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On the Korteweg-de Vries long-wave approximation of the
Gross-Pitaevskii equation II

Fabrice Béthuel ! Philippe Gravejat 2 Jean-Claude Saut % Didier Smets *

December 12, 2009

Abstract

In this paper, we proceed along our analysis of the Korteweg-de Vries approximation
of the Gross-Pitaevskii equation initiated in [ff]. At the long-wave limit, we establish that
solutions of small amplitude to the one-dimensional Gross-Pitaevskii equation split into two
waves with opposite constant speeds £1/2, each of which are solutions to a Korteweg-de
Vries equation. We also compute an estimate of the error term which is somewhat optimal
as long as travelling waves are considered. At the cost of higher regularity of the initial data,
this improves our previous estimate in [.

1 Introduction

1.1 Statement of the results

In this paper, we proceed along our study initiated in [E] of the one-dimensional Gross-Pitaevskii

equation
100 4+ 02T = U(|¥2 — 1) on R x R, (GP)

supplemented with the boundary condition at infinity
|U(x,t)] — 1, as |x| — +oo.

This boundary condition is suggested by the formal conservation of the Ginzburg-Landau energy
1 1
B = [ 10wf+ g [Py
R R

In this paper, we will only consider finite energy solutions to (GH).

The Gross-Pitaevskii equation is integrable by means of the inverse scattering method, and
it has been formally analyzed within this framework in [Lf], and rigorously in [[4]. Concerning
the Cauchy problem, it can be shown (see [I§, [, fl]) that (GD) is globally well-posed in the

spaces
XFR) = {u € L (R,C), s.t. 1 — [u]* € L*(R) and Oxu € H* ' (R)},
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for any k > 1. More precisely, we have

Proposition 1 ([]). Let k € N* and ¥y € X*(R). Then, there exists a unique solution U(-,t)
in CO(R, X*(R)) [] to (GB)) with initial data Vo. Furthermore, the energy E is conserved along
the flow.

If u belongs to X' (R) and satisfies

2v/2

E(u) < 3

then it does not vanish, and we may write u = |u|expi6, where 6 is continuous (see e.g. [H]).
Here, we will focus on solutions with small energy, so that in view of the conservation of the
energy, we may write

\Ij(" t) = Q(" t) €Xp i‘p(" t)'

More precisely, we will consider initial data which are small long-wave perturbations of the

constant one, namely
1

o(x,0) = (1 _ éNO(gx)) 2
p(x,0) = GWGO(EX)

where 0 < £ < 1 is a small parameter, and N2 and W2 = 9,02 are uniformly bounded in some
Sobolev spaces H*(R) for sufficiently large k. We will add two additional assumptions on S
and N2. We will assume that

IN2 pmw) + 10202 ) < +o0, (1)

with a uniform bound in . Here, || - || sqg) denotes the norm defined on L (R) by

loc
/ f(x)dx|,

so that ([]) implies in particular that ©Y is uniformly bounded in L°°(R). In the appendix, we
will introduce a notion of mass for ¥ closely related to the M-norm of 1 — |¥|2, and prove its
conservation by the Gross-Pitaevskii flow.

(2)

I fllmew) = sup
(a,b)eR2

We next introduce the slow coordinates

3
T —e(x+V2), 2T =e(x— V2t), and T = ——t.
e(x ), T e(x ), and T o

The definition of the new coordinates z~ and z™ corresponds to reference frames travelling to
the left and to the right respectively with speed /2 in the original coordinates (x,t). We define
accordingly the rescaled functions N and ©F as follows

6 6 < i4¢ 2[7)7

+/ .+
Na (.Z' 7T) = _Qn(xat) 277 637 53

6v2 6v/2 A1 2V/2r
@E:t(xi77-):—90(x t): e <E j:€37 2,53 )7

'Here, the space X*(R) is endowed with the distance
dxr a(u,v) = |lu—vl|poo(—a,a)) + [10xu — Oxv|| gr-1r) + llu] = [v][|L2(r),

for some given A > 0 (see e.g. [E, E] for more details).



where 7 = 1 — p2. Setting

(N;_(.Z'+7 T) - 8x+@;_(1'+, T))7
our main result is

Theorem 1. Let k > 0 and & > 0 be given. Assume that the initial data ¥q belongs to X*+6(R)
and satisfies the assumption

IN2 ) + 10202 mey + N2l rrescy + €llOFTOND || 2y + 10202 | rrss @y < Ko- (5)
Let U~ and U™ denote the solutions to the Korteweg-de Vries equations
U+ U +U - U =0, (KdV)

and
Ut =B Ut U UT =0, (6)

with the same initial value f| as U=, respectively UF. Then, there exist positive constants e1 and
K1, depending only on k and Ky, such that

1UZCor) = U™ Com)lgrey + 1USCor) = U Cm) gk gy < Kae® exp K7, (7)
for any 7 € R provided € < e1.

Remark 1. In the original time variable, the Korteweg-de Vries approximation is valid on a
time interval t € [0, 7;] with
log(e
1. — o Legel)
€
Moreover, the approximation error remains of order O(¢?) on a time interval ¢ € [0,7)] with
T! = O(e73).

In order to explain the statements of Theorem [I, it is presumably useful to recast them in
the context of known results about the long-wave limit of the Gross-Pitaevskii equation. First,
we rewrite ([GI) in the slow coordinates (y, s) = (ex, et) and set

< n€ X, €t)>

waE(EX et).

l

ast(X t)

In this setting, (GP)) translates into the system for n. and w;,

Osne — \/§8wa = —%8 (newe),

8 Ne 2 Ne 2 (8)
OsWe — \/iayna = _3\/_528 (6 n. T 36 T §%>

It has been shown in [J] that for suitably small data and times, this system is well-approximated
by the linear wave equation. More precisely, assume that s > 2 and

K(S)Ezu(Ng7WQ)”HSH(R)XHS(R) <1,

2Since their initial data depend on e, 4~ and U do as well. We voluntarily hide this dependence in the
notations in order to stress the fact that the equations they satisfy are independent of ¢.




where K (s) refers to some positive constant depending only on s. Let (n,to) denote the solution

of the free wave equation
O — \/ii?ym =0,
_ _ (9)
dsto — /20,n = 0,

with initial data (N2, WY). Then, for any 0 <t < T., we have

[(ne, we) (-, €t) — (n, 0) (-, et a2y =2 (R)

< K(3)53t<”(N507W50)||H5+1(IR)><HS(IR) + (N2, W£)||§{5+1(R)><HS(R)>’

-1 .
where T. = (K (s)e®||[(N, W) || gs+1myxmar)) - In particular, when [[(N2, W2) || =1 @)x i+ (r)
remains uniformly bounded, then T, = 0(6_3), and the wave equation is a good approximation
for times of order 0(5_3). The general solution to () may be written as

(n,w) = (", wt) + (n", ),
where the functions (n*, tw®) are solutions to (f]) given by the d’Alembert formulae,

(0t (y, ), 0T (y,5)) = (N (y — V2s), W (y — v25)),
(0 (y, ), 0 (y,5)) = (N~ (y + V2s), W™ (y + V25)),

where the profiles N* and W+ are real-valued functions on R. Solutions may therefore be split
into right and left going waves of speed v/2. Since the functions (n*, ™) are solutions to (), it
follows that

(‘?y(NJr + W+) =0, and 8y(N_ — W_) =0,

so that, if the functions decay to zero at infinity, then

+ L NFW?
NT-=FW= = —

Theorem [I] extends our earlier results in [ (see also [[] for an alternative approach and
an extension to the higher dimensional case). It shows that the Korteweg-de Vries equation
provides the appropriate approximation for time scales of order 0(6_3). The definition of
the new coordinate x", respectively x~, corresponds to a reference frame travelling to the
left, respectively to the right, with speed v/2 in the original coordinates (x,t). In the frame
corresponding to z~, the wave (n~,mw~), originally travelling to the left, is now stationary,
whereas the right going wave (n tv") now has a speed equal to 8e=2. The coordinate z~
is therefore particularly appropriate for the study of waves travelling to the left, whereas the
coordinate =1 is appropriate for the study of waves travelling to the right. In [ff], we imposed
some additional assumptions which implied in particular the smallness of U, so that it was only
the study of waves going to the left which was addressed. This approach simplifies somehow the
analysis.

In this paper, we remove this smallness assumption, at the cost however of new assumption
(), and we analyze both waves at the same time. Finally, we would like to emphasize also that
comparing Theorem [[] with Theorem 1.4 in [, the error term now involves €2 instead of €. As
explained in [, the €2 is somewhat optimal, as the specific examples provided by travelling
waves show. This improvement is related to the fact that we use higher order derivatives. As a
matter of fact, the same improvement holds in the setting of Theorem 1.4 of [[f]. More precisely,

we have



Theorem 2. Let ¢ > 0 and k > 0 be given. Assume that the initial data ¥o belongs to X*+6(R)
and satisfies
IN2 || gess ) + €lOETOND| 2wy + 10202 griss gy < Ko (10)

Let N* and W* denote the solutions to the Korteweg-de Vries equation []
o-UT T U TUrOUT =0,

with initial data N2, respectively 0,0%. There erists positive constants e3 and Ka, depending
possibly on Ky and k, such that

INE(7) = NEC, Dl ey + IVECT) = 0:0Z (1) | ey )
< Ky (62 + HNS + am@2||Hk(R)) exp Ks|7|,

for any T € R, provided ¢ < e5.

Remark 2. If the term ||N? £ 9,00 g () is small, then the Korteweg-de Vries approximation
is valid on a time interval (in the original time variable) ¢ € [0, 7] with

. O<min{|10g(€)| | log([IV2 + 0:0¢]l 4 (x| })

g3 g3

In particular, if |N? 4+ 0,07 @) < Ce®, with a > 0, then the approximation is valid on a
time interval ¢ € [0,77] with T/ = o(¢7?|log(e)]). Moreover, if [|NY + 8,07| yx (g, is of order
O(g?), then the approximation error remains of order O(g?) on a time interval ¢ € [0, T”] with
T = O(e3).

The main difference between Theorems [I] and [ is that the second one involves the functions
NZF and 0,07 instead of UF. The error term in ([[T) involves the quantity || N? 4+ 9,09 H*(R)>
which is small if the wave travelling in the other direction is small. Let us also emphasize that,
in contrast with the assumptions of Theorem [, the assumptions of Theorem P do not involve

any assumption on the M-norm.

Finally, it is worthwhile to notice that similar issues have been addressed and solved in the
case of the long-wave limit of the water wave system. As a matter of fact, system (f) bears some
resemblance with a Boussinesq system. In a seminal work [[(], Craig proved the first rigorous
convergence result towards the Korteweg-de Vries equation, under assumptions which are similar
in spirit to the ones in Theorem [, focusing on a wave travelling in a single direction. Schneider
and Wayne [[J] completed the analysis and were able to handle both left and right-going waves
at the same time, a result similar in spirit to Theorem []. Bona, Colin and Lannes provided a
sharp error estimate in [ (see also [[[4]). The asymptotics were fully justified in [I], as well
as in the higher dimensional case. In order to control the interactions between the two waves,
sometimes called secular growth, these authors introduce additional assumptions on the initial
data, of different nature but in the spirit, similar to our introduction of the M-norm which is
more natural in our context.

We also emphasize that in the regime under study, the solutions of the Gross-Pitaevskii
equation have their modulus close to one, so that by the Madelung transform, one is reduced
to analyze a dispersive perturbation of a hyperbolic system. In this direction, Ben Youssef
and Colin considered in [f] similar limits for general hyperbolic systems perturbed by linear
dispersive terms.

3As well as the functions U7, the functions N+ and W* depend on €. We again hide this dependence in the
notations in order to stress the fact that the equations they satisfy are independent of ¢.



With respect to those works, the main difficulty regarding system (§) is related to the fact
that the dispersion terms are nonlinear. This difficulty is overcome using the integrability of the
Gross-Pitaevskii and Korteweg-de Vries equations which allow to derive suitable bounds in high
regularity spaces.

1.2 Some elements in the proofs

The proofs are somewhat parallel with the proofs in [f], so that we will try to emphasize the
new ideas and ingredients. Concerning Theorem [l, the left and right going waves U and Uz
play the same role in estimate ([]), so that we may focus for instance on the estimates on U .
In order to simplify our notation, we set N, = N7, 0, =0_,U. =U;, U =U", and

r=1" =e(x+V2).

We also introduce the new notation

1 8
Ve(z, 1) = §<N€(x,7') - 8w®€(x,7')> =Ur <:17 2 7'), (12)
and compute the relevant equations for U, and V,
0-U: + agUa +U.0,U. = f. — €2TE7 (13)
where 1 1
fe EOx(é‘@—aiVs-i-gUsVE) Easza (14)
and g
67"/6 + 6_26:”‘/6 =0c+ €2T€7 (15)
where 1 1 1
%za4ﬁm+§@—6¢—gmn)z@@. (16)

The remainder term r. is given by the formula

N.O?N. (0,N.)?
_|_

6( _%Ne) 12( - %Ne)2

%:@< );@&. (17)

On the left-hand side of ([[J), we recognize the ([KdM) equation, whereas on the left-hand side
of ([[§), we recognize the transport operator with constant speed —8z~2, which stems from the
fact that we are working in moving frames with speed +4e~2. It remains to establish that the
terms on the right-hand side of ([L3) behave as error terms. The first step is to establish that
all quantities are uniformly bounded on finite time intervals.

Proposition 2. Let k € N. Given any € > 0 sufficiently small, assume that the initial data
Uo(-) = U(-,0) belongs to X*T1(R) and satisfies the assumption

IN2 || gy + €llO5 T N2l 2y + 110202 gy < Ko, (18)

where Kg is some given positive constant. Then, there exists a positive constant K depending
only on Ko and k, such that

IN-Com) ey + €llOy ™ Ne (o) 2@y + 10006 ()| ey < K exp K], (19)
for any T € R. In particular, we have

U< () ey + V(o) ey < K exp K|7l. (20)



Remark 3. Here and in the sequel, when we write € sufficiently small, we mean that 0 < € < g,
where ¢ is some constant which depends only on Ky, but not on the order of differentiation k.
In the course of our proofs, the constant g is determined so that, when assumption ([[§) holds,
the energy of VU is sufficiently small in order that (2.3) holds.

It follows from Proposition ] that the quantity r. remains bounded on finite time intervals,
so that the error term e%r, is of order €2 as desired in Theorem [l. In contrast, the term f.

describes the interaction of the two waves and is therefore more delicate to handle. Since V;
is not supposed to be small in Theorem [I] (in contrast with Theorem []), f- is not small in
general. However, due to the dynamics, the interaction turns out to be of lower order. Indeed,
in view of ([[§), at leading order, the function V. is shifted to the left with speed 8¢=2. Since
the definition of f. strongly depends on the function V,, a related property also holds for f., so
that the average interaction turns out to be small. To provide a rigorous justification of this
last claim, we need however to localize the functions U, and V.. This leads us to use the norm

I llaem)
As in [[i], our proofs rely on energy methods. We introduce the difference Z. = U. —U, which
satisfies the equation

0-Ze+ 032 +UOZe + Z0U + 2.0, 7 = fo — Exre. (21)

In order to compute the L?-norm of 9¥Z,, we apply the differential operator 9¥ to (BT), multiply
the resulting equation by 8’;25 and integrate on R to obtain

1 1
5 OrllO Zel|Z2 ey = - / Oy UZ) 05 Ze = 5 / 051 (22)0; 2
R R

+ / okr.okz. — &2 / okr.okz.
R R
;/0 /R(a’;ze)z, (22)

and integrating in time, we are led to the differential equation
azk / /ak—l—l Z/{Z akZ __/ /ak—l—l Z2 8k
+ / / ok f.0kZ, — & / / .0k z.
o JR 0o JR

The proof of Theorem [] then follows applying the Gronwall lemma to (R3) provided we are first
able to bound suitably all the terms on the right-hand side of (B3). The first, second and fourth
terms can be handled thanks to Proposition f. Indeed, we will show in Section [] that these
terms can be bounded as follows

), (24)

/ /ak+1 (Uz.)okz. <K<‘/ / (0% 2.
/ /ak“ (Z22)ok 2. <K< ) (25)
. (26)

/ / .0 2. SK' / exp K]s] HZe(wS)HHk(R)dS
0 R 0

For the third term, we will prove

Setting

' / exp K|s| 11Z:(, )| s e ds

' [ e K15 12050




Proposition 3. Let € > 0 be given sufficiently small. Given any k € N, assume that the initial
datum Wo(-) = W(-,0) belongs to X*+6(R) and satisfies () for some positive constant Ko. Then,
there exists a positive constant K depending only on Ky and k, such that

/ / O 1.0 2.
0 R

< K€2<(62+ 105 Ze (-, 7) | 12 ) ) exp K 7| +'/0 exp Kls| [|Ze (-, s)|| g ) ds

(27)

for any T € R.
Combining (P3) with bounds (P4), (B§) and (B7), we will obtain

9.2k (r) < K(sign(T)Zf(T) +etexp K\T!)

The proof of Theorem [l] will then follow applying the Gronwall lemma.

We next say a few words about the proof of Proposition f]. For sake of clarity, we assume
here that £ = 0. For given 7 € R, we then have

T T 1 1
cle = _8x‘/;2_8§‘/€+_6m UVe) ) Ze
[ L= LG 50 (0=V2)

T 1 1 1 /7
=AL@@M(yuz—%&+gm&)+géL@@w%&.

For the first integral on the right-hand side, we use transport equation ([[§) and write

(28)

g2

0, Ve = §<_67V€ + ge +€2r€)'
This change makes apparent an €2 factor, and then we continue the computation using integra-
tion by parts for the time and space variables as well as the bounds provided by Proposition
. It remains to handle the second integral on the right-hand side of (R§), which does not in-
volve as before the spatial derivative 9, V.. We somewhat artificially introduce such a derivative
considering an antiderivative Y. of V. defined by

Ta(va) = /_g;‘/a(yﬂ-)dyv (29)

where the positive number R will be suitably chosen in the course of the computations. We

obtain . -
| [ovvz— [ [auvor.z.
o Jr (I

The function Y. satisfies a transport equation, namely
8 8

so that it is possible to implement a similar argument as above replacing 0, T, by the expression
provided by (B0). In order to perform our computation, it turns out that we only need to obtain
some control in time of the L*°-norm of Y., which essentially amounts to controlling the M-
norm of V. At initial time, this corresponds to assumption ([[]) on N? and 0,00. For later time,
we have



Lemma 1. Let 0 < Ey < ¥ and Ug € M(R) N X*(R) be given such that E(Vy) < Ey. Then,
there exists a positive constant K, depending only on Ey, such that

InC )y +V2010x0( ) | mg) < K(HHOHM(R) + V2|0 | mr)

t
] [ (100w + I By + 1050030 e )

)

In the slow coordinate ¢, Lemma [[] provides a control on the norm ||Yc|[ze (), Which is
independent of € and grows linearly in time.

for any t € R.

Lemma 2. Let e > 0 be sufficiently small. Assume that the initial datum Uo(-) = ¥(-,0) belongs
to X4 (R) and satisfies assumption ([§) for k = 3 and some positive constant Ko. Then, there
exists a positive constant K, which does not depend on € nor T, such that

IN o) ey + 10002 ) Ly < K (INClancey + 10:0% ey + I71), (32)

for any 7 € R. In particular, we have
1UCo P llaacey + IVe s D)y < K (108 wagey + V2L aacey + 1) (33)

The proof of estimate (£7) follows combining the bounds of Proposition ] and Lemma .

We next give some elements of the proof of Theorem J. Notice first that the functions N
and 0,0F associated to the coordinates z and x~ play the same role in Theorem B, so that
we may focus again for the estimates on N, = NJ and 0,0, = 0,0_. Recall that the main
differences with respect to Theorem [] are that Theorem P addresses the functions N. and 8,0,
instead of Uy, and does not involve any assumption on M-norms. The proof of Theorem [ is
however parallel to the one of Theorem [I. We write for the function N,

[Ne = Nl ey < Vel gry + 10 = Ull ey + 1A = Nl gy (34)
since by definition, V. = N. — U.. Similarly, the functions 0,0, and W satisfy
1020 = Wl grwy < IVellarwy + 10 = Ul ey + 14— W ey (35)

so that the proof of ([[T) reduces to bound each of the terms on the right-hand side of (B4) and
(BH). For the H*-norm of V., we invoke again energy estimates, based now on equation ([[).
This yields

Proposition 4. Let ¢ > 0 be sufficiently small. Given any k € N, assume that the initial datum
Wo(-) = U(-,0) belongs to X**6(R) and satisfies ([[0) for some positive constant Ko. Then, there
exists a positive constant K depending only on Ky and k, such that

V=Gl mr )y < KV vy + €2) exp K7, (36)
for any T € R.

Similarly, concerning the differences between the solutions to (KdV]), # and A on one hand,
and U and W on the other, we invoke a general stability result for the Korteweg-de Vries
equation, which we recall for the sake of completeness. The proof follows from standard H*-
energy methods for the difference, using the conserved quantities of (KdV]) in order to bound
uniformly the H**!-norms coming from the quadratic terms.



Lemma 3. Let k € N be given. Consider two functions FO and G° in H**2(R) and denote F
and G the solutions to (KdV]) with initial data F°, respectively G°. Then, there exists a constant
K, depending only on k and the H**2-norms of F* and G°, such that

IFC,7) = GC )l vy < KNE? = GOl gy exp K7, (37)
for any T € R.
In view of Lemma [, and the fact that
U~ WO = N0 — 0 = V0,
we are led to
A Com) = NGy + IUCT) = W)@y < V2| ey exp K7, (38)

for any 7 € R. Going back to (BJ), it remains to estimate the term [|Uz — Ul i gy = || Ze|l g r)-
An upper bound for this term was given in Theorem [l| using bounds on the M-norm of N, and
0:0.. Here, we use instead the estimates of Proposition | to bound the interaction terms.

Proposition 5. Let € > 0 be given sufficiently small. Given any k € N, assume that the initial
datum Wo(-) = W(-,0) belongs to X**6(R) and satisfies ([[0) for some positive constant Kj.
Then, there exists a positive constant K depending only on Ky and k, such that

/ / o 1.0 2.
0 R

<Ke?(& 4 V2l gy + 1052, 7) 2wy ) exp K|

. (39)
+K (e + ||v£||m(R))' /0 exp K 5| 1 Z:(c,5)l| 17 )5
for any T € R.
We then adapt the arguments of the proof of (ff) in order to obtain that
U(o7) = UC D ey < K (€2 + IV v wy) exp K7, (40)

for any 7 € R. Combining with inequalities (B4) and (BH), and bounds (Bf) and (Bg), this will
complete the proof of Theorem .

1.3 Outline of the paper

This paper is organized as follows. In the next section, we provide the proofs to Proposition [,
and Lemmas [ and B In Section [, we prove Proposition fJ. The proof of Theorem [ is completed
in Section [, whereas we derive Proposition [, Lemma [, Proposition |, and finally Theorem
B in Section . In a separate appendix, we extend the arguments of the proof of Lemma [] to
provide a rigorous framework for the notion of mass and establish its conservation.

2 Bounds for the rescaled functions

In this section, we establish a certain number of bounds for the rescaled functions N., 9,0, U;
and Vz, which are useful in the course of the proofs of Theorems [] and f. We first derive the
Sobolev bounds of Proposition ], and then we compute estimate (B2) of Lemma .

10



2.1 Sobolev bounds

Two different arguments are under hand to derive the Sobolev bounds given by inequality ([[9).
The first one relies on the integrability properties of (GH). It is proved in [ff] that the quantities

FA(¥) = B(W),
1 1
=5 [1e2wr =3 [ owi+ [0~ [
R R
5 )
y=5 [lotup g [} [ oo+ [ ommiaaur -3 [ oot
15 [ oo gy ®
-5 [ty + 3 [ ok« [t
and

Pi(w) =3 [ jotep + / o0 =5 [ w@tn? ~ 5 [ wlotur+ 2 [ oy

7 [oezer = [@arioat -4 [ owpiotue -7 [ oot

35 35 35 7
_7/ ‘aX\II‘ <8X\Il’a)3(\:[/> Y / 7’]837]’8)(\:[/‘2 - / 773’8)(\1,’2 - 1 / n‘aX\I/‘4 T / 7757
R 2 R 4 R 4 R 16 R

are conserved along the Gross-Pitaevskii flow, provided that the initial datum Wy belongs to
X*(R). Notice that, for 1 < k < 4, the quantities £}, defined above give a control on the L?-
norms of the functions 0¥ and 9¥~'n. As a matter of fact, invoking the Sobolev embedding
theorem, one can establish that there exists some universal constant K such that

9 k+1
En(y) < K (Wl + 11 = WPl m)

for any function ¢ € X*(R). Similarly, there exists a positive constant K (E1(1),..., Ex_1(¢)),
depending only on the quantities E1(1)), ... and Ej_1(¢), such that

ol gy + I = [P gy < KBV, By () Ei():

In particular, the conservation of the quantities Ej (V) along the Gross-Pitaevskii flow provides
bounds on the Sobolev norms of the functions ¥ and 7, which only depends on the X*-norms
of the initial datum Wg. In the rescaled variables, we obtain

Proposition 2.1 ([f]). Let 0 < k < 3 and € > 0 be given sufficiently small. Assume that the
initial datum Wo(-) = U(-,0) belongs to X*+1(R) and satisfies assumption ([[§) for some positive
constant Ky. Then, there exists a positive constant K, which does not depend on € nor T, such
that

V) 1k gy + €108 N ) 2y + 10200 ) sy < K, (21)

for any T € R.

Inequality (R.1]) presents the advantage to be uniform in time. We will invoke this property
to derive Lemma fJ. We believe that inequality (B.J]) remains valid for higher order Sobolev
spaces. However, it seems rather involved to prove this claim since this requires to compute, or
at least to describe precisely, the higher order invariants of ([GH) (see [fl] for more details).

In order to compute higher Sobolev bounds, we rely on the energy estimates derived in
] in the context of the wave limit of the Gross-Pitaevskii equation mentioned above in the

11



2v2

introduction. More precisely, given any k € N and any positive number Fy < =4=, we consider
some initial datum Wy € X*(R) such that E(¥g) < Ep. Then, there exists a positive constant
mo, depending only on Fj, such that

1
mo < [W(x.1)] € . (2.2)

for any (x,t) € R? (see [] for more details). Under this additional assumption, the computation
of energy estimates for system (f]) achieved in Proposition 1 of [{], provides the tame estimates

0
AT (D) < Kk, mo)e (L4e2ne 1) ) (190, ) +100e L) (PE0+ 122, (2)

where K (k,mg) is some positive constant which does not depend on ¢ nor ¢, and where the
function y. is defined by

w +£8n5 where m —1—571
Ye = We \/5 m. e = 6 e
while the notation T'*(t) refers to the functional
1
DH(E) = 108 (1) 22 gy + e D)0y, 8) [ - (2.4

In view of (2.9), and since we have
t
me(a,t) = [¥(Z.)

the quantity I'* controls the H*-norms of n. and y.. Going back to the original setting, we have

in particular,
144 t
e = (v (7))
°(t) = = '

so that, by the conservation of the energy,

) = g—E(\IIO). (2.5)

£

Proof of Proposition [§. In the case k < 4, Proposition [ is a direct consequence of Proposition
Pl In the case k > 4, the proof of Proposition [ is obtained applying the Gronwall lemma
to inequality (B-3), using identity (B.§) and bounds (R-). We conclude rescaling the derived
inequality in the variables N, and 0,0-..

More precisely, invoking assumption ([[§) for k = 0, we first compute in the rescaled setting,

e 0 0\2 032 52(5zN0)2 3
E(Yy) = 144/ (M€ (0:092)° + (NF)~ + 2 ) < Ke?, (2.6)

where M0 =1 — %NEO and K is a positive constant depending only on Kjy. In particular, given
any ¢ sufficiently small, assumption (2:2) holds for mg = 3, so that in view of (23) and (25),

we are led to
/ Ac(s)ds
where

Ac(t) = K (k,mo)e? (1 + ellne (1) 2o ) (10272 (-, )| oo ) + 1029, D)oo m)) - (28)

k() <%0 exp‘/ s)ds

+ 8E(\IJO (exp

- 1> (2.7)

12



We now rescale inequality (B.7]) in the variables N. and O, using the fact that

4T 2¢/2 41 2¢/2
Na(-Z'yT) = Ng¢ <$ — 6—2, 6—27'), and 8x®£(x77-) = W (m — 5_2’ 5—27—)
In this scaling, definition (2.4) may be written as
2V 21 1
vi(r) =Tk ( 5 ) = NN ) 3y + 1M ) 2RV, ) B ey (2.9)

where Y, = 0,0, + %aﬁz cand M. =1 — %NE. Similarly, definition (B.§) may be rescaled as

Actr) = 22 A (V2T = K (ko) (L + 2N ) ) (1068 )+ [0, ),

/OT A (s)ds /OT A.(s)ds| — 1>.

Invoking assumption ([§) for k¥ = 2, and the Sobolev embedding theorem, Proposition P.]]
provides

so that inequality (R.7) becomes

1
+ E—SE(\IIO) <exp

YE(T) < ¥E(0) exp

[A(,7)| < K,
for any 7 € R, where K is some positive constant depending on k and Ky. Hence, by (2.§),
vE(T) < (VE(0) + K) exp K7].

The proof of ([[d) then follows from definition (R.9) and inequalities (R.9). Inequality (RQ) is a
direct consequence of definitions ({) and ([[2). O

2.2 Bounds in the space M(R)

We turn first to the proof of Lemma fl. As mentioned in the introduction, inequality (B3) is a
rescaled version of inequality (B]), using the Sobolev estimates of Proposition P.J] to bound the
integral on the right-hand side of (B1).

Proof of Lemma B. In view of definitions (), inequality (B]) may be recast in the variables N.
and 9,0, as

IN:C, 7)) H1020: (-, Tl ey < IINE vy + 102021 mwy

8| [ (102N e + IV ) )+ 1050, ) ey )

I

so that by the Sobolev embedding theorem,
NG ) @) 1020 D mey < N2l mery + 11002 mr)

T ) , (2.10)
| (1Nl )+ I8y + 10202 5) sy ) s

+K

Invoking assumption ([[§) for k = 3, we deduce from Proposition P.]] that the integrand on the
right-hand side of inequality (2.10)) is bounded by some constant depending only on K. This
completes the proof of (BF). Inequality (B3) is then a direct consequence of definitions (f]) and

(). O

13



We next prove Lemma fl.

Proof of Lemma []. The proof of Lemma [ relies on the conservative form of the system of

equations satisfied by 1 and Ox¢ which may be written as

{ oyn — 20y (Z?ch) = —204 (n@xcp),

2 2
01 (Oxp) — On = —30%n — 8X<|5x90|2 + 2?18f77) T 4((?){—7]%)2)'

(2.11)

As already mentioned in the introduction, we recognize on the left-hand side of (R.11), a trans-
port operator 7, given by
T = (0p — 20,0 — Ox).

Introducing the variables

= %(n + \/58)(@), and v = %(77 - \/58)(90), (2.12)

we diagonalize the transport operator 7, so that (2.11) becomes

Ot — /30 =~ (1) — Y20 — V20, (Sl + EL + 1),

(2.13)
O + V200 = ~ B (Do) + Y2030 + V20 (30wl + FEL + S ).

Given any real numbers a < b, we deduce from the first equation of (R.13) that
b—V2t

at</abu(x - \/§t,t)dl"> B [ ndsp — i o - f( el + 4(7;6%””) " 8((%)”2)2)]@—@‘

At this stage, it is worthwhile to recall that, since F(¥g) < Ey, inequalities (R.9) hold for some
positive number mg, depending only on Ej, so that

8t</abu(x —~ ﬂt,t)d:p)

where K is some positive constant, depending only on Ey. Performing an integration in time,
this may be recast as
‘ / z, 0

+K\ [ (1t e +Hn<-,s>uévz,m®+Haxso(-,s)u%w(m)ds-

< K (1020C, )1z ) + 11 Oly2oe ) + 10500, )3 s )

b

(a:—\/_ttdx

(2.14)

Applying the change of coordinates y = & — v/2t to the left-hand side of (B-14), and invoking
definition (f), we are led to

t
(-, H)llaagey < uu<-,o>||M(R>+K\ /0 (10270, ) @y 110 ) e )+ 1052 ) oo )

The same proof applies to the second equation in (R.1J) and this provides the same inequality
for the function v. Combining with definitions (R.13), inequality (BI]) follows. O

3 Estimates for the interaction terms

This section is devoted to the proof of Proposition ] which provides estimates of the interaction

term [ [ OF f.05Z. in (R3).

14



3.1 Proof of Proposition J§

Given any integer k and any number 7, the interaction term fOT fR ok f.0k Z. may be written in
view of definition ([[4),

T T 1 1
| [oreiz = [ [a(Gve-eives guvi)otz.
0o JR 0o JR 6 3

so that by the Leibniz formula,

/ ' [ 0502 = 1o+ 1), (3.1)
0 R

where we denote

/ /< 8k+1 V2 ak+3v 4= Z<k+1>8’U ak—l—l jv>ak .

n = % / / AR IATE T (3.2)

In view of (B-]), the proof of Proposition [J reduces to bound each term in the integrals I.(7) and
J.(7) combining the estimates of Proposition | and Lemma [] with some Hélder inequality and
Sobolev embedding theorems. In particular, we will repetitively invoke the following bounds of
the nonlinear functions f;, g., 7, Fr, G. and R., as well as the following estimates of the time
derivative .U, and of the solution U to (KdV]) with initial datum U?. We state these bounds
in a series of lemmas whose proofs are each the object of a separate subsection here after the
completion of the proof of Proposition fJ.

and

Lemma 3.1. Let € > 0 be given sufficiently small. Given any k € N, assume that the initial
datum Wo(-) = W(-,0) belongs to X**6(R) and satisfies ([[0) for some positive constant K.
Then, there exists a positive constant K depending only on Ky and k, such that

107U, )| ooy + I feCo Il anra @y + 196G )l anvewy + 1172 (o 7| o2 (wy

(3.3)
+ 1FCo ) rrs@y + 1Ge (Tl arrs @y + 1B (7)) mvs )y < K exp K7,

for any 7 € R. Similarly, there exists a positive constant K depending only on Ky such that
10:UC, T e ) + 1UC T s v) < K, (3-4)
for any T € R. In particular, we have
107 Ze (-, )l ez ry + (12 (5 7l s m) < K exp K7, (3.5)
for any T € R.

Notice that the estimates of Lemma B.J do not contain any 2 factor. In order to make
apparent such a factor, we rely on equations ([[§) and (BJ). Indeed, in view of ([[§) and (BQ),
the space derivative of the functions V. and Y. may be replaced by the time derivative of V.
and Y, respectively, up to some remainder terms, the whole being multiplied by the desired £2
factor.

Concerning the integral I, all of its terms involve space derivatives of V;, so that we may
invoke the argument above to gain a 2 factor. More precisely, we obtain

15



Lemma 3.2. Let ¢ > 0 be given sufficiently small. Given any k € N, assume that the initial
datum Wo(-) = W(-,0) belongs to X**6(R) and satisfies ([L0) for some positive constant Kj.
Then, there exists a positive constant K depending only on Ky and k, such that

2 k T
9 k / / k f—i ;
I (1) — — ‘ 0y f-07IV.0LU,
7) 24;(3—1> o JR 4

< K€2<(€2 + HE?!;ZE(',T)HLz(R)) exp K|7| + ‘ /0 exp K|s| || Z= (-, 8)|| gre myds

(3.6)

for any T € R.

The sum in the first line of (B.6), namely

k T
3 < ) ) | [ otrokavom. (3.7)
= M 1) Jo Jr

corresponds to some remainder terms mentioned above in the computation of the space deriva-
tives of V, related to the computation of the term

k
k+1\ . _-
) ( - >8%U58!§“ V.0kZ.,
=0\ 7
appearing in I, . The estimates of the sum (B.7) is more involved, so that we postpone its
analysis in Lemma B.4 below.

In contrast, the integral .J. does not contain any derivative of V.. Our argument does not
rely anymore on ([[§), but instead we introduce the function Y. in the right-hand side of (B.9)
for some suitably chosen number R. We then invoke (B() to gain some 2 factor. This provides

Lemma 3.3. Let € > 0 be given sufficiently small. Given any k € N, we assume that the
initial datum Wo(-) = W(-,0) belongs to X*TO(R) and satisfies (§) for some positive constant
Ky. Then, given any 7 € R, there exist a positive number Ry, depending on £ and V., and a
positive constant K, depending only on Ko and k, such that

2 T
L -5 [ [ ekrros,

< K€2<(€2 + HE?!;ZE(',T)HLz(R)) exp K|7| + ‘ /0 exp K|s| || Z= (-, 8)|| gre myds

(3.8)

)

Once again, the integral on the left-hand side of (B.§) corresponds to some of the extra
remainder terms in (Bd). The estimates of this integral are also more involved, so that we
postpone its analysis in Lemma [B.4 below.

for any choice of the number R of definition (R9) in (R1,+00).

In order to achieve the proof of Proposition ], it remains to estimate the interactions terms

_52 T k k+1 : k k¢ aok—jvs aj
=5 [ (otrrot Ue+j§::1<j_1>6xf€8x o). 69

which appear on the left-hand side of (B.6) and (B.§). Using the bounds of Proposition [ and
Lemmas P] and B.1], we compute the estimate

|K:(7)| < Ke? exp K|7|,

16



for any 7 € R. However, this bound is not sufficient to complete the proof of Theorem [l since it
would provide an ¢ factor instead of an €2 factor in (f]). In order to gain some further ¢ factor,
we iterate the argument, and replace once more the space derivatives of V; and Y., which appear
in the expression of K.(7), by the time derivatives of V, respectively Y., plus some additional
remainder terms. We obtain

Lemma 3.4. Let € > 0 be given sufficiently small. Given any k € N, assume that the initial
datum ¥o(-) = U(-,0) belongs to X*+6(R) and satisfies (§) for some positive constant Ko. Then,
given any T € R, there exist a positive constant K, depending only on Ky and k, such that

|K.(7)| < Ke' exp K|, (3.10)

for any choice of the number R of definition (R9) in (Ry,+00), where Ry denotes the positive
number given by Lemma [5.3.

Proposition [ follows combining Lemmas B.3, B-3 and B.4.

Proof of Proposition [ completed. Given any 7 € R, we first fix the number R such that (B.§)
and (B.10) hold. Then, in view of (B.1)), (B.6), (B.§) and (B.9), we have

/ / aﬁfsaﬁze _KE(T)
0 R

< K€2<(€2 + HE?!;Za(-,T)HLz(R)) exp K|7| + ‘ /0 exp K|s| || Ze(+, 8)|| e (myds

so that (7) is a direct consequence of (B.10). This concludes the proof of Proposition f. O

The rest of this section is devoted to the proofs of Lemmas .1, B.3, B.q and B.4.

3.2 Proof of Lemma B.]

Concerning the nonlinear functions f, F;, g- and G, it follows from definitions ([4) and ([[§),
the Leibniz formula, the Holder inequality and the Sobolev embedding theorem [] that

I fellermy + el vy + N1 Fell prer () + 1Gell rsr ey

, (3.11)
< K<||Ue||Hk+3(R) + Vel greary + (10Ul ey + [1Vell e g)) >,

where K is some positive constant depending only on k. Similarly for r. and R., we have in

view of ([[7),

el ey + 1 Bell prrra(m) < KHNaHZﬁl(R)HNEHHHS(R)
k+2 (3.12)
< K(IUellgenqey + IVellmmorg ) (10 sy + 1Vellpessy)-

Notice that for (B.19), we also invoke the bound

2
1
moﬁl—E—Naﬁ )
6 mo

4For k > %, one could invoke instead the fact that H* (R) is a Banach algebra, but we write the proofs so that
they work for k£ > 0.
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which is a consequence of (P.9). Combining (B.11)) and (B.13) with the bounds of Proposition
we obtain (B.3)), except for the time derivative 9,U.. For this function, we have in view of ([L3),

Ha'rUEHH’C(R) < ”Ua|’Hk+3(R) + ”U€|’§{k+1(R) + ”fEHHk(R) + E2H7’6”HR(R)=

so that the bound for 0,U. follows from the previous bounds on f. and r. combined with the
bound on U, of Proposition B

For the uniform bound (B.4) on U, we invoke the integrability properties of the Korteweg-
de Vries equation. As a matter of fact, equation (KdV]) owns an infinite number of invariant
quantities which control the H*-norms of the solutions (see e.g. [[1]). Therefore, the H*-norm
of a solution U at time 7 is controlled by the H¥-norm of its initial datum ©° = U?. More
precisely, there exists a positive constant K, depending only on ||U?|| H*(R)» Such that

1A Dl e ) < K

for any t € R (see [§]). This control is uniform with respect to ¢ provided that ||U?|| H*(R) 18
bounded independently of . Since U solves the Korteweg-de Vries equation, the H*~3-norm

of 9;U is then uniformly bounded with respect to . Thus, under assumption (fj), we obtain
inequality (B.4). Estimate (B.5) follows combining the definition of Z. with (B.3)) and (B.4).

3.3 Proof of Lemma

Given any 7 € R, we split the expression of I.(7) into three terms

I.(7) = (1) + (1) + I3(7), (3.13)
where -
Ii(1) = = / / Ok Z 0k (V2), (3.14)
6 0 R
L(r) = — / / 0k 2.0V,
0 R
and

k
1 E+1\ [T ; _
13(7)552< : )/0 /Rag’gzaa;UEaj;“ av..

=0\ 7
We now compute estimates of each term I (7). For the first one, we have

Step 1. Under the assumptions of Lemma [3.3, there exists a positive constant K depending
only on Ko and k, such that

et [ k (172) Ak
N -5 [ [k

< Ké? <(E2 + |]8§Z€(-,7—)HL2(R)) exp K|7| + ‘/0 exp K|s| | Z (-, $)|| e my ds

(3.15)

)

In order to obtain the 2 factor on the right-hand side of (B.1§), we write the transport
equation satisfied by 9%(V2), namely

2 2 4
0, (05 (v2)) = =S 0, (95 (V2)) + S0k (9:Ve) + TOE (V). (3.16)
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and replace 9Ft! (Vg) in (B.I4) by its expression provided by (B.1§). Integrating by parts in
time and using the fact that Z° = 0, the integral I;(7) becomes

2 2 T
11(7_) = - Z_8 /RaI;ZE(vaT)ag (V€2)(33>T)d33 + i_S /0 /[RaTa§Z€8§ (Vez)

62 T 64 T
+ﬁ/0 /Ra!cgzaa];(gava) +ﬁ/0 Aagzaai(ra%)-

We now apply the Leibniz formula, the Holder inequality and the Sobolev embedding theorem
to obtain for the first term on the right-hand side of (B.17),

(3.17)

/ 8';25(%, 7')(95;C (Vf) (x,7)dx
R

< K05 Ze () p2 ) Ve G ) iy 1V 3 T e gy -

Hence, we deduce from (B0) that there exists a positive constant K depending only on Ky and
k, such that

< K08 Ze (-, 7) | 2 ) exp K| 7. (3.18)

/ aﬁZE(a:, 7)8'; (Vf) (x,7)dx
R

Similarly, in view of Lemma B.]], we have for the third and fourth terms

‘/ /85258';(98‘/;) +‘/ /852585(7’5‘/;)
0 R 0 R

SK/O 105 Z | 2.y | Vel s ey (1< e ey + 192l i )

(3.19)

gK‘ / exp K|s| 052, )]l 12y ds
0

The analysis of the second term on the right-hand side of (B.17) is more involved since estimate
(B-13) requires to gain some further 2 factor. We first replace 9,0%Z. by its expression given
by (B1). We obtain

T k k 2\ _ 17_ 2 . ’ k 2\ ok
| [odkzoiwvt) =+ )+ [ [ ook, (3.20)

where - )
I(r)=— / / o5 (V2) (a§+3za+a§+1(uza) +—a’;+1(23)>,
0 JR 2
and

I3 (7) 5—52/ /85(‘@2)857*5.
0o JrR

We then estimate each of the above integral I f (7). Integrating by parts in space the first one,
we have

)= [ [ (0 (v2)0kz. + 00 (V20 ze) + 50k (V)04 (22)).
so that
I} (7)] < ‘/0 \|Vs||Hk+3(R)HZeHHk(R)(\|Vs||Hk+3(R) Vel g @y (I ey + ||Zs||Hk(R))) ‘

In view of the bounds of Proposition fl and Lemma B.1], we are led to
(7)) < K‘/O exp K|s| 12, ) sreqayds|. (3.21)
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Similarly, in view of the bounds of Proposition f| and Lemma B.1], we compute

[IF(7)| < Ké? < Keexp K|7]. (3.22)

/O 1V ey 1V s e e

Combining (B.20) with (B.21) and (B.22), we are led to

[oekzoke) - [ [ ook,
0 JR 0 JR

< K<€2 exp K|7| + ‘ /0 exp K|s| | Z: (-, 8)|| e () ds

)

In view of (B.17), (B.18) and (B.19), this completes the proof of Step .

We now turn to the integral I5(7) for which we have

Step 2. Under the assumptions of Lemma [3.3, there exists a positive constant K depending

only on Ko and k, such that
e 7 k4277 ok
8 Jo Jr

§K62<(62+ ||8£Z€('77_)HL2(R))eXpK|7_|+‘/0 exp Kls| [|Z< (-, s)|| g ) ds

(3.23)

The proof is similar to the proof of Step [l In view of ([[§), we have integrating by parts in
time and using the fact that Z°0 = 0,

/ak N2V (2, ) — —/ /a ok Z.08+2Y,

(3.24)
- = / / 29057, — — / / It O Z,
8 Jo Jr 8 Jo Jr
Similarly to (B.1§), we compute for the first term on the right-hand side of (B.24),
[ 05207105 Vet mye] < KIAZ ) 0 K (3.25)
R

while for the third and fourth terms, we have similarly to (B.19),

/R 2.0k 7| + ‘ / / Ot 9k 7 '<K / exp K|s| |05 Z:(-, 5) |2 )ds.  (3.26)
0

Concerning the second term on the right-hand side of (8.24), we replace as above 9,0%Z. by its
expression given by (21). This leads to

/ /aak Z0RP2V, = I} (1) + I3(r / /8k+2V8kf€, (3.27)

where

I}(r)=— / ' / a§+2x/€(a§+3za+a§+1(uza) +la’;+1(23)>,
0o JR 2

I2(1) = —52/ /85"’2‘/5857"5.
0 JR
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Following the lines of the proofs of (B.21) and (B.23), we obtain

()] < K\ [ oo RIs| 12209

and
]122(7')\ < Ke2exp K|7|.

/ 0,08 2052V — / / OET2V.k f.
0 R 0 R

)
< K<e2 exp K| + ' [ e Blsl 17050 s
0

By (B.27), we are led to

Estimate (B.23)) follows combining with (B.24), (B.25) and (B.24).
We finally consider the finite sum I3(7).

Step 3. Under the assumptions of Lemma [3.3, there exists a positive constant K depending
only on Ko and k, such that

2 k T )
wor) -5 [ [ ket - 29) () [ [ etrerver.
—\JU—1/Jo Jr

The proof is similar to the proof of Steps ]l and Pl In view of (L), we have integrating by
parts in time,

62 LNy —l— 1 T
— Z / O Zo(x, NPU(x, 7)OF IV, (2, 7)dx + / / 008 2.0 U.0F IV,
24 0 R

+ / / 0% 2.0-00U-05 V. + / / O Z.0U.0F I g, + & / / aﬁzgagUaaj;—er).
0 R 0 R 0 R

(3.29)

(3.28)
§K€2<(€2 + HE?!;Za(-,T)HLz(R)) exp K|7| + ‘ /0 exp K|s| || Z:(:, 8) || e (myds

The estimates of the first, fourth and fifth integrals on the right-hand side of (B.29) are similar
to (B.18) and (B.25) for the first one, (B.19) and (B.26), for the other ones. More precisely, we
obtain

/8k (x, ) U(x, 7)OR IV (x, 7)da

+‘ / / ok z. U0k Ir,
0 R

Similarly, for the third integral, we have

< K05 Z(7) || 2 (ry exp K 7], (3.30)

respectively

/ a];ZEa%Uaaﬁ_ng
R

< K‘/ exp K|s| Haﬁza("S)HLZ(R)dS-
0
(3.31)

[ dzo.00.05v.
R

s\ AP A A

i} (3.32)
<] [ exp Kl 108292
0
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where we invoke (B.J) to bound the time derivative 9-05U..

The second term on the right-hand side of (B:29) is more involved to estimate. We first
introduce as above the expression of 9,0%Z. given by (1), so that

k T
S ("N [ [ oekzemotiv. o + )+ B, (3.33)
=0 J 0 JR
where
k
Ln=-> <k+1> / / agUeﬁ’;‘jV;@i’*kZe+6§+1(L{Z5) +6§§(Z€6mZe)),
7=0
k k+ T . .
EZ< )/ /achEa’;—Waa!;fa,
j= 0 R
and

k T
Br)=-) <k * 1> / / FUDTIV.I ..
=\ J 0 JR

We then estimate each of the above sum Ig (7). Integrating by parts in space the integrals in
I}(7), we obtain

Ir) = Z<k+1>/ /<a3 (010-047V2 )0k 2. + 0, (4U.0E VL) (9% UZ2) + ak(z2)>>

7=0
Following the lines of the proof of ( , we are led to
()] < K / / exp K 15| 129l e (33)
Concerning the integral I3(7), we have as in the proof of (§.23),
1I3(7)| < Ke?exp K|7|. (3.35)

Finally, applying the Pascal rule and the Leibniz formula to I2(7), we obtain

k
T k T ) )
- [ [ o a§a+§:<‘ )/ /a;UEc?!z‘fvaa?; 3
/()/]R ( )0: 1. = i=1)Jo Jr /

Combining with (8.29), (B.30), (B.31)), (B.3%), (B.33)), (B.34) and (B.37), estimate (B.2§) follows.

We are now in position to complete the proof of Lemma [.3.

End of the proof of Lemma [B.3. In view of identity (B.13), and estimates (B.1), (B.23) and
(B.29), we have

2 k T
Ig(T)——/ /a’ffea’f( V2 - 9%V, +3U V) ;4Z<jf1>/o /R@’;feafg‘j%agUg

)

< K€2<(62+ 105 Z< (. 7) | 12 ) ) exp K 7| +'/0 exp Kls| | Z: (-, 8)|| e () ds

(3.36)
On the other hand, in view of the definition of f.,
/ /akfaa’f( V202V + - U v.) / /a’fﬂFak = 0.
Combining with (B.36), this completes the proof of (B.4). O
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3.4 Proof of Lemma

The proof is similar to the proof of Lemma B.9. Given any 7 € R, we introduce the function Y.
in the expression of the integral J.(7). In view of (B0) and (B.9), this yields

rr) =5 [ [ 000520, = (1(r) + Bl) + (). (3.37)
3y ) 3
where
) = _—/ /8k+1U o Z.0.7.,
Jo(1) = % / / MU0 Z.(Ge + €°R,), (3.38)
0 R

and

T 2
ni) = [ (Vers) = S (R + 2R-Ro9) ) ([ 0570500 20,51 ).

0

(3.39)
We now consider each of the above integrals Ji (7). For the first one, we have

Step 1. Under the assumptions of Lemma [3.3, there exists a positive constant K depending
only on Ko and k, such that

2 T
Jl(T) - %/0 /Ra];—l—lUETeaﬁfs

< e (4 1082200 ) o) exp K+ ' | e ls] 105209l

(3.40)

We first integrate by parts in time the integral J;(7), and use the fact that Z? = 0 to derive

2 2 T
Ji(r) = — /bHW( )0k Z.(x, ym@ﬂw+%/ /%“@m%4n
0 R

—/ /M“UaMZT

We then invoke Proposition P and Lemmas [] and B.1] to bound each term on the right-hand side
of (B.41). Notice in particular that in view of assumption (f]), Lemma [ provides

(3.41)

1T 8| oory < V=G 8) ) < K (1+ [s]), (3.42)

where K denotes some positive constant, possibly depending on Ky, but neither on ¢ nor s.

Hence, applying the Holder inequality to the first term on the right-hand side of (B.41]), we
are led to

/ 8§+1U5(x, T)@!;Zg(l‘, 7)Y (x, 7)dx
R

so that by (2() and (B.49),

<05 U )2 @) 195 Ze (5 Tl 2 @y | Ce () oe ()

< K08 Z: (-, 7) || 12 ) exp K| 7. (3.43)

8§+1U€(m, T)ai?Za(m, 7)Y (z, 7)dx
R

Similarly, for the second term on the right-hand side of (B.41), we compute

oo Uk z. 1,

< K'/o (1 +1s]) 1050, UL (-, )| L2 ) 05 Ze (-, ) || 12y ds |-
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so that by (B.3),

/ oFo.U0k Z. Y.
R

SK' / exp K|s| 052, )]l 2y ds
0

. (3.44)
We finally turn to the last term on the right-hand side of (B.41). In view of (B]), we can write

/ /8k+1U - 2., = JH(r) + JA(r / /8k+1U 1.0k f., (3.45)

where

Ji(r) =~ /0 /R oyTUL Y. (a;;”zs + oM (zu) + %a’;“(zf)).

and

Ji(r) = —52/ /8§+1U5T58§7‘5.
o Jr

Concerning the integral Jll (1), we integrate by parts in space to obtain

= /OT/R (ajgzaaﬁ (OFU.Y.) + 9% (2.U) 0, (OFTULY.) + %a’;(Zf)@x (8§+1U€TE)>,
so that
)| < ‘/0 1 Ze g | Ue Dy (1 ooy + IVl ) (1 + 4] sy + HZEHHM(R))‘.

Hence, by (20), (B-4), (B.9) and (B.49),

|JE(r)| < K‘/O exp K|s| [ Z (-, )| g w) ds|- (3.46)
Similarly, the integral JZ(7) is bounded by
| J3(r)] < K<? /0 105+ Uell o @y 1Nl oo () 1905 7 | L2y | < K€% exp K. (3.47)

Combining (B.45) with (B-4q) and (B-47), we have

a’f“U -0 7., —/ /ak“U .0k f.

sx(g exp K17+ [ exp K1 12.0.5) s

so that (B.4Q) follows from (B.41)), (B-43) and (B.44).

We now turn to the second integral Ja(7).

Step 2. Under the assumptions of Lemma [3.3, there exists a positive constant K depending
only on Ko and k, such that

|Jo(T)] < Ke?

/0 exp K13 1052, )| 2(gy s (3.48)

for any T € R.
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Q

Applying the Hélder inequality and the Sobolev embedding theorem to definition (B.3§), we
obtain

| Ja(7 |<—

/ 10 Uel| 111 ) 195 Ze | 2.y (| Gell 2y + €21 Rell 2y ) |

so that (B.49) follows from (BQ) and (B.9).

Concerning the last integral Js(7), we finally derive

Step 3. Under the assumptions of Lemma [3.3, given any T € R, there exist a positive number
Ry, depending on € and V., and a positive constant K, depending only on Ky and k, such that

| J3(7)] < K& <52 exp K|7| + ‘/ exp K|s| “8525('78)“L2(R)d8
0

), (3.49)

for any choice of the number R of definition (RY) in (Ry,+00).

Combining estimates (R0) and (B-3) with definition (8.39), we have

] | [ (Voo R+ 216l + el e 10 Ul 104 2ol
(3.50)
<x| [ (|v;<—R, ) +2) exp Kl 0522, 5)] 2oy
0
We then invoke (B.5) to write
T T %
/ Va(=R. 5)| exp K|s| (105 Z=(, 8) || 2 (myds| < K’ exp K'|7]| / [Vo(—R, 5)|%ds|
0 0
where K’ is some further constant depending only on K and k. Next, we have
—H 2 2
V-RP < [ ((Veos)? + (0.Viw,5)7)
so that
[ W RS e K1 10825 g
(3.51)

K’ expK'|7|

/ / + (0 Ve, s))2)da:ds :

By the dominated convergence theorem, the integral on the right-hand side of (B.51) decays to
0 as R — 400, so that there exists a positive number R;, depending on € and V, such that

: (3.52)

+ (02 Vz(z, s))2)da:ds <é8

for any R > R;. Combining with (B.50) and (B.51), this provides (8.49).

We are now in position to complete the proof of Lemma B.3.

End of the proof of Lemma B.3. Estimate (B.§) follows from applying bounds (B.40), (B-48) and
(B-49) to definition (B.37). O
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3.5 Proof of Lemma B.4

Though the proof is similar to the proofs of Lemmas B.3 and B.3, the computations are somewhat
more technical. In view of definition ([4) and the fact that 9, Y. = V., we first decompose the
quantity K.(7) as

K(r) = —4§kj( )( — K4+ 5K4(7)), (3.53)

where -
Ki(r) = / / (VAo o8, (3.54)
K)(7) / / ORI TGN O haian) 8 (3.55)
and
Ki(r) / / O (V) T 05, (3.56)

We then estimate each of the above integrals K. f (7).

Claim 1. Leti € {1,2,3} and 0 < j < k. Under the assumptions of Lemma [5.4, given any
T € R, there exists a positive constant K, depending only on Ky and k, such that

|K(1)| < Ke?exp K|7], (3.57)

for any choice of the number R of definition (B9) in (Ry,+00), where Ry denotes the positive
number given by Lemma [3.3.

Estimate (B.10) follows from combining decomposition (B.5J) with bounds (B.57), so that
Lemma B4 is a direct consequence of Claim [, and it only remains to show Claim [l

Proof of Claim []. We split the proof in six cases according to the values of i and j.

Casel.i=1and1<j<k.

Using the fact that 0,Y. = V., we have in view of definition (B.54),
KJ( / / ak—i—l V2)a] 1V ak—i—l ]U
so that integrating by parts in space
Ki(r / / (o5 (v2)oi—'v. ) oo, (3.58)
In view of ([§) and (B.16), we now have
. 52 .
d, (8I;+1(VE2)8%—1V€) _ _gaT (al;—l-l(vg)a%—lva) 8] ., <ak+1(g6 ) 4 E2ak+1(rav))

2 . -
+ SO (V) (007 g + 520;—17»5),
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so that (B.59) becomes after an integration by parts in time,

K0 = 5| [ebwanozer ] -5 [ [ (aekvap2or .
8 LJr o 8 Jo Jr
+205 0.0V, (a’;“ (g:V2) + 2okt (TEVE)) + IV (VE) (89{_195 + 5209{—17»5) ) .
(3.59)

We finally argue as in the proof of Lemma B.9 using bounds (BQ) and (B-3) to bound any term
on the right-hand side of (B.59). This provides estimate (8.57) in case i = 1 and 1 < j < k.

Case 2. i =1 and j = 0.

When j = 0, we also integrate by parts in space to obtain
ki) == [ [ ok vyret v (3.60)
We then combine (B.16)) with (B() to establish
0, (O (VL) =~ (51 (V2) 1) + S0 (051 () + 2205 (12))
(V) (Gt 2R.) - SO (V) (Gul- B + S RA-R) 4 V(R (V)

so that (B.60) becomes after an integration by parts in time,
0 e R L k=377 ak+1 (172
Ki(7) Z—{/Ox‘JUsaf (Va)n} - —/ /8T8I_JU€8I+ (V2.

8 Lk o 8JoJr
2 T ]

S [ e (o (0 (0w + ok v ) + 041 (2) (G + .

o Jr

i e’ £ k—i77 ak+1 (1,2

- (‘/;-:(_Ry ) - _GE(_R7 ) - _RE(_R7 )) 890 ]Ufz‘ax (V; )
0 8 8 R

(3.61)

We then estimate any terms on the right-hand side of (B.61) similarly to the terms on the
right-hand side of (B.59). Using bounds (0), (B-J) and (B.42), we are led to

>. (3.62)

20| < 8 (PexpRirl+ | [T (VR0 4216 9l + 2R 9)lum ) exp K| ds
0

so that by the Sobolev embedding theorem and (B.3),

w2 < K (2ew il | [ R e K]
0

We then argue as in the proof of Step ] of Lemma B.3. Given any R > R;, we obtain

2 4
< K'e*exp K'|7],

[ e o)
(3.63)

where K’ is some further positive constant depending only on Ky and k. Combining with (B.63),
this completes the proof of (B.57) in case i = 1 and j = 0.

< K'exp K'|7]

/ VL(—R,s) exp K|s| ds
0
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Case 3. i=2and 1< j<k.

The proof is similar to Case [l Using the fact that 9,T. = V;, and integrating by parts the
derivative 9¥*3V., we have in view of definition (B.59),

K3 () = / / VOV, 4 2 / / PV V.2 iD,
0o Jr o Jr
0o Jr
so that integrating by parts the derivatives of U,

Kj(r) =~ / / 0, (051 V20L VL )0k — 2 / / 0. (o1 V.00V. ) ol I,
0 R 0 R

/ (3.64)
- / / By (a’;ﬂwg—l%)a’;”—ma.
0o Jr
In view of ([§), we now remark that
2 2
O (OhVe0RVe) = =0 (OhVe0rVe ) + = (0hVedlrg. + 07 Vedly. )
(3.65)

4
+ 5 (Ao + orvane),

for any (I,m) € N2. We then introduce the expression of the functions 9,(0.V.0mV.) given by
(B.69) in the three integrals on the right-hand side of (B.64), integrate by parts in time as in the
proof of Case [, and bound the resulting terms using estimates (BQ) and (B.J). This provides
inequality (B.57) in case i =2 and 1 < j < k.

Case 4. i =2 and j =0.

The proof is similar to Cases J] and fJ. We first integrate by parts as in (B.64) to obtain
K§(r) =— / / Oy (5.0, VL) 05U, — 2 / / Oy (OET VLV )OI UL
0o Jr 0o Jr
_ / / Oy (8I;+1%Ta)a§+2_j U..
0o Jr
Concerning the first and the second integrals on the right-hand side of (B.6), we then replace
the functions 9, (0¥T1V.V.) and 9,(9FT1V.0,V.) by their expression given by (B.63), integrate

by parts in time as in the proof of Case [[, and bound the resulting terms using estimates (R0)
and (B.3). This provides

‘ / / 0, (051120, V2)0E UL
0 R

In contrast, for the last integral on the right-hand side of (B.6), we combine ([[§) with (B0) to
establish

(3.66)

+

//am(aﬁﬂvgvg)aﬁ“—mg'§K52epr|T|. (3.67)
0 R

B, (aj;“vsrg) - —éaT <8§+1V5T5> + %Ts (8';“95 + s2a§+1r€) + %aj;“vg(c:s + 5235)

2
— SOV (Ge—R. ) + SRR, ) ) + Ve~ R, OV,
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so that after an integration by parts in time,

T . 2 )
/ / Oy (a§+1‘/~€T€)aI;+2—JU€ — & [/ 8£+2_]U58£+1V€T5]
0 JR R

T

8 0

2 T ) )
5[] (ot vat v s oo (v (0 g+ ol )
0 JR

2 64

VG +2R)) )+ [ (R - 6B - SRR ) [ okiuoktiv
0 8 8 R
We finally argue as in the proof of Case f. Using bounds (P0), B-3), (B-42) and (B-63), we are

led to N
‘ / / 0, (5T 1V ) 92T
0 R

so that (B.57) follows for i =2 and j = 0 from (B.64) and (B.67).
Case 5. i=3and 1 <5< k.

< Ke?exp K|7],

The proof is similar to Cases [l and ] Using the fact that 9, Y. = V. and applying the
Newton formula to (B.56), we are led to

k+1
ki)=Y (’ﬁj 1);@'. (3.68)
=0

where the integrals IC{ are given by
Kl = / / ALV~ Lokl ok I, (3.69)
o JR

Assuming first that [ > j, our arguments to estimate the integrals IClj then depend on the parity
of the difference [ — 5. When [ — 7 = 2m is even, we can write

(@) + S, (o rveop v,

p=0

AV, =

so that (B.69) becomes

[\

,Clj:(—l)m /T/81,((89{*’”‘1‘/;)2)8§+1"U58!§+1_jUa
o Jr

+ (—1)P/ /890(850_1—10‘/68%—1%-17‘/8)a§+1—lU€aI;+1_J—U€‘
0 Jr

p=0

—_

We then replace the functions 9, <(3,7;+m_1VE) 2) and 0, <8§E_1_1”V€ o —1+pV€> by their expressions
given by (B.64) and argue as in the proof of Cases [I] and ] to obtain that

k]| < Ke?exp K|7]. (3.70)
In contrast, when | — j = 2m + 1 is odd, we can write

m m—1
(=1) ax((a';—j—mUe)Z)+Z(—1)paz(a;f—f—pUea';—”HpUe), (3.71)

p=0

k+1-—1 k+1—7j _
OF-IY gk H1-i T, =
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so that (B.69) becomes after an integration by parts in space,

_1\ym+1 T ) )
_ =0 | [ o(@r v @kru?
2 0o Jr
m—1 T
S [ ook el ok ek e
o o Jr

We then complete the proof of (B.7() as in the case [ — j was even. The proof is similar when
j > | permuting the roles of j and . Hence, (B.70) holds for any choice of j and k. In view of
(B.69), this concludes the proof of (B.57) when i =3 and 1 < j < k.

Case 6. i =3 and j = 0.
The proof is similar to Case . Applying the Leibniz formula to (B.56), we are led to
k+1
k+1
K{(1) = K. 3.72
o =3 () (3.72)

where the integrals IC? are given by
KY = / / ALV oM U oL (3.73)
o JR

When [ = 2m is even and positive, we can write using the fact that 9, Y. = V,,

(_1)max((a;”—1%)2) +ax(a§;1van) +mzl 129, (al =Py gp- 1VE), (3.74)

p=1

almva'ra =

so that () becomes

/ / am W) )8k+1 ok +/ / az oy )8k+1 ok

+Z / / (o rveor v ) ok uos L.
p=1
(3.75)

We then rely on the arguments of the proofs of Cases f| and [ to bound any integrals on the
right-hand side of (B.75) in order to obtain

IKP| < Keexp K|7]. (3.76)

When [ = 2m + 1, we invoke (B.7])) as in the proof of Case [], instead of (B.74), and complete
the proof of (B.76) similarly.

Finally, for [ = 0, we write

_ 1 2\ (k4177 \2
_ 2/0 Aax(ra)(ax+ U.)>. (3.77)

In view of (B0), we have
g2 g2
0,(Y2) = =50, (X2) + X (Ge  Re = G- R) = R~ R.1)) + V(- R T,
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so that integrating by parts in time, (B.74) becomes
2 T
ng—g—[/Tz(akHU } / /T2ak+1Ua oy +/ %(—R,-)/T€(6§+1U5)2
0 R
—/ / G +&2R. — G.(—R,") — €R.(—R, -)) (a0,
(3.78)
Using bounds (2(), (B.3), (B.-49) and (B.6J) to estimate the right-hand side of (B.7§), we deduce

(B-7G) for I = 0 provided we choose R > Ry as above. Combining with (B.79), this completes
the proof of (B.57) in case i = 3 and j = 0, and therefore of Claim [I. O

4 Proof of Theorem [J

We now turn to the proof of Theorem [|. As mentioned in the introduction, we focus on the
coordinate = = = g(x + 1/2t) and the associated functions U. = U= and U = U~. Given any
k € N, we first recall identity (), which may be written as

-2k (1) = —2/ /ak“ (Uz.)okz. / /a’f“ (z%)ok z.
+2 / / okf.okz, — / / okr.dk 2.,
0 R

with Z, = U, —U. We then bound inductively any term on the right-hand side of () in order
to apply a Gronwall lemma to the quantity Z¥(7) defined by (B3), and derive inequality ([).

For k = 0, identity (R3) may be recast as

0. 29(r //OL{Z2+2//]’€ —25//7“5 . (4.1)

so that in view of Proposition ], and bounds (B.3) and (B.4), we have

(‘LZE(T) < K(!ZS(T)] + &2

| oo KIst 1.9 12 e s

L2126 e +e)expmfr>,

where K is a positive constant depending only on Ky. Using the inequality 2|ab| < a? + b? and
the identity

0, Z2(r) = ”Za(’aT)H%Z(Ry (4.2)

we are led to the differential inequality
0:2%(1) < K(sign(T)Zg(T) + et exp K!T\), (4.3)

so that
\ZQ(T)\ < K/€4epr/\7'],

where K’ is some further positive constant depending only on Kj. Combining with ({.J) and
(E-3), this provides ([]) for £ = 0 (and the functions U and U ™).

We now assume that ([]) holds for any 0 < j < k—1, i.e. that there exists a positive constant
K depending only on Ky and k, such that

1Ze (o ) 1y < €2 exp K], (4.4)
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for any 7 € R. We then bound any integral on the right-hand side of (B3). For the first one, we
compute by the Leibniz formula,

/ / RN WUZ)0kZ. =
0 R

k-1
(k;f1>//ak+1 Juaﬂza’fz+ kit = //auak

j=0
)- @9

so that by (B.4) and (f£4), we are led to
Z| < K< / (98 2.)°
o Jr
The estimates of the second integral on the right-hand side of (PJ) are similar. The Leibniz
formula yields

//a’mz?a’fz—z(k“)//a’fﬂ ﬂzaﬂzakz+2k+1//82 (05 z.

so that by the Hélder inequality and bounds (B.§) and ([£4), we are led to

/8k+1 Z2)ak >

(4.6
We now recall that 0,7, = 5(890]\75 + 026.) — 0,U, so that, combining bounds (R.]) and @
with the Sobolev embedding theorem,

At (UZ.) ok

exp K|s| 05 Z:(-, 5)ll 2 gy ds
0

+E

< i (| [M1ouzti 10tz

/0 exp K|s| |08 Z. (-, 5)|| 2ds

|’8xZ€('7T)HL°°(R) <K,
for any 7 € R. Hence, by ([.6),

<K< / (0% z.

Concerning the last integral on the right-hand side of (@), we invoke (B-) to obtain

62/ /8’;7458];25
o Jr

Therefore, in view of (P7), (.5) and (7)), we are led to the differential inequality

/ak—l—l Z2 ak

epr\s\ 105 Ze (-, $) | 2.y ds

) an

§K52

/0 exp K|s| 05 Z.(-, 8) | 12z ds|.

Z?TZf(T) < K<sign(T)Zf(T) +etexp K\T!),

so that by the Gronwall lemma, inequality ([]) also holds for the integer k. By induction, this
completes the proof of ([]) for the functions U and U~

We next say a few words of the proof for the functions U and U*. Setting
V(e m) = 5 (NF (a,7) + 0.0 (,7)),
the functions U and V" satisfy the system of equations
— 0, U + 02U + U0, U = f — %], (4.8)

where 1 ]
1= 0n (GO = 2V + SUFVE),

32



and 3
— OV 4 SOV =gl et (4.9)

where ) ) )
gt = 0,(ONF + S (V) = S(U)? = SULVE),

and the remainder term r is given by the formula

ol NIOING | @ND@IND) | (0N

G- FNS) 31— GNH)? 36 (- SN
Up to a reverse orientation of time, equations ([L.§) and ([.9) are identical to equations ([3J)
and ([[§). In particular, we can apply to the functions 7 — UX (-, —7) and 7 +— V.7 (-, —7), the

analysis developed above to prove () for the functions U. = U7 and V.. Given any k € N, the
associated initial datum

(U0, V5 (,0) = (5 (N0~ 2,02, 5 (N0 + 0,07) ),

also satisfies assumption (), so that there exists some constant K depending only on Ky and
k, such that
UL, —7) — UG, ) ey < Ke?exp K|7], (4.10)

for any 7 € R. Here, the function U denotes the solution to (KdV]) with initial datum
U(-,0) = U (-,0).

By the uniqueness of the solution to (f]) for any fixed initial datum in H*(R), we notice that
U(-,—7) =UT(-,7). Reverting the orientation of time in ({.10), this completes the proof of ()
for the functions U and UT.

5 Proof of Theorem 2

In this section, we provide the proof of Theorem [. This first requires to show Proposition fi,
Lemma ] and Proposition ff.

5.1 Proof of Proposition

In order to estimate the H¥-norm of V., we apply the differential operator 8'; to ([[§), multiply
the resulting equation by 0%V, and integrate by parts on R x (0,7). In view of definition (L9),
this yields

@i = [+ [ [ b (V)Y — 2Ls(r) 4 g Lalr) = SLar) + 2L,

(5.1)
where, in view of the fact that N, = U, + V%,

Li(r) = /0 /R OFPNOFTV = /0 /R oyPUO VL,

Lo(7) ;/0 /Ra';(Uf)aﬁ“Vs,

Ls(r) = /0 /]R O (ULVL) BV,
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and -
= 62/ / o 0FV,
o JR
We now estimate each integral L;(7) as in the proof of Theorem [Il For the first one, we have

Step 1. Under the assumptions of Proposition [}, there exists a positive constant K depending
only on Ko and k, such that

2 T
L)+ S / / o0 (U2)
8 )y Je

<K< ((e2 18V 2y + NOEVE, )l 2y ) exp K

)

| [ o Kl IV i

(5.2)
In view of ([[§), we compute
/T/ 8k+2U€ak+1‘/€ - _ i|:/ ak+2U 8k :| / /a ak+2U 8k
xT x 8
0o Jr
2 T
S [0 [ ok eke + 2ok,
8 Jo Jr
so that by (BQ) and (B.3),
2 T
1) =5 [ [ kvt <ace (4 10672 luage + 108VLC oy ) exp K
0o JR
(5.3)

+‘ /0 exp Ks]| 05V, )12y ds

In view of ([[), we next write

1 1 1
k+2 _ k+2 k+3 Lokl (/2 _ L ak+l(772\ _ L ok+1
/ /a U.0 _/0 /Rax U€<8x Vet 50 (V2) 50 (U2) 205 (U€V€)>,

so that integrating by parts, we are led to

/ ’ / 8’;+2U€8§g€+1 / ’ / ORT2U 9k (U?)

0o Jr 6Jo Jr

=— / / UV — / / 8§+3Ua(38!§(‘é2) —lai“(UEVE))-
o Jr o Jr 2 3

Combining (P0) with the Leibniz formula, the Holder inequality and the Sobolev embedding
theorem, we deduce that

T 1 T
| [kt g [ ] oruasw?)

Invoking (b.J)), this completes the proof of (p.2).
We similarly derive for the fourth integral on the right-hand side of (p.1]).

gK\ [ exp KIs| V)

Step 2. Under the assumptions of Proposition [, there exists a positive constant K depending
only on Ko and k, such that

82 T
na(r) = 5 [ [ kot < ( (24 108V sy + 108Vl Dlage) o K

)

_l’_

/0 exp K13| Ve 8)ll e gy s
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The proof is identical to the proof of Step [l so that we omit it, and instead we turn to the
fifth integral on the right-hand side of (B.1]).

Step 3. Under the assumptions of Proposition [}, there exists a positive constant K depending

only on Ko and k, such that
a(r)] < &2 ( (2 4 108V -+ 108V mlse ) exo Kl | [ s KTl 1AV o) o).
0
(5.4)

Using the Leibniz formula, we are led to

Latr) = 3. (’“j e, (5.5)

where

£h(7) / /a’f“ IU.00V.0k V..

In view of (B.69), given any 0 < j < k, we have integrating by parts in space, then in time,
2 T ) )
£i(r) [/ OF=IU.IV.OkV. ] - %/ / 0, 0" I U V.OkV,
0 R

. 4 T . . .
7 [ovomviate. s otvane) - S [ [ oot + obvopr)
0 JR 0 R

0] = Ke2( (2 4 10V 4 Vet exo K+ | [ exp BTl 1AV o) s ).
0
(5.6)

so that by @) and (@)a

For j = k + 1, we can also invoke (B.67) to establish that

k+1 k 52 - 5_2 T k7 )2
ch Ua (05V)?) = — U-(05V2)"| + 0-U.(95Vz)
R o 16Jo Jr
. / [ vokv oy, + 2okr),
8 0 R

so that (b.6) follows similarly. In view of (b.5), this completes the proof of (5.4).
Using (B.3), we now compute directly the next estimate of the integral Ly (7).

Step 4. Under the assumptions of Proposition [}, there exists a positive constant K depending
only on Ko and k, such that

|La(7)| < Ke?

/ exp K 13| 105V (-, ) sy ds|.
0

We finally complete the proof of (Bf) by induction.
End of the proof of Proposition [ Let us denote

SE(r) = sup [OFVe(, 5)l 2 w)-

s€(0,7)
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For k = 0, we have in view of (b.1]), and Steps [[, B, Bl and [,

[ Veto e < IV + 52 (24 IV + 1V Do) exp K

82r)? < (IVON3ay + Ke*) exp K| + Ke?exp K| S2(r).

+

/0 exp K|s| [Va( 8)l| 2y ds

so that

Using the inequality 2ab < a? + b?, this completes the proof of (Bf) for k = 0.

We now assume that @) holds for any 0 < k < k—1 and establish it for £ = k > 1. Invoking
the Leibniz formula, we compute

k—1
T N [T o .
IR <H+- ) | [arvaivav. - avsy [ [ varvoriv.
0 R = N/ 0 JR 0o Jr

so that by the inductive assumption and bound (R0),

\ [ [arwe.
0 R

<K (V2N @) +€2) ((Mumm + &%) exp K]r|

)

Combining with (5.1]), the inductive assumption and Steps [ll, B, f and ], we are led to

+‘ /0 exp K] [105V2 (- 8) | ey ds

SET)? < N0V B ey + K (2 + V2 a1y ) (2 + V2 ey + SE(7)) exp K.
Using again the inequality 2ab < a? + b%, this completes the proof of (Bf) for k& = x. By
induction, this concludes the proof of Proposition [. O
5.2 Proof of Lemma [

Since I and G are solutions to (KdV]), their difference H = F — G is solution to
0-H +0>H + Fo,H + H0,G = 0. (5.7)

In order to prove (B7), we now compute inductively energy estimates on (f.7).

For k = 0, we multiply (5.7) by H and integrate by parts on R to obtain

&(A;ﬁ):ié<@F—2@G)H? (5.8)

Since FO and G° are in H%(R), we recall (see also the proof of (B.4)) that in view of the
integrability properties of (KdV]), there exists a constant K depending only on the H?-norms
of FO and G, such that

1EC D 2w + I1GC T 2@ < K,
for any 7 € R. Applying the Holder inequality and the Sobolev embedding theorem to (f.§), we

are led to
&(/W)gK/H{
R R
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so that (B7) follows from the Gronwall lemma.

We now assume that (B7) holds for any 0 < k < s — 1 and derive it for k = x > 1. For this
purpose, we apply the differential operator 9% to (b.7), multiply the resulting equation by 9% H
and integrate by parts on R. This provides

1@( / (a;;H)2> = [ox(romorn - [ ax(o.cyozm. (5.9)
2 R R R
By the Leibniz formula, the first integral on the right-hand side of (f.9) reduces to
o5 (FO,H)OH = HFOTTHO H — / O, F(05H)".
[ exro,mo: Z(])/ s - [ o.r(orm)

In view of the integrability properties of (KdV]), there again exists some constant K depending
only on the H**2-norms of F¥ and G, such that

IEC ) 2wy + GG T mve ) < K

for any 7 € R. Hence, we are led to

/8;(F8xH)8§H‘ < K| H |3 )
R

The same estimate holds for the second integral on the right-hand side of (5.9). Invoking the
inductive assumption, we deduce that

aT</ (8;H(x,7))2dx>‘ < K(/ (02 H (2,7) de + | FO = G2 ) epr\Ty)
R R

Inequality (B7) follows applying the Gronwall lemma. By induction, this concludes the proof of
Lemma fJ.

5.3 Proof of Proposition f

The proof is a direct adaptation of the proof of Proposition [J using only assumption ([L0). In
view of (B.1)), and Lemma B.3 which remains valid under assumption ([[(), we have

T T k T
/ / hfohZ| <K ( / / HRTUNVOEZe| + ) / / OOV,
0o JR 0o JR = 1Jo Jr

+€2<€2+\\5525('7T)|!L2(R))eXPK\T’+€2 /0 exp K|s| | Z: (-, 8) || r (m) ds

(5.10)

where K refers to some positive constant depending only on K and k. We then invoke Propo-

sition [ to bound the first and the second integrals on the right-hand side of (5.1(). Combining
with (R0) and (B.3), this leads to

/ / U0k Z,
0 R

< K (Vs + ) (& e Kl +

ko
w23 [ [ dkrativau.
=ilJo Jr

/O exp K[s] 082 8)l| 2 s ds

In view of (5.10), this completes the proof of (Bd), and of Proposition f.
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5.4 Proof of Theorem P completed

As mentioned in the introduction, we first focus on the coordinate x~ and the associated func-
tions N. = N and ©. = ©_. Theorem [ then follows from combining decompositions (B4) and
(BY) with estimates (Bd), (B) and (fi(), once ({() is established, which we do next.

Proof of inequality (f(). The proof is an adaptation of the proof of Theorem [[. For k = 0,
coming back to (1)), we deduce from (BY), (B.3) and (B.4) that

9,2%() gK(rz;)(T)\ I HVEOHLQ(R))\ [ exp Kol 12:0.5) s

+2(2 4 V2l + 120 o) e K ).

where K is some positive constant depending only on K. Using again the inequality 2|ab| <
a® 4+ b? and identity ([£3), we are led to the differential inequality

0r20(r) < K (sign(r)22(7) + (&2 + V2l 2wy exp K71,

so that )
122(7)| < K'(&% + IVl r2w))~ exp K7,

where K’ is some further positive constant depending only on K. Combining with ({.3) and
(£-3), this provides ([I]) for k& = 0.

We now assume that ([f0]) holds for any 0 < j < k—1, i.e. that there exists a positive constant
depending only on Ky and k, such that

1Ze (o) iy < K (€2 A+ IVl s (my) exp K7,

for any 7 € R. We then bound any integral on the right-hand side of (RJ). For the first and
second ones, we have following the lines of the proofs of (f.§) and (f£7),

‘ / ' / It (UZ.)okz. / ' / o (z2) ok z.
0 JR 0 JR

T 9 -
= K<‘/0 /]R (8526) ‘ * (62 + HV*EOHH'“I(R))‘/O exp K|s| Haggza(',S)HLZ(R)ds

+

(5.11)

)

Concerning the last integral on the right-hand side of (PJ), we invoke (B.3) to obtain

82/ /8';7"58';25
0o JR

Therefore, in view of (BY) and (p.11), we are led to the differential inequality

< Ké&?

/ exp K|s| 0822, 8)l| gy ds
0

0-Zk(r) < K(SigH(T)Zf(T) + (24 [V arey) exp K|T|>,

so that by the Gronwall lemma, inequality ({) also holds for the integer k. By induction, this
completes the proof of (f(]). O

We are now in position to end the proof of Theorem f.
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End of the proof of Theorem [3. As mentioned above, Theorem [ is a direct consequence of de-
compositions (B4) and (BH) and estimates (Bf), (Bg) and (fd), when the coordinate =~ is consid-
ered. For the functions N and 9,07, the proof reduces as in Theorem [l] to consider the system
of equations (.§)-(.9) instead of the system ([3)-([[§). Since the functions 7 — U (-, —7) and
7+ VI (-, —7) are solutions to ([[J) and ([[§), we can apply Propositions [] and f| to them in
order to obtain inequalities () and (fJ) in the coordinate 2*. Combining with the versions of
(B4) and (BH) in the coordinate 2, and Lemma [, this provides (1)) in the coordinate ¥, and
concludes the proof of Theorem . O

A Defining a notion of the mass for (GP)

The purpose of this appendix is to provide a framework where the notion of mass for the one-
dimensional Gross-Pitaevskii equation may be rigorously handled. At least on a formal level,

the mass f] may be defined by
1

m(W) = 5/}R(1—|x11|2), (A1)

and it is a conserved quantity along the Gross-Pitaevskii flow. Indeed, a solution ¥ to (GH)
satisfies the conservation law

O = 28x(<i\1’78x\1’>)7 (A’2)

where we denote as above n = 1 — |¥|2. Hence, we have

oum(¥) = 3 /R o = /R 0, (10, 0,1)) =0,

provided that the functions ¥ and 7 are sufficiently smooth and decay suitably at infinity.

The quantity m(z) is however not well-defined in general for an arbitrary function 1 in the
energy space X!(R). Consider for instance, the function 1 defined by

1/1(95) = LH? Vo € R,

|| +

which belongs to X!(R), but for which m(¢) = +oo. In order to circumvent this difficulty, we
introduce the set
Xum(R) = {y € XY(R), st. 1 — [¢]* € M(R)}.

We first claim that the Gross-Pitaevskii equation is well-posed in this new functional setting.

Lemma A.1. Given any function ¥y € X(R), there exists a unique solution ¥(-,t) to (GD)
in CO(R, X p(R)) with initial datum ¥o. Moreover, there exists a universal constant K such that

In(®) = 0wy < K (B0 (1+ B(W)3) 1t = |+ In(t) = (&)l r2w))s (A3)
for any (s,t) € R2.

Remark A.1. In view of Proposition [] and Lemma [A.]], the Gross-Pitaevskii equation is also
globally well-posed in the space

XK(R) = {y € XFR), s.t. 1— [y € M(R)},

for any k > 2.

5Tt would be more appropriate to call it a relative mass (with respect to the vacuum) since it may be negative
as such.
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Proof. We recall that in view of Proposition [, the Gross-Pitaevskii equation is well-posed in
X1(R) with conservation of the energy E, i.e.

B(¥(-.1)) = E(¥). (A1)

for any ¢ € R. Therefore, the proof of Lemma [A.1] reduces to show that the function (-, t) =
1 — |W(-,t)|? associated to the unique solution W(-,#) in the space X'(R) is continuous with
values in M(R). This fact is a direct consequence of ([A.3) which we show next.

For the proof of ([A.J), we introduce a cut-off function x € C*°(R) such that 0 < y <1,
x(z) =1, for x <0, and x(x) =0, for z > 1,

and denote
x(a —z), for x < a,

Xa,b(x) = 17 for a <z < b7
x(x —b), for x > b,

for any given numbers a < b. When ¥ is a solution to (GI) in X*(R), identity () holds in
the sense of distributions and involves quantities which are in H~!(R), so that we may multiply
(A-9) by the test function x,p and integrate by parts to obtain

8t</ "7Xa,b> = / 81&77Xa,b = 2/ 8x(<i\1’76m\1’>)>(a,b = _2/<iqjyax\1j>amXa,b-
R R R R

By the Cauchy-Schwarz inequality, we are led to

()

where we denote I(a,b) = (a—1,a)U(b,b+1). We now recall that it is proved in [[[Z] that there
exists some universal constant K such that

< 20|19102Xab | 270 102 ¥ N L2 10ty (A.5)

1] < K(1+ E(¥)?), (A.6)

for any 1 € L?(R), so that (&) may be recast as

D=

at(/RnXa,b>‘ < K<1+E(‘P)%)E(‘I’) ;

where K denotes a further positive constant, depending only on our choice of the function y.
Integrating in time and invoking the conservation of the energy provided by ([A-4), we are led to

<K(1 +E(\y0)%)E(qf0)%|t —s]. (A7)

/ (01 1) = 1(-+8)) Xap
R

Notice finally that

< K| fll2(r(ap))> (A.8)

' /R FXab— / bf‘ - ‘ /I L

for any function f € X*(R), so that (A.J) is a consequence of (A.7) and (A.§) (for f = n(t) —
n(s)). This completes the proof of Lemma [A.]]. O
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‘We now turn to the notion of mass and define

_ 1 : * 2 : 0 2
m* () = §<linlf§f/o (1=l )+1;n3§&p/y (1— ¥l )>, (A.9)
and . . 0
() = g (smint [ (1= 6P?) + timng [a- 7)) (A.10)

for any function v € X (R). Recall that the above integrals are bounded and continuous
functions of x and y, when v belongs to X ((R), so that m* () and m™ () are well-defined [.

We next show that both the quantities m™* and m™ are conserved along the Gross-Pitaevskii
flow provided that the initial datum ¥ belongs to X((R).

Lemma A.2. Given any function Vo € X (R), we have
m+(\I’(-7t)) = m+(\1j0)’ and m_(\lj('7t)) = m_(\PO)v (All)
for any t € R.

Proof. Given any numbers a < b, we deduce from (A-4), (A-H) and ([A.f) that

8t</Rnxa7b>‘ <K(1 +E(\Ifo)%>H@m\IJHLZ(I(&b)),

for any fixed t € R. Integrating this relation in time, combining with ([A.§) and applying the
Cauchy-Schwarz inequality in time, we are led to

/ab n(z,t)de — /ab n(z,0)dx

t
< 5 ( (14 B000)E) ([ 1000 ataands) + 1) = 020

t
1

// —10,¥(x, s)|*dzds
0 JI(ab) 2

1
1\ ,,,1 2
< K<<1 + E(‘I’o)2>|t|2 + (50 22 (1(a,p)) + ||77("t)HL2(I(a,b))>'

(A.12)
On the other hand, it follows from the conservation of the energy that
! 1 2 1 2
(51009, ) + S In(e, ) ) dads| = [t] E(¥o) < +oc,
0o Jr \2 4
so that, by the dominated convergence theorem,
! 1 2 1 2
(—]E?x\I/(x,s)] + —[n(z, s)| >da:ds — 0, as @ — —oo and b — +o0.
0 JI(ap) N2 4
Similarly, since 1(-,0) and 7(-,t) belong to L?(R),
(5022 (1¢ap)) + 7C5 ) L2(1(apy) — 0, as @ — —o0 and b — +o0.
The conclusion then follows from ([A.1), and definitions (A.9) and (A.10). O

SIn our definitions of m™ () and m™(¢), the number 0 may be replaced by any arbitrary other real number.
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When the function 1 — [¢)|2 belongs to L'(R), the quantities m™*(¢) and m™(v)) are equal to
the mass of ¢ defined by ([A.1]). However, for an arbitrary map in X (R), the quantities m™ (1)
and m~(¢), which are preserved by the flow, may be different. In order to define a generalized
notion of mass, we are led to restrict ourselves to an even smaller class of maps. More precisely,
we consider the subset of X y((R) defined by

X(R) = {9 € Xm(R), st m™ () =m™ ()},
and define the generalized mass of an arbitrary function ¢ € X\((R) as the quantity

1

2 <£Too /Ox (1—[9l*) + (A /yo (1- \W)). (A.13)

2
S
Il
3
T
S
Il
§I
=
Il

We then have

Proposition A.1. Given any function ¥g € Xp(R), there exists a unique solution V(-,t) to
GD) in CO(R, X (R)) with initial datum V. Moreover, we have

m(¥(-,1)) = m(¥o), (A.14)
for any t € R.

Proof. Proposition A1 is a direct consequence of Lemmas [A.1] and [A.3. Given any function
Uy € Xpq(R), there exists a unique solution ¥ to (GH) in C°(R, X ¢(R)) with initial datum ¥,.
Since m™*(¥g) = m™(¥y), it follows from Lemma [A-J that

m+(\I/(’7 t)) = m_(\I,('7 t))a
so that W(-,t) belongs to Xx(R). Equality (A.14) then follows from ([A.11) and (A.13). O

Remark A.2. As already mentioned, if the function 1 — |¥g|? belongs to L!(R), then the
function ¥y belongs to Xp((R), and it follows from Proposition [A.]] that the generalized mass
of the solution ¥(-,t) to (GP)) with initial datum Wq is well-defined for any time ¢ € R and

conserved by the flow. Notice however that we do not claim that the function 1 — |¥|? remains
in L'(R).

Remark A.3. In our proofs, we use several estimates involving control on the norm | - ||
which are closely related to the conservation of the generalized mass. The conservation of the
generalized mass itself does actually not provide any bound on the solution W(-,t). We believe
that this fact is of independent interest. In particular, it might be relevant for the physical
phenomena the equation was designed to describe.

Acknowledgements. The authors are grateful to the referees for their careful reading of the
paper, and their valuable remarks and comments which helped to improve the manuscript.

A large part of this work was completed while the four authors were visiting the Wolfgang
Pauli Institute in Vienna. We wish to thank warmly this institution, as well as Prof. Norbert
Mauser for the hospitality and support. We are also thankful to Dr. Martin Sepp for substantial
digressions.

F.B., P.G. and D.S. are partially sponsored by project JC05-51279 of the Agence Nationale de
la Recherche. J.-C. S. acknowledges support from project ANR-07-BLAN-0250 of the Agence
Nationale de la Recherche.

42



References

1]

[2]

B. Alvarez-Samaniego and D. Lannes. Large time existence for 3D water-waves and asymp-
totics. Invent. Mat., 171(3):485-541, 2008.

W. Ben Youssef and T. Colin. Rigorous derivation of Korteweg-de Vries-type systems
from a general class of nonlinear hyperbolic systems. M2AN Math. Model. Numer. Anal.,
34(4):873-911, 2000.

F. Béthuel, R. Danchin, and D. Smets. On the linear wave regime of the Gross-Pitaevskii
equation. J. Anal. Math., in press, 2009.

F. Béthuel, P. Gravejat, and J.-C. Saut. Existence and properties of travelling waves for
the Gross-Pitaevskii equation. In A. Farina and J.-C. Saut, editors, Stationary and time
dependent Gross-Pitaevskii equations, volume 473 of Contemp. Math., pages 55—104. Amer.
Math. Soc., Providence, RI, 2008.

F. Béthuel, P. Gravejat, J.-C. Saut, and D. Smets. Orbital stability of the black soliton for
the Gross-Pitaevskii equation. Indiana Univ. Math. J, 57(6):2611-2642, 2008.

F. Béthuel, P. Gravejat, J.-C. Saut, and D. Smets. On the Korteweg-de Vries long-wave
approximation of the Gross-Pitaevskii equation I. Int. Math. Res. Not., 2009(14):2700-2748,
2009.

J.L. Bona, T. Colin, and D. Lannes. Long wave approximations for water waves. Arch.
Ration. Mech. Anal., 178(3):373-410, 2005.

J.L. Bona and R. Smith. The initial-value problem for the Korteweg-de Vries equation.
Philos. Trans. Roy. Soc. London Ser. A, 278(1287):555-601, 1975.

D. Chiron and F. Rousset. The KdV/KP-I limit of the nonlinear Schrédinger equation.
Preprint, http://arxiv.org/abs/0810.3868, 2008.

W. Craig. An existence theory for water waves and the Boussinesq and Korteweg-de Vries
scaling limits. Comm. Partial Differential Equations, 10(8):787-1003, 1985.

C.S. Gardner, M.D. Kruskal, and R.M. Miura. Korteweg-de Vries equation and gener-
alizations. II. Existence of conservation laws and constants of motion. J. Math. Phys.,
9(8):1204-1209, 1968.

P. Gérard. The Cauchy problem for the Gross-Pitaevskii equation. Ann. Inst. Henri
Poincaré, Analyse Non Linéaire, 23(5):765-779, 2006.

P. Gérard. The Gross-Pitaevskii equation in the energy space. In A. Farina and J.-C. Saut,
editors, Stationary and time dependent Gross-Pitaecvskii equations, volume 473 of Contemp.
Math., pages 129-148. Amer. Math. Soc., Providence, RI, 2008.

P. Gérard and Zhifei Zhang. Orbital stability of traveling waves for the one-dimensional
Gross-Pitaevskii equation. J. Math. Pures Appl., 91(2):178-210, 2009.

G. Schneider and C.E. Wayne. The long-wave limit for the water wave problem I. The case
of zero surface tension. Comm. Pure Appl. Math., 53(12):1475-1535, 2000.

A B. Shabat and V.E. Zakharov. Interaction between solitons in a stable medium. Sowv.
Phys. JETP, 37:823-828, 1973.

43



[17] J.D. Wright. Corrections to the KdV approximation for water waves. SIAM J. Math. Anal.,
37(4):1161-1206, 2005.

[18] P.E. Zhidkov. Korteweg-De Vries and nonlinear Schrédinger equations : qualitative theory,
volume 1756 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2001.

44



