduced in the experiments since

to manage mobility during the experiments is a quite difficult

task. Other mobile nodes will be introduced in the future to

corroborate our current results. However, the radio topology

can change because of temporary obstacles (closed door,

person in the corridor. . .). Consequently, even in a topology

with only one mobile node, we can test many usual scenarios.

The nodes have all a IEEE 802.11 abg NIC, but we use the

2,4 GHz frequency so that any standard mobile node can be

integrated in the hybrid network. Naturally, some tests have

been also done with the 5 GHz frequency, and the obtained

results corroborate the results exposed in the next section.

However, they are not presented here because of lack of space.

In IEEE 802.11, the broadcast frames are always sent with

the lowest available bitrate. Oppositely, unicast frames are

sent with the bitrate as high as possible. Thus, the radio

range of broadcast and unicast frames are different since the

modulations differ. This could constitute a severe drawback:

hellos being broadcasted, a node can choose to forward

a packet to an unreachable neighbor. Besides, IEEE 802.11

presents performance anomaly when different bitrates are used

[12]. In conclusion, we chose to configure all the clients with

a forced 1Mbps bitrate (6 Mbps with IEEE 802.11 a).

C. Testbed

8 nodes were deployed in the lab, constituting a multihop

testbed (fig. 3). The topology is a trade-off to test both the

network diameter and the network redundancy. One node (rep-

resented with a red square in the figure 3) acts as a gateway

to the Internet. The gateway implements NAT functions to

connect the ad-hoc area to the Internet, using netfiler. The

testbed is full-operational and used for a multihop Internet

connection in the lab.

4

node x

Internet gateway

stable radio link

intermittent radio link

Fig. 3. Map of the testbed

IV. EXPERIMENTAL RESULTS

A. Self-Organization

In a first time, we evaluated the impact of a topology change

on the self-organization: the algorithms must quickly update

their information and converge to a legal state. In particular, we

measured the impact of the addition/deletion of a node. When

a node is inserted in the network, the backbone topology is

update in less than 1 second. So, we stressed the protocol in

inserting simultaneously two nodes (A and B) to a network

of 2 nodes (C and GW). The final network consists in a line

A − B − C − GW . 2.6 seconds are necessary so that the

new nodes determine if they must be backbone nodes or not

(tab. I). Additionally, the backbone tree links are valid 0.6

seconds later. Finally, the self-organization structure updated

all the information about parents, children in the backbone 4

seconds after the nodes insertion. We say that the backbone is

in degraded-mode if the backbone mesh is connected but not

the backbone tree (all radio links must be used, not a subset).

Step Convergence time (in s)

State 2.6

Valid backbone parent 3.2

Non degraded mode 4.0

TABLE I
CONVERGENCE TIME WHEN TWO NODES ARE INSERTED

SIMULTANEOUSLY

Then, we set up a squared network of 4 nodes and shutdown

the backbone member neighbor of the gateway: the node

2 hops far from the gateway becomes disconnected, the

backbone must be reconstructed, the other neighbor of the

gateway must in particular become a backbone node. The

disappearance is detected after 4.0 seconds, the timeout of an

hello (tab. II). The reconnection step lasts on average 1.2

seconds (reconnection packets transmission,. . .). Finally, the

self-organization proves that it functions normally less than

one second later. The whole reconnection procedures lasts on

average 7 seconds. Naturally, this convergence time can be

largely reduced if a more efficient disappearance detection is

available (MAC layer notification, very frequent hellos. . .).

Other scenarios were studied (for example when 2 nodes

disappear simultaneously) and present similar convergence

time, but the details are not presented here because of lack

of space.

Step Convergence time (in s)

Disappearance detection 4.0

Valid backbone parent 6.2

Non degraded mode 7

TABLE II
CONVERGENCE TIME WHEN A NODE DISAPPEARS

B. Ping

Firstly, we measured the end-to-end delay according to

the packet size (fig. 4) from each node to the gateway. We

plotted the min/max/average delays. To evaluate the accuracy

of the estimation, the errors were plotted for a list of 10

experiments. When the packet size increases, the delay also

increases: the transmission requires more time since the radio

bandwidth remains fixed. Moreover, the store-and-forward

approach increases this effect: the packet must be integrally

received before it can be forwarded. Besides, we can remark

that average, minimum and maximum delays are very close:

the jitter is reduced.

 0

 10

 20

 30

 40

 50

 200 400 600 800 1000 1200 1400

D
el

ay
 (

in
 m

s)

Packet size (in bytes)

min
average

max

Fig. 4. End-to-end delay according to the packet size

Since the topology is in this part static, we compared the

performances of SOMoM with static routing (tab. III). However,

a few intermittent radio links impact the performances: routes

should be reconfigured dynamically so that the network offers

the best performances. We can note that the delay is almost

the same with SOMoM and with a static routing whatever

the pair in communication is. SOMoM, in spite of a dynamic

route discovering, allows to obtain delays similar to a static

route configuration. SOMoM presents an high flexibility to

topology changes without any impact on the delay. In some

cases, we can even note that SOMoM seems more efficient: the

protocol adapts its route to the real quality of the radio links,

discovering other routes when a radio link becomes weak. We

can note that the node 5 which has only weak radio links

presents the highest delay.

Pk Protocol Source
Size 1 2 3 4 5 6 7

100 SOMoM 23 4.6 5.6 5.5 15 15 9.0
static 46 4.2 4.2 25 52 10 9.9

1500 SOMoM 597 29 35 34 147 118 144
static 649 29 34 64 119 121 82

TABLE III
END TO END DELAY IN MILLISECONDS WITH A PING

5

C. TCP throughput

Since TCP flows represent the most important part of the

Internet traffic, we measured the reachable throughput with

iperf (fig. 5) for flows of 8 seconds. We remarked that when

a large data flow is forwarded, collisions are created between

the different data and control packets. This behavior creates

some route instabilities since for example hello packets

are dropped and a node can consider erroneously that one of its

neighbors is dead. A QoS mechanism for IEEE 802.11 would

avoid such a behavior. A duration of 8 seconds presents a good

trade-off. We can remark that the throughput increases when

the packet size is longer. Indeed, some control frames (acks,

backoffs. . .) are required whatever the packet size is. Thus, a

long packet size allows to reduce the bandwidth ratio used for

control. Moreover, we can distinguish two flow types: the one

hop flows offer the highest throughput, and multihop flows

propose a lower throughput. However, 2 and 3 hops flows do

not differ importantly. A multihop wireless Internet connection

seems efficient.

 0

 200

 400

 600

 800

 1000

 1200

 200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t (

in
 K

bp
s)

Packet size (in bytes)

pair 1 − AP
pair 2 − AP
pair 3 − AP
pair 5 − AP
pair 4 − AP
pair 6 − AP
pair 7 − AP

Fig. 5. TCP throughput according to the packet size

We measured the TCP throughput for every source-

destination pairs (fig. 6). We can remark that the radio links

present very different throughputs: one radio link (the bar

of one hop flows) exhibits a throughput of 700 kbps while

another one presents only a throughput of 100 kbps because

of temporary obstacles. Besides, multihop connections present

a lower throughput which is logical since the flow must be

forwarded. However, the flows of 2, 3 or 4 hops present similar

througputs. Thus, the throughput is quite scalable according

to the route length. In other words, SOMoM discovers stable

routes, without too frequent breaks.

D. UDP throughput

Then, we measured the maximum achievable throughput

with a UDP flow. Since UDP is not reliable, we assume

that a flow is achievable if more than 95% of the packets

are delivered to the destination. We used here also the iperf

tool to measure the UDP throughput. Since we obtained very

similar results, the graphs are not reported here. We can just

report that an optimal packet size exists to optimize the UDP

throughput. When the packet size is large, collisions seem

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4

T
hr

ou
gh

pu
t (

in
 K

bp
s)

Route length (in hops)

Fig. 6. TCP throughput according to the route length

to occur frequently and decrease the global throughput. UDP

seems to react less efficiently than TCP to collisions.

E. Route discovering latency

Finally, we measured the delay required to discover a new

route from the gateway (tab. IV). For a route of 3 hops, 800

milliseconds are on average required for a ping (route request

triggering, potential retransmissions, route reply reception,

round trip of the ping). However, a route discovering occurs

seldom: when the node initiates itself a communication, an

inverse route is automatically created in the cache of the

intermediary routers. Moreover, this delay is required only

for the first packet of a flow, the route being subsequently

dynamically maintained.

Type node 4 node 5 node 1

Delay (in ms) 779 894 779

Standard deviation 246 384 352

TABLE IV
ROUND-TRIP-TIME (IN MS) OF A PING WHEN A ROUTE DISCOVERING

FROM THE GATEWAY IS REQUIRED

F. Mobile node

Then, we introduced a mobile node in the hybrid network.

This node is moving from one extremity of the network to

the Access Point (cf. map in figure 3). We measured the

TCP throughput according to the displacement of the node.

At the beginning, the mobile node is at the extremity of

the network and the radio link is weak: this explains the

fluctuating throughput. When the node stops, the throughput

is more stable. When the node is changing its parent in the

self-organization, the throughput decreases logically: routing

reconfigurations are required, disturbing TCP. Finally, when

the mobile node is neighbor of the Access Point, the through-

put is maximal since it is a single hop flow. SOMoM reacts well

to topology changes, updating continuously its knowledge.

V. CURRENT ISSUES IN TESTBEDS FOR HYBRID NETWORKS

This testbed constitutes a first step toward the improvement

of protocols for ad-hoc and hybrid networks, and corroborates

6

Fig. 7. TCP throughput of a mobile node

the efficiency of protocols based on a self-organization. How-

ever, the experiments allowed to exhibit some key problems.

Firstly, a real-world radio medium presents severe differ-

ences compared to simulations: radio links are heterogeneous,

presenting different throughputs. Thus, an ad-hoc protocol

must use a metric of link efficiency to improve the global

performances, like in [13]. Moreover, the timescale of route

changes must be adjusted to the timescale of a radio link.

For example, it is useless to change a route after 3 seconds

if a radio link is changing every second. Besides, some radio

links are instable, their radio range being not binary: some long

links allow to deliver at most x% of the packets. If a hello is

received, the radio link is considered valid although it presents

a poor throughput. Thus, we modified SOMoM so that a radio

link is considered valid if at least two consecutive hellos

were received. Although the testbed is constituted by similar

nodes, some unidirectional radio links can appear because of

antenna orientation, bad connectors. . . . Hence, unidirectional

and bidirectional links must be distinguished by the protocol

(like SOMoM does). The environment highly influences the

radio topology. In other words, the Unit Disk Graphs are a

bad model of ad-hoc networks: two nodes can be near without

having a radio link with each other. The dimensioning of a

mesh network must in consequence carefully be conceived.

Finally, tests are time-consuming. Automatized tools must

be deployed and clocks must be synchronized. However, the

control traffic for the measurements must avoid to disturb

the experiments. Thus, a out-of-band management should be

available (via wired connections, or different wireless NIC and

radio channels)

Besides, we point out several key problematic properties of

IEEE 802.11. They must be addressed to set up an efficient

radio multihop network. IEEE 802.11 presents poor perfor-

mances in an ad hoc network, under-estimating the bandwidth.

A new MAC layer must consequently be proposed. Moreover,

IEEE 802.11 does not offer priorities among flows. Thus, an

heavy data flow will collide with control packets, disturbing

the normal functions of a protocol, as mentioned above.

Routes will be broken, creating instabilities in the throughputs

Besides, IEEE 802.11 does not present the same rate in unicast

and broadcast (as exhibited in these experiments and earlier in

[14]). Thus, control packets sent in broadcast are transmitted

farther. A node can consider a node neighbor although it is

not able to send or receive a data packet in unicast

VI. CONCLUSION & FUTURE WORK

This article presented the deployment of a testbed to mea-

sure the performances of hybrid networks in a real envi-

ronment. In particular, we implemented a self-organization

protocol and the routing protocol benefiting from this scheme,

SOMoM. We described the complete software architecture:

this explanations represent a guide to implement protocols

in a flexible manner in a Linux testbed. The integration of

ad hoc networks in the Internet is fully operational, offering

a spontaneous multihop extension of IEEE 802.11 networks.

The performance evaluation demonstrates the relevance of a

self-organization scheme and of SOMoM. Besides, we detail

some specific issues of IEEE 802.11 in multihop radio testbeds,

presenting problems of stability and QoS. A new MAC layer

particularly adapted to multihop wireless networks must be

proposed to optimize the performances.

As a future work, we plan to deal with multi-interfaces

hosts: Bluetooth, WIFI, Ethernet interfaces must be seamlessly

integrated, forming a wide ad-hoc network, offering a trans-

parent connection to the Internet across multi technology links.

Besides, more nodes must be introduced to test the scalability.

REFERENCES

[1] F. Theoleyre and F. Valois, “Mobility management in multihops wireless
access networks,” in PWC. Colmar, France: IFIP, 2005.

[2] D. A. Maltz, J. Broch, and D. B. Johnson, “Experiences designing
and building a multi-hop wireless ad hoc network testbed,” School of
Computer Science, Carnegie Mellon University, Technical Report CMU-
CS-99-116, March 1999.

[3] J. T. Kaba and D. R. Raichle, “Testbed on a desktop: strategies and
techniques to support multi-hop manet routing protocol development,”
in MOBIHOC. Long Beach, USA: IEEE, 2001.

[4] D. Gray, Robert S.and Kotz, C. Newport, N. Dubrovsky, A. Fiske,
J. Liu, C. Masone, S. McGrath, and Y. Yuan, “Outdoor experimental
comparison of four ad hoc routing algorithms,” in MSWIM. Venice,
Italy: ACM, 2004.

[5] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and
evaluation of an unplanned 802.11b mesh network,” in MOBICOM.
Cologne, Germany: ACM, 2005.

[6] W. Kiess and M. Mauve, “A survey on real-world implementations of
mobile ad-hoc networksnext term,” Ad Hoc Networks, in press, 2006.

[7] F. Theoleyre and F. Valois, “A virtual structure for mobility management
in hybrid networks,” in WCNC. Atlanta, USA: IEEE, 2004.

[8] somomd, “Available on: http://sourceforge.net/projects/somom.”

[9] V. Kawadia, Y. Zhang, and B. Gupta, “System services for implement-
ing ad-hoc routing: Architecture, implementation and experiences,” in
MOBISYS. San Francisco, USA: ACM, 2003.

[10] I. D. Chakeres and E. M. Belding-Royer, “AODV routing protocol
implementation design,” in IWWAN, Tokyo, Japan, 2004, pp. 698–703.

[11] L. Klein-Berndt and et.al, “Kernel AODV implementation,” http://w3.
antd.nist.gov/wctg/aodv kernel/.

[12] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Perfor-
mance anomaly of 802.11b,” in INFOCOM. San Francisco, USA:
IEEE, April 2003.

[13] D. S. J. De Couto, D. Aguayo, B. A. Chambers, and R. Morris, “Per-
formance of multihop wireless networks: shortest path is not enough,”
ACM SIGCOMM Computer Communication Review, vol. 33, no. 1, pp.
83–88, 2003.

[14] E. Lundgren, E. Nordstro, and C. Tschudin, “Coping with communica-
tion gray zones in ieee 802.11b based ad hoc networks,” in WOWMOM.
Atlanta, USA: ACM, September 2002.

http://sourceforge.net/projects/somom
http://w3.antd.nist.gov/wctg/aodv_kernel/
http://w3.antd.nist.gov/wctg/aodv_kernel/

	Introduction
	Related Work
	Overview of somom

	Design and implementation
	Software: somomd
	Node equipment
	Testbed

	Experimental results
	Self-Organization
	Ping
	TCP throughput
	UDP throughput
	Route discovering latency
	Mobile node

	Current issues in testbeds for hybrid networks
	Conclusion & Future Work
	References

