
HAL Id: hal-00371354
https://hal.science/hal-00371354

Submitted on 27 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Three dimensional analysis of a compression test on
stone wool

François Hild, Eric Maire, Stéphane Roux, Jean-François Witz

To cite this version:
François Hild, Eric Maire, Stéphane Roux, Jean-François Witz. Three dimensional analysis of a
compression test on stone wool. Acta Materialia, 2009, 57, pp.3310-3320. �hal-00371354�

https://hal.science/hal-00371354
https://hal.archives-ouvertes.fr


Three dimensional analysis of a compression

test on stone wool

François Hild,a Eric Maire,b Stéphane Roux,a
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Abstract

A full three dimensional study of a compression test on a sample made of stone wool

is presented. The analysis combines different tools, namely, X-ray microtomography

of an in situ experiment, image acquisition and treatment and 3D volume correla-

tion. This set of tools allows for the measurement of three dimensional displacement

fields and to evaluate the Poisson’s ratio of this type of material. The strain fields are

used to analyze localization phenomena. The uncertainty of the analysis is evaluated

by actually moving the sample in its undeformed and deformed states, qualifying

both image acquisition and correlation steps.
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1 Introduction

X-ray computed microtomography (XCMT) is increasingly used to visualize

the complete microstructure of various materials. One of its main advantages

lies in the non destructive way of obtaining 3D views of various materials [1].

By analyzing 3D reconstructed pictures, one has access, for instance, to the

structure of biological [2, 3] or cellular (either metallic or polymeric foams [4])

materials, and sometimes to the way they deform by using in situ experi-

ments [5] analyzed by 3D correlation algorithms [6–9]. This procedure is to

be distinguished from X-ray diffraction which may be used to evaluate elastic

strains [10] for crystalline materials. In the present study, the reconstructed

scans themselves are used to evaluate full displacement fields.

To measure 3D displacements in the bulk of a scanned material, different

routes were followed. First, marker (e.g., W particles) tracking was used to

analyze permanent strains in a compression test on aluminum [11]. Second,

local correlation techniques were utilized [9, 12, 13], in which small interro-

gation volumes in two scans are registered. The analysis of the deformation

of biomechanical tissues was reported [7, 14]. Strain fields were also studied

in heterogeneous materials [13, 15]. Third, global (i.e., Galerkin) correlation

techniques are an alternative to local approaches. Strain localization in a solid

foam was studied with such a technique [9]. When the chosen kinematics is

enriched to account for displacement discontinuities, it is possible to measure

crack opening displacement fields [16] and profiles of stress intensity factors

along the whole crack front [17]. This information is useful, for instance, to

model 3D crack propagation.

In the case of entangled materials such as mineral wools, there are very few

results on the details of the microstructure and more importantly on the way

these materials deform. 2D measurements were performed on the surface of

mineral wools [18, 19]. Heterogeneous deformation modes of high density ma-
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terials occur in uniaxial compression and were mainly controlled by local de-

tails of the microstructure such as density [18] and fiber orientation [20]. The

latter is crucial when describing the mechanical behavior of high density ma-

terials [21]. One of the unanswered questions concerns the representativeness

of surface measurements when bulk properties are sought. XCMT provides a

unique way of eventually addressing this issue.

The aim of the present paper is to analyze a compression test on a stone wool

sample by using XCMT performed with a lab tomograph to analyze the way

these materials deform internally. The standardized mechanical performance

of those materials refer to a strain level well above the “elastic” limit [22].

In that case, the strain field appears to be generically non uniform, and it is

important to characterize the regions that concentrate strains, and possibly

identify morphological features that are responsible for such strain concentra-

tions as they appear to be stress (and thus performance) limiting. Full three

dimensional strain maps and morphology are therefore extremely valuable. A

finite-element based approach to digital image correlation [9] is used to mea-

sure displacement and evaluate strain fields during a compression test on stone

wool. In Section 2, the studied material, the experimental configuration and

the imaging system are presented. The correlation procedure used herein is

briefly recalled in Section 3 and its performance is evaluated. The analysis of

several images of the same unstrained sample reveals resolution limits result-

ing from the computed reconstruction. The experimental results are finally

analyzed in Section 4 and discussed in Section 5.
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2 Experimental configuration

2.1 Material

Stone wool is an insulating material made of fibers with basalt-like compo-

sition. Figure 1a shows a large scale SEM view of the studied material. The

production process of stone wool, called REX, involves (among other mech-

anisms) a centrifugal instability of a molten rock layer deposited on rapidly

spinning wheels. The destabilization of the viscous layer forms a tadpole whose

bulky head is drawn by a hot gas burner and whose tail connected to the spin-

ning wheel produces fibers. In the final product, as can be seen in Figure 1a,

the fibers are mixed with a fraction of so called “shot” particles (the initial

head of the tadpole). These shot particles are a signature of the production

process. They increase the density of the final material, and play no role for

insulation. The size of the fibers is mostly in the range 1-10 µm, while the

shot particles are of the order of 50 to 100 µm in diameter.

Figure 1b shows a typical normalized load vs. macroscopic compressive strain.

The latter is evaluated by measuring the relative displacement of the two

platens divided by the initial sample height. After an initial non-linear part

associated with a gradual contact of the sample surface with both platens,

there is an elastic regime followed by another non-linear part, presumably

due to frictional slip between fibers. Upon unloading the material in the non-

linear regime, the response is strongly hysteretic as one could expect when

solid friction and contact opening occur.
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2.2 XRCT Setup

Standard laboratory X-Ray microtomography enables the experimentalist to

get 3D pictures of the local density of solids by exploiting the differential

attenuation of a polychromatic X-ray beam while it traverses the analyzed

sample [5]. The tomograph used in the present study is made by Phoenix

X-ray. It contains two principal components:

• The source is an open transmission nanofocus X-ray tube operated at 90 kV

and 140 mA. The thin transmission target bombed by focused electrons is

made of tungsten and the focus size is about 6 µm.

• The X-ray detector is a PaxscanTM amorphous silicon flat panel initially

developed for medical applications. It is composed of about 1900 rows and

1500 lines of sensitive pixels, the size of which is 127× 127 µm2. The pixels

are binned to accelerate the acquisition time during the present experiment

(final size of the detector: 950 × 750 pixels, pixel size: 254 × 254 µm2).

The source/detector distance is fixed to 80 cm, but the resolution (defined in

the present paper as the voxel size in the reconstructed image) can be varied

by changing the position of the rotating object between the source and the

detector. A good trade-off between sample size and resolution was chosen to

be 13.5 µm in the present case.

2.3 Reconstructed volumes

Image and/or volume correlations require a contrasted texture to measure

displacements. The shot particles are extremely helpful for image correlation,

as they constitute a random marking with a high contrast evenly distributed

within the specimen. As can be seen in Figure 2, they appear as small white

clusters with a well defined morphology as compared to the fibers that can-
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not be distinguished individually at the resolution used for this study. The

dynamic range of the reconstructed pictures (or scans) is equal to 16 bits.

The reconstructed scans are subsequently recoded as 8 bit data. During this

recoding, 0.1 % of the black and of the white pixels are intentionally saturated

to preserve a good dynamic range, as seen on the histogram of Figure 2. The

mean gray level is 43 and the corresponding standard deviation is 27. The

size of the reconstructed volumes is 750 × 750× 750 voxels, and the analyzed

region of interest (ROI) is centered and has a size of 128 × 128 × 128 voxels

because of memory limitations (all the results presented herein are performed

on a standard PC with a dual core CPU). The computation time per couple

of analyzed pictures lasted on average ten minutes.

2.4 In situ compression test

A testing machine (described in details in Ref. [23]) is clamped on the rotating

stage of the tomograph. It allows one to take 3D pictures of the specimen

during a compression test. The sample was compressed between two parallel

platens with no lubrication. Six scans were acquired for the analyzed test.

First, two scans were performed with no applied load. They will be used in

the uncertainty analysis (see Section 3.2). Second, four loading steps were

considered with a targeted constant displacement between each step. For the

last deformation step, the whole experimental setup (sample + compression

rig) was moved upwards at constant load and a subsequent acquisition was

performed. These two scans will also be used for the uncertainty analysis.

The displacement speed was kept rather low (1 µm s−1) leading to a strain

rate of about 10−4 s−1. Due to experimental difficulties, the load could not be

measured during this in situ experiment. This will not modify the conclusions

of the present paper.
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3 3D Digital Image Correlation

In this section, the correlation procedure is first presented. Its performance

is evaluated by using two scans of the same sample for which a rigid body

motion is applied between the two acquisitions.

3.1 Finite-element approach to DIC

Image correlation consists in matching the texture of two pictures (or scans

in the present case) with the help of a displacement field to be determined.

The passive advection of the texture between the reference f and deformed g

images (e.g., see Figure 2) reads from a Lagrangian point of view

f(X) = g(X + U(X)) (1)

where X is the position vector in the reference configuration (i.e., Lagrangian

coordinate), and U the displacement vector. Equation (1) corresponds to the

conservation of the optical flow written at a local level, in the reference configu-

ration. In practice, the optical flow conservation hypothesis is not strictly satis-

fied. This is even more relevant in the case of XCMT for which the 3D scans are

the results of a reconstruction procedure that induces some artefacts [1]. Con-

sequently, correlation residuals arise since the difference f(X)− g(X+U(X))

does not vanish. From the knowledge of f and g, the measurement prob-

lem consists in identifying U as accurately as possible. To estimate U, the

quadratic difference ϕ2 = [f(X)− g(X + U(X))]2 is integrated over the stud-

ied domain in its reference configuration Ω

Φ2 =
∫
Ω

ϕ2 dX (2)

and minimized with respect to the degrees of freedom of the measured displace-

ment field. In the present case, a 3D finite element kinematics is chosen [24]
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for the searched fields U, and the simplest shape functions are used, namely,

trilinear polynomials associated with 8-node cube elements (or C8-DIC [9]).

The functional Φ2 is minimized with respect to the set of unknown degrees

of freedom. To capture large scale displacements, it is important to perform a

first determination of the displacement field based on low-pass filtered images

where small scale details are erased. After correction of the deformed picture

by this displacement, finer details of the images are restored and the residual

displacement computed. This procedure is repeated until the unfiltered images

are considered. A very crude filtering is used here because of its simplicity and

efficiency, namely, a filtered image is constructed by gathering each cube of

2×2×2 voxels into one “super-voxel” and summing their gray level values. A

higher degree of filtering is obtained by iterating this procedure. This multi-

resolution procedure has the additional benefit of decreasing drastically the

size of the images to be studied.

3.2 Uncertainty analyses

To assess the quality of a correlation result, the correlation residuals are the

only data available when the measured displacements are not known. In the

following, the normalized correlation residual is considered

η(X) =
|ϕ(X)|

maxΩ(f) − minΩ(f)
(3)

and its mean value 〈η〉 is computed over the whole correlation volume Ω.

The uncertainty is conventionally evaluated by the standard deviation of the

displacement field σ(U). Last, to quantify the strain error, the mean principal

strains ǫi are estimated over the entire region of interest for each rigid body

translation.
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3.2.1 Displacement perpendicular to the rotation axis

Two scans were experimentally acquired for the same (unloaded) state. Yet,

the sample was slightly moved by hand (i.e., Ux ≈ 3.1 voxels, Uy ≈ 13.0 voxels,

and Uz ≈ 0.3 voxel, with 1 voxel ↔ 13.5 µm) between the two acquisitions to

assess the minimum achievable correlation residual and the corresponding per-

formance in terms of strain measurements by correlating the two scans. This

procedure allows one to determine the cumulated effect of the correlation algo-

rithm and of the acquisition / reconstruction procedure on the measurement

uncertainties. This displacement was mostly performed in the horizontal (X-

Y) plane of the tomograph, perpendicular to the rotation axis i.e., parallel to

the platens of the compression rig. The rotation axis Z during the tomographic

scanning is also the compression axis of the in situ tensile rig.

The element size was changed to assess its influence on the overall performance

of the correlation algorithm. Figure 3 shows that the larger the element size,

the smaller the standard displacement uncertainty. The mean strain levels

remain very small and less than 0.05 % in absolute value for all the ana-

lyzed cases. The displacement uncertainties level off for element sizes greater

than 16 voxels (or 216 µm). In the second regime where a constant level of

the displacement uncertainty is observed, it is believed that the saturation is

caused by reconstruction artefacts. Figure 4 shows cuts of the residual vol-

ume that clearly indicate two ring artefacts when a transverse displacement is

performed. The presence of these rings is likely to affect the correlation pro-

cedure. This is further confirmed by the fact that the in-plane displacement

uncertainties are the only ones that level off.

3.2.2 Displacement parallel to the rotation axis

Two scans were also acquired to reproduce the previous analysis for one of the

deformed states of the sample. Contrary to the previous case, the translation
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was performed along the loading axis by moving the whole loading setup.

Figure 3 shows that the reconstruction procedure clearly impacts differently

measurement uncertainties when actual displacements are performed along

and perpendicular to the rotation axis. A displacement along the latter leads

to a single set of rings in the correlation residuals (Figure 4) and then to a

smaller measurement error.

Last, the levels of the correlation residuals with the present analyses constitute

minimum levels to be expected when two actual scans are correlated. The

fact that they are virtually independent of the element size is all the more

important since there will be a single reference level 〈η〉 = 3 %.

4 First analysis of the compression test

The element size is equal to 16 voxels (or 216 µm) for the first analyses, which

is a compromise between the uncertainty level, the spatial resolution (i.e., the

element size), and the computation time. Their size is subsequently decreased

to enable for a better description of finer displacement details induced by strain

heterogeneities. The reference volume is always the same and four loading

steps could be analyzed with a reasonable convergence of the algorithm. In

Figure 1a, over the SEM view, a box is drawn to show the size of an ℓ =

16 voxel element (216 µm) in comparison with the microstructure. Each single

fiber is not followed; but rather a small bundle of fibers whose kinematics will

be assessed.

4.1 Typical results obtained from the first deformation step

Prior to the C8 procedure itself, rigid body translations are evaluated by

using the cross correlation product calculated via FFTs. The C8 procedure
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is then run recursively at different scales (i.e., by resorting to the coarse-

graining procedure discussed above; the latter allows one to capture large

displacements and strains [9, 18]). Figure 5 shows three residual maps. The

first one corresponds to the initial picture difference when no corrections are

made. There is a clear mismatch between the two analyzed states. When an

initial correction estimated as a rigid body translation is performed, it leads

to the second map that shows the benefit of this first correction. However,

there are still zones in which the residuals are high. Last, the third map shows

the residuals at convergence. Except for a few points, the residuals are very

low everywhere. This additional test is important, since it is only after having

checked that the residual field is small in the whole ROI that the results are

definitely deemed trustworthy.

This first deformation step deals with moderate strain levels (ca. −4.5 %)

in the elastic regime (Figure 1b). Four different element sizes are considered,

namely, ℓ = 8 voxels, 10 voxels, 12 voxels, 16 voxels. The mean correlation

residuals (see Table 1) are very close to the value observed in the uncertainty

analysis (〈η〉 = 3 %). The strain levels in the transverse directions remain

very small compared with those along the loading direction. In particular,

when the element size is less than 16 voxels, the mean transverse strain is less

than 0.02 %.

4.2 Second loading step

The mean strain level is higher in absolute value (ca. −8.1 %) for 16-voxel

elements. From this first evaluation, one may want to decrease the element

size to capture more accurately local displacement variations. This is made

possible by running a further analysis and using the converged solution when

the element size is equal to 16 pixels as an initialization. Three elements sizes

are considered, namely, ℓ = 12, 10, and 8 voxels. No coarse (filtered) image
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and less than 10 additional iterations are needed. Table 1 summarizes the re-

sults. As the element size decreases, the mean correlation residual decreases

as well. In the present case, it is believed that more degrees of freedom are

needed to capture strain heterogeneities. When compared with the reference

value (i.e., 〈η〉 = 3 %), it is concluded that the correlation results with the

smallest element size (i.e., 〈η〉 = 3.4 %) are likely to be closer to the actual

displacement field. One possible explanation is that it is the signature of strain

heterogeneities requiring a fine mesh to capture more accurately the displace-

ment heterogeneities. The strain heterogeneities might be understood as the

consequence of the non-linear regime (Figure 1b) of the material. This point

will be further discussed in Section 5.

4.3 Third and fourth loading steps

The third and fourth scans correspond to strain levels for which the non-

linear regime of the material is completely established (Figure 1b). For the

third scan, even larger strains occur (ca. −11 %). This level is close to that

considered in standardized tests, namely −10 % [22]. In terms of correlation

residuals, there is a small degradation of their levels when compared with those

achieved for the first loading step (see Table 1). However, the same trend is

observed when the element size decreases, namely, 〈η〉 decreases as well. When

compared with the reference value (i.e., 〈η〉 = 3 %), it is concluded that the

correlation results with the smallest element size (i.e., 〈η〉 = 3.8 %) are still

acceptable.

Last, the fourth scan is analyzed. Mean strain levels of the order of −14 %

are reached, and many iterations are needed. The correlation residuals are

still acceptable, especially for small element sizes (see Table 1), even though

the computation time is significantly larger. This is an indication that at

this level, the reference scan should be updated when additional load levels
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are considered, namely, incremental displacement fields between different load

levels should be computed from image correlation, and then combined together

to compute the total displacement.

5 Analysis of the whole sequence

It is of particular importance to note that in the present case no updating

was necessary to analyze the four deformation steps and this despite the fact

that the mean strain level was rather large (i.e., −14% for the last step). This

good performance of the correlation procedure is partly due to the fact that

only a small ROI is considered, and more importantly, to the multi-resolution

procedure. All correlation results converged for mean average displacements

between two iterations less than 0.1 mpixel, and mean correlation residuals

less than 5 %. From the analyzed displacement field, the mean strains are

determined over the whole ROI. In the present case, the infinitesimal strain

assumption cannot be made. Consequently, a large transformation framework

is used. The deformation gradient tensor F is considered. The latter is related

to the displacement U by

F = 1 + ∇U (4)

where 1 denotes the second order unit tensor. A polar decomposition of F is

used [25]

F = RS (5)

where R is an orthogonal tensor (R−1 = Rt) describing the rotations, and S

the right stretch tensor (S = St). From the latter, the right Cauchy Green

tensor (C = FtF = S2) allows one to define, for instance, the following strain

measures Em

Em =
1

2m
(Cm − 1) (6)

when m 6= 0. In the following, the stretch tensor S itself is considered, and

the corresponding nominal (or Cauchy-Biot) strain E1/2 = S − 1 denoted by

13



ǫ. When averaged over the whole region of interest, the mean strain is defined

as

ǫ = S − 1 (7)

where S is the main stretch tensor defined via the polar decomposition of the

mean deformation gradient F

F = 1 +
1

V

∫
∂Ω

U ⊗ N dS (8)

and N denotes the outward normal vector of the external surface ∂Ω of the

ROI Ω, of volume V . The principal strains are subsequently determined, and

the apparent Poisson’s ratio ν is defined as

ν = −
ǫ2 + ǫ3

2ǫ1

(9)

where ǫ1 is the contraction strain (i.e., |ǫ1| > |ǫ2|, |ǫ3|).

5.1 Global analysis

The first step leads to strain levels ǫ1 of the order of −4.2 % when 8-voxels

elements are used. Since the strains ǫ2 and ǫ3 remain very small (compared with

ǫ1), the evaluation of Poisson’s ratio may be difficult. The values of the latter

(Table 1) are on average equal to 0.00 with small variations when using large

element sizes. This level is to be expected from such type of material for which

the entangled and porous texture does not allow for large transverse strain.

This result is also observed when a mechanical identification of local elastic

parameters is performed on glass wool by using surface measurements only [21]

for the same order of magnitude of average strain. The entangled nature of the

material explains that it firstly densifies before expanding laterally. Poisson’s

ratio is reasonably independent of the element size, even if the correlation

residuals decrease as the element size decreases (Table 1).

For the second step, the mean strain ǫ1 is already large in absolute value
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(ca. −7.6 % for 8-voxel elements). This level lies above the apparent elastic

regime of the material (Figure 1b), yet Poisson’s ratio remains very small

(0.01). This value is also found for the third step when 8-voxel elements are

used. The strain ǫ1 increases again in absolute value (ca. −13.9 % for 8-voxel

elements) when the fourth step is analyzed. Poisson’s ratio varies slightly (0.02)

when compared with the previous load levels.

Figure 6 shows the longitudinal displacement maps for the whole sequence

when a cut of the analyzed ROI is performed by a plane containing the axis of

reconstruction. The fours maps are identical in terms of heterogeneity distri-

butions. Only the overall levels vary from step to step. From the first step on,

the heterogeneity of the displacement is virtually identical. It is worth noting

that the displacement amplitudes are at least two orders of magnitude greater

than the measurement uncertainties (Figure 3).

5.2 Strain heterogeneities

The previous displacement fields are analyzed in terms of the component Fzz−

1 = Uz,z. If only small rotations occur, as is likely in the present case at the

level of each considered element (Figure 1a), this quantity corresponds to the

longitudinal nominal strain ǫzz (see Equation (7)). In the following, the values

ǫe
zz are estimated as averages per element of Fzz − 1. This is made possible

by the use of Equation (8) applied element-wise. This value is assigned to the

middle point of each element and the fields shown hereafter correspond to

trilinear interpolations of these “nodal” quantities.

Figure 7 shows the maps of ǫe
zz for the four steps. Strain heterogeneities are

well marked since the beginning of the experiment and the overall distribution

remains identical throughout. Figure 8 shows the incremental strain maps

∆ǫe
zz for the same sequence. This last information allows one to visualize the
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“active” parts of the deformation process. In the present case, the third and

fourth steps lead to more uniform fields compared with the first and second

steps, thereby confirming the conclusions drawn from the analysis of the total

strain and displacement maps.

Stone wool, akin to many cellular solids, exhibits a strongly non-linear me-

chanical behavior in compression. As it densifies, solid friction between fibers

would lead to a plateau stress, if it was not balanced by the hardening effect

due to the multiplicity of inner contacts created in compression (Figure 1b).

Consequently, the fiber length between contacts is reduced, and hence the stiff-

ness (directly related to this length) increases rapidly. Therefore, any density

heterogeneity present in the unloaded state is expected to lead to significant

strain heterogeneity. Conversely, in compression, it is expected that density

heterogeneities are to progressively vanish. This is consistent with the previous

observations, where incremental strains tend to become more uniform under

load (Figure 8), while the total strain seems to saturate to a state of fixed

contrast (Figure 7).

It is to be noted that the previous argument is only a “mean-field” view

of the problem. In reality, the volume elements are not all subjected to the

same stress, and the latter itself is dependent both on the local properties of

the element, but also on its surrounding. The strain compatibility is a global

constraint that makes the analysis more complex. In particular, Figure 7 shows

that large strain elements form a pattern that has to span through the entire

sample.

To better understand the spatial distribution of this pattern, a 3D visualisation

showing the clustering of large strains in 3D, after thresholding ǫzz is shown in

Figure 9-a. The high strain regions are more or less oriented with an oblique

angle compared to the compression direction, which is vertical in this figure.

Figure 9-b shows for the same sample, oriented in the same way as in Figure 9-
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a, the outline of the regions where the density in the initial sample (i.e., before

deformation) are low (the threshold is here applied to capture the darkest

regions of the tomographic scan). Given the origin of the contrast in these

images, low gray levels indicate low densities. The spatial pattern is again

complex. The regions do not correspond perfectly but the specific oblique

angle is the same in both figures.

Let us stress the difference with the phenomenon of localization in metals and

alloys, which also reflects an uneven strain distribution but that usually re-

veals an instability. For stone wool, the reverse is true, namely, heterogeneity

is progressively erased under load and incremental strains tend to be increas-

ingly homogeneous. To investigate this question further, a correlation between

density and (axial) strain is searched for. By averaging strains for elements of

mean density belonging to successive intervals (Figure 10), a strong decrease of

compressive strain with density is observed. As the deformation level increases

(in absolute value), the same trend is observed, yet shifted in the log-log plot.

The same type of conclusion was drawn when pictures of the surface of light

density glass wool were analyzed [18]. Note that the gray levels give a rather

direct indication of absorption, and hence density, but absolute densities are

scaled and offset to provide a slightly saturated histogram (Figure 2b) at the

reconstruction stage.

Unfortunately, it is not possible to be more quantitative without performing

a full numerical modeling of the material. Even in a statistical sense, for a

heterogeneous elastic material, there is no unique relationship between local

strain and local elastic modulus. The microstructure and stiffness spatial cor-

relations affect crucially such a link. However, the fact that lighter volumes

are more compressed than denser ones is likely, and supports the observation

that incremental strains tend to become increasingly uniform under increasing

load.
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6 Summary

It was shown that in situ mechanical tests can be performed in a labora-

tory tomograph, and processed from digital image correlation techniques to

evaluate quantitatively global mechanical properties, such as Poisson’s ratio.

The uncertainty quantification methodology and results are presented to make

explicit the choice of the correlation parameters to be used (such as the el-

ement size), and to decide when the correlation procedure can be trusted.

These procedures are fairly general and applicable to a wide variety of ma-

terials. Furthermore, strain heterogeneities could be captured even for large

strain levels with a good confidence in the results thanks to the correlation

residuals.

For stone wool, Poisson’s ratio evaluations at different load levels were per-

formed, and remain consistently equal to 0 (at the scale of the accuracy of the

analysis) for compressive strains of the order of 10 %. Very low values were

found on a global level, in agreement with local elastic analyses [21]. This

result confirms the representativeness of surface observations to evaluate the

bulk properties. Last, it was shown that the material density was responsi-

ble for local heterogeneities in strains, and that a correlation between local

(in the sense of the measurement discretization) density and strains could be

performed. This result was already obtained with 2D pictures of mineral wool

surfaces. It allows us to validate the fact 2D analyses, which are simpler, give

a good account of the bulk properties of mineral samples. Other local features

not considered herein, such as the local anisotropy (already investigated in 2D

studies), are presumably important to propose a quantitative identification of

the local elastic properties [20] based upon 3D bulk measurements, as those

proposed herein.
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Table 1

Effect of the element size on the correlation results for the four deformation steps.

ℓ (voxels) 〈η〉 ǫ1 ǫ2 ǫ3 ν

16 3.5 % −4.5 % 0.0 % 0.1 % 0.01

12 3.3 % −4.3 % 0.0 % 0.0 % 0.00

10 3.2 % −4.2 % 0.0 % 0.0 % 0.00

8 3.1 % −4.2 % 0.0 % 0.0 % 0.00

16 4.0 % −8.1 % 0.0 % 0.3 % 0.02

8 3.4 % −7.6 % 0.0 % 0.1 % 0.01

16 4.6 % −11.4 % 0.0 % 0.6 % 0.03

8 3.8 % −10.7 % 0.0 % 0.3 % 0.01

16 4.9 % −14.5 % 0.1 % 1.0 % 0.04

8 3.9 % −13.8 % 0.1 % 0.5 % 0.02
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Fig. 1. (a) Large scale SEM view of the analyzed sample showing the fibers and

coarse shot particles. The box drawn on the right hand top corner shows the size of

a 16-voxel element (where the voxel size refers to the tomographic image shown in

Figure 2a) as a reference. (b) Typical normalized load vs. macroscopic compressive

strain of the studied stone wool. The arrows show the mean strain levels at which

the DIC analysis was performed.
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Fig. 2. Region of interest of the reference 3D image (a) of compressed stone wool

sample (128×128×128 voxels, 8-bit digitization) and corresponding histogram (b).
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Fig. 3. Standard displacement uncertainty σ(U) as a function of the element size

when transverse and longitudinal displacements are prescribed (1 voxel ↔ 13.5 µm).
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Fig. 4. Cuts about the center of the region of interest along three perpendicular

directions of residual maps at convergence f − g (expressed in gray levels) when

transverse (left) or longitudinal (right) displacements of the whole setup are per-

formed.
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-c- -d-

Fig. 5. Correlation residuals |f − g| expressed in gray levels, when no correlation is

performed (a), when only rigid body translation is accounted for (b), and at conver-

gence (c) after the whole correlation procedure was carried out. This last residual

shows that the registration was successful when comparing it to the deformed scan

(d) and the reference scan shown in Figure 2. All positions are for the same voxel

frame as that used in Figure 2.
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Fig. 6. Longitudinal displacement maps Uz expressed in voxels (1 voxel ↔ 13.5 µm)

for the first four loading steps when 8-voxel elements are used.
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Fig. 7. Deformation gradient component ǫe
zz for the first four loading steps.
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Fig. 8. Incremental deformation gradient ∆ǫe
zz for the four loading steps.
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Fig. 9. 3D isosurface to highlight the regions where the measured compression strain

is the highest (a), and where the gray level of the reconstructed images are low, i.e.,

with the smaller density (b). The strains were obtained by using the sample in its

first deformed state, and the gray level for the sample in its initial state (i.e., before

deformation).
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Fig. 10. Log-log plot of the average axial compressive strain vs. initial average den-

sity (in gray levels) for the first (•), second (×), third (×+) and fourth (◦) deformation

steps. A dotted line of slope -1 is shown as a guide to the eye.
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