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Approximations for general bootstrap of empirical processes with an
application to kernel-type density estimation

Salim BOUZEBDA∗ and Omar EL-DAKKAK†

Laboratoire de Statistique Théorique et Appliquée (L.S.T.A.)
Université Paris VI

Abstract

The purpose of this note is to provide an approximation for the generalized bootstrapped empirical pro-
cess achieving the rate in Komlóset al. (1975). The proof is based on much the same arguments used in
Horváthet al. (2000). As a consequence, we establish an approximation of the bootstrapped kernel-type
density estimator.
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1 Introduction and Main Results

Let X1,X2, . . . be a sequence of independent, identically distributed [i.i.d.] random variables with common
distribution functionF (t) = P (X1 ≤ t). The empirical distribution function ofX1, . . . ,Xn is

Fn(t) =
1

n

n∑

i=1

1{Xi ≤ t}, −∞ < t <∞, (1)

where1{A} stands for the indicator function of the eventA. Given the sampleX1, . . . ,Xn, letX∗
1 , . . . ,X

∗
m,

be conditionally independent random variables with commondistribution functionFn. Let

Fm,n(t) =
1

m

m∑

i=1

1{X∗
i ≤ t}, −∞ < t <∞, (2)

denote theclassicalEfron (or multinomial) bootstrap (see, e.g. Efron (1979) and Efron and Tibshirani (1993)
for more details). Define thebootstrapped empirical process, α̂m,n, by

αm,n(t) :=
√
n(Fm,n(t) − Fn(t)), −∞ < t <∞. (3)

Among many other things, Bickel and Freedman (1981) established weak convergence of the process in (3),
which enabled them to deduce the asymptotic validity of the bootstrap method in forming confidence bounds for
F (·). Shorack (1982) gave a simple proof of weak convergence of the process in (3) [see also Shorack and Wellner
(1986), Section 23.1]. The Bickel and Freedman result forαm,n has been subsequently generalized for empiri-
cal processes based on observations inR

d, d > 1 as well as in very general sample spaces and for various set and
function-indexed random objects [see, for example Beran (1984), Beran and Millar (1986), Beranet al.(1987),
Gaenssler (1992), Lohse (1987)]. This line of research found its “final results” in the work of Giné and Zinn
(1989, 1990) and Csörgő and Mason (1989).
By now, the bootstrap is a widely used tool and, therefore, the properties ofαm,n(t) are of great interest in
applied as well as in theoretical statistics. In fact, several procedures can actually be described in terms of the
empirical processαn(t), the limit distributions being functionals ofB(F (t)), whereB is a Brownian bridge.
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The fact that the limits may depend on the unknown distributionF (t) makes it important that good approxima-
tions of these limiting distributions be found and that is where the bootstrap proved to be a very effective tool.
There is a huge literature on the application of the bootstrap methodology to nonparametric kernel density and
regression estimation, among other statistical procedures, and it is not the purpose of this paper to survey this
extensive literature. This being said, it is worthwhile mentioning that the bootstrap as per Efron’s original for-
mulation (see Efron (1979)) presents some drawbacks. Namely, some observations may be used more than once
while others are not sampled at all. To overcome this difficulty, a more general formulation of the bootstrap
has been devised: theweighted(or smooth) bootstrap, which has also been shown to be computationallymore
efficient in several applications. For a survey of further results on weighted bootstrap the reader is referred to
Barbe and Bertail (1995). Exactly as for Efron’s bootstrap,the question of rates of convergence is an important
one (both in probability and in statistics) and has occupieda great number of authors (see Csörgő and Révész
(1981), Komlóset al. (1975) Horváthet al. (2000) and the references therein).

In this note, we will consider a version of the Mason-Newton bootstrap (see Mason and Newton (1992), and
the references therein). As will be clear, this approach to bootstrap is very general and allows for a great deal of
flexibility in applications. Let(Xn)n≥1 be a sequence of i.i.d. random variables defined on a probability space
(Ω,A,P). We extend(Ω,A,P) to obtain a probability space(Ω(π),A(π), P ). The latter will carry the inde-
pendent sequences(Xn)n≥1 and(Zn)n≥1 (defined below) and will be considered rich enough as to allowthe
definition of another sequence(B∗

n) of Brownian bridges, independent of all the preceding sequences. The pos-
sibility of such an extension is discussed in detail in literature; the reader is referred, e.g., to Csörgő and Révész
(1981), Komlóset al. (1975) and Berkes and Philipp (1977). In the sequel, whenever an almost sure property
is stated, it will be tacitly assumed that it holds with respect the the p.m.P defined on the extended space.

Define a sequence(Zn)n≥1 of i.i.d. replicæ of astrictly positiverandom variableZ with distribution function
G(·), independent of theXn’s. In the sequel, the following assumptions on theZn’s will prevail:

(A1) E(Z) = 1; E(Z2) = 2 (or, equivalently,Var(Z) = 1).

(A2) There exists anε > 0, such that
E(etZ) <∞ for all |t| ≤ ε.

For alln ≥ 1, let Tn = Z1 + · · · + Zn and define the random weights,

Wi;n :=
Zi

Tn
, i = 1, . . . , n. (4)

The quantity

F ∗
n(t) =

n∑

i=1

Wi;n1{Xi ≤ t}, for −∞ < t <∞. (5)

will be calledgeneralized (or weighted) bootstrapped empirical distribution function. Analogously, recalling
the empirical process based onX1, . . . ,Xn,

αn(t) = n1/2(Fn(t) − F (t)), −∞ < t <∞, (6)

define the correspondinggeneralized (or weighted) bootstrapped empirical processby

α∗
n(t) = n1/2(F ∗

n(t) − Fn(t)), −∞ < t <∞. (7)

The system of weights defined in (4) appears in Mason and Newton (1992), p.1617 where it is shown that it
satisfies assumptions (WI ), (WII ) and (WIII ) on p.1612 of the same reference, so that all the results therein
hold for the objects to be treated in this note. In particular, weak convergence for the processα∗

n to a Brownian
bridge is proved. For more results concerning this version of the the weighted boostrapped empirical process,
we refer the reader to Deheuvels and Derzko (2008). Note that, as a special case of the system of weights we
are considering, one can obtain the one used for Bayesian bootstrap (see Rubin (1981)).

In what follows, we obtain a KMT rate of convergence for this process in sup norm. More precisely, we
consider deviations between the generalized bootstrappedempirical process{α∗

n(t) : t ∈ R} and a sequence
of approximating Brownian bridges{B∗

n(F (t)) : t ∈ R} onR. Our main result goes as follows.
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Theorem 1 Let assumptions(A1) and(A2) hold. Then, it is possible to define a sequence of Brownian bridges
{B∗

n(y) : 0 ≤ y ≤ 1} such that, for allε, η > 0, there existsN = N(ε, η), such that, for alln ≥ N and all
x > 0,

P

(
sup

−∞<t<∞
|α∗

n(t) −B∗
n(F (t))| > 3n−1/2(K1 log n+ x)

)
≤ K2 exp

(
− K3x

(1 + ε)2

)
+ η, (8)

whereK1,K2 andK3 are positive universal constants.

The proof of Theorem 1 is given in Section 3.

Remark 1 Theorem 1 implies the following approximation of the weighted bootstrap:

sup
−∞<t<∞

|α∗
n(t) −B∗

n(F (t))| = OP

(
log n

n1/2

)
. (9)

Remark 2 Theorem 1 turns out be useful in obtaining confidence bands for the distribution function of the
sample data. We formalize this idea as follows: for0 < α < 1, one has

lim
n→∞

P

(
sup

−∞<t<∞

√
n|Fn(t) − F (t)| ≤ c(α)

)
= P

(
sup

−∞<t<∞
|B(F (t))| ≤ c(α),

)
. (10)

Note that for each fixedt,B(F (t)) is a zero-mean Gaussian random variable with covariance structure

E(B(F (t))B(F (s))) = F (t ∧ s) − F (t)F (s)

wheret ∧ s := min(t, s). In practice,c(α) can, of course, not be computed since the covariance structure

of B(F (t)) depends on the unknown cdfF . Instead, suppose(Z(1)
1 , . . . , Z

(1)
n ), . . . , (Z

(N)
1 , . . . , Z

(N)
n ) areN

independent vectors of i.i.d. copies ofZ, sampled independently of theXi’s. Define the random variables

ψj := sup
−∞<t<∞

∣∣α∗
n,j(t)

∣∣ , j = 1, . . . , N, (11)

whereα∗
n,j denotes the generalized bootstrapped empirical process constructed with the sample(Z(j)

1 , . . . , Z
(j)
n ),

j = 1, . . . , N . Theorem 1 accounts for the use of the smallestz > 0 such that

1

N

N∑

i=1

1
{
ψj ≤ z

}
≥ 1 − α.

as an estimator ofc(α).

A direct consequence of Theorem 1 and Theorem 1.5 in Horváthet al. (2000) is the following approximation
for α∗

n(·) based on a Kiefer process

Theorem 2 There is a Kiefer process{K(t;x); 0 ≤ t ≤ 1; 0 ≤ x ≤ ∞} such that

max
1≤k≤n

sup
−∞<t<∞

∣∣∣∣∣

k∑

i=1

(Wi;n − 1/n)1{Xi ≤ t} −K(F (t), k)

∣∣∣∣∣ = OP (n1/4(log n)1/2). (12)

2 An application to kernel density estimation

LetX1, . . . ,Xn be independent random replicæ of a random variableX ∈ R with distribution functionF (·).
We assume that the distribution functionF (·) has a densityf(·) (with respect to the Lebesgue measure inR).
First of all, we introduce a kernel density estimator off(·). To this end, letK(·) be a measurable function
fulfilling the following conditions

(K1) K(·) is of bounded variation and compactly supported onR;
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(K2) K ≥ 0 and
∫
K(u)du = 1.

Now, define the Akaike-Parzen-Rosenblatt kernel density estimator off(·) (see Akaike (1954), Parzen (1962)
and Rosenblatt (1956)) as follows: for allx ∈ R, estimatef(x) by

fn,hn
(x) =

1

nhn

n∑

i=1

K

(
x−Xi

hn

)
, (13)

where{hn : n ≥ 1} is a sequence of positive constants satisfying the conditions

hn ↓ 0 and nhn ↑ ∞, as n→ ∞.

Secondly, we define the bootstrapped version offn,hn
(·), by setting for allhn > 0 andx ∈ R,

f∗n,hn
(x) =

1

hn

n∑

i=1

Wi;nK

(
x−Xi

hn

)
, (14)

whereWi;n is defined in (4). We will provide an approximation rate for the following process

γ∗n(x) =
√
nh2

n

(
f∗n,hn

(x) − fn,hn
(x)
)
, −∞ < x <∞. (15)

The following theorem, proved in the next Section, shows that a single bootstrap suffices to obtain the desired
approximation for non-parametric kernel-type density estimators.

Theorem 3 Let conditions(A1), (A2), (K1) and(K2) prevail. Then we can define Brownian bridges{B∗
n(y) :

0 ≤ y ≤ 1} such that almost surely alongX1,X2, . . . , asn tends to infinity, we have

sup
−∞<x<∞

∣∣∣∣γ
∗
n(x) −

∫
K

(
x− s

hn

)
dB∗

n(F (s))

∣∣∣∣ = OP

(
log n√
n

)
. (16)

If, moreover, we suppose boundedness of the unknown density, f, i.e. if we suppose the existence ofM > 0 such
that sup−∞<x<∞ f(x) ≤M, then, almost surely alongX1,X2, . . . , asn tends to infinity,

sup
−∞<x<∞

∣∣∣∣γ
∗
n(x) −B∗

n(F (x))

∫
K(t)dt

∣∣∣∣ = OP

(
log n√
n

+ hn

√
log h−1

n

)
. (17)

Remark 3. Under appropriate conditions, and using the same argumentsrehearsed in the proof of Theorem 3,
it is possible to obtain an approximation of a smoothed version ofF ∗

n .

3 Proofs

Proof of Theorem 1. In the sequel, we will write‖ · ‖ to indicatesup−∞<t<+∞ | · |. We have that

‖α∗
n(t) −B∗

n(F (t))‖ = ‖
√
n(F ∗

n(t) − Fn(t)) −B∗
n(F (t))‖.

Now, it is easily seen that

√
n(F ∗

n(t) − Fn(t)) =

(
n

Tn

)[
1√
n

(
n∑

i=1

Zi1{Xi ≤ t} − F (t)Tn + (F (t) − Fn(t))Tn

)]
, (18)

so that
‖α∗

n(t) −B∗
n(F (t))‖ ≤ S1(n) + S2(n) + S3(n),

where

S1(n) :=

(
n

Tn

)∥∥∥∥∥
1√
n

(
n∑

i=1

Zi1{Xi ≤ t} − TnF (t)

)
−B∗

n(F (t))

∥∥∥∥∥ , (19)
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where

S2(n) :=

(
n

Tn

)∥∥∥∥
Tn√
n

(F (t) − Fn(t))

∥∥∥∥ , (20)

and where

S3(n) :=

∣∣∣∣
n

Tn
− 1

∣∣∣∣ ‖B
∗
n(F (t))‖ . (21)

We start by dealing with the termS3(n). We will treat the casesx > Cn andx ≤ Cn (C being a strictly
positive constant) separately. Fixx > Cn arbitrarily. Union bound gives for alln,

P
(
S3(n) ≥ n−1/2(x+ c log n)

)
≤ P

(
S4(n) ≥ x

2
√
n

)
+ P

(
‖B∗

n(F (t))‖ ≥ x

2
√
n

)
,

where

S4(n) :=

(
n

Tn

)
‖B∗

n(F (t))‖ . (22)

Now, it is known that, for alln ≥ 1 and allx > n ≥ 1, there exists a positive constantc1, such that

P

(
‖B∗

n(F (t))‖ ≥ x

2
√
n

)
≤ c1 exp

(
−x

2

4n

)
≤ exp

(
−x

4

)
. (23)

On the other hand, since strong law of large numbers gives
∣∣∣∣
n

Tn
− 1

∣∣∣∣
a.s.→ 0,

for all ε, η > 0, there existsN1 = N1(ε, η), such that, for alln ≥ N1,

P

(∣∣∣∣
n

Tn
− 1

∣∣∣∣ ∈ (0, ε)

)
≥ 1 − η. (24)

Consequently, denoting the law ofnTn
by L n

Tn

, independence of theZn’s from theBn’s gives

P

(
S4(n) ≥ x

2
√
n

)
= P

(
S4(n) ≥ x

2
√
n
,

∣∣∣∣
n

Tn
− 1

∣∣∣∣ ∈ (0, ε)

)

+ P

(
S4(n) ≥ x

2
√
n
,

∣∣∣∣
n

Tn
− 1

∣∣∣∣ 6∈ (0, ε)

)

≤ P

(
n

Tn
‖B∗

n(F (t))‖ ≥ x

2
√
n
|
∣∣∣∣
n

Tn
− 1

∣∣∣∣ ∈ (0, ε)

)

+ P

(∣∣∣∣
n

Tn
− 1

∣∣∣∣ 6∈ (0, ε)

)

≤
∫ 1+ε

1−ε
P

(
‖B∗

n(F (t))‖ > x

2
√
ny2

| n
Tn

= y

)
L n

Tn

(dy) + η

≤ P

(
‖B∗

n(F (t))‖ > x

2
√
n(1 + ε)2

)
+ η

≤ c1 exp

(
− x

4(1 + ε)2

)
+ η, (25)

where, in the last inequality, we have used (23). Combining (23) and (25), we have that, for allε, η > 0, there
existsN1 = N1(ε, η), such that, for alln ≥ N1,

P
(
S3(n) ≥ n−1/2(x+ c log n)

)
≤ (1 + c1) exp

(
− x

4(1 + ε)2

)
+ η. (26)
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Now we turn to the case0 < x ≤ Cn. Again, by the union bound,

P
(
S3(n) ≥ n−1/2(x+ c log n)

)
≤ P

(∣∣∣∣
n

Tn
− 1

∣∣∣∣ >
√
x

n

)
+ P

(
‖B∗

n(F (t))‖ >
√
x
)
. (27)

Again by (23), we have that for alln,

P
(
‖B∗

n(F (t))‖ >
√
x
)
≤ c1 exp(−x/2). (28)

On the other hand, by (24), for allε, η > 0, there existsN1 = N1(ε, η) such that for alln ≥ N1,

P

(∣∣∣∣
n

Tn
− 1

∣∣∣∣ >
√
x

n

)
= P

(∣∣∣∣
n

Tn
− 1

∣∣∣∣ >
√
x

n
,

∣∣∣∣
n

Tn
− 1

∣∣∣∣ ∈ (0, ε)

)

+ P

(∣∣∣∣
n

Tn
− 1

∣∣∣∣ >
√
x

n
,

∣∣∣∣
n

Tn
− 1

∣∣∣∣ 6∈ (0, ε)

)

≤ P

((
n

Tn

) ∣∣∣∣
Tn

n
− 1

∣∣∣∣ >
√
x

n
,

∣∣∣∣
n

Tn
− 1

∣∣∣∣ ∈ (0, ε)

)
+ η

≤ P

(∣∣∣∣
Tn

n
− 1

∣∣∣∣ >
√

x

n(1 + ε)2

)
+ η (29)

Use Theorem 2.6 in Petrov (1995) to find constantsc2 andc3 such that

P

(∣∣∣∣
Tn

n
− 1

∣∣∣∣ >
√

x

n(1 + ε)2

)
≤ c2 exp

( −c3x
(1 + ε)2

)
. (30)

Combining (28), (29) and (30), and plugging in (27), we deduce the existence of positive universal constantsc4
andc5 such that

P
(
S3(n) ≥ n−1/2(x+ c log n)

)
≤ c4 exp

( −c5x
(1 + ε)2

)
+ η, (31)

so that one concludes, from (26) and (31), that for allε, η > 0, there existsN = N(ε, η), such that, for all
n ≥ N, and allx > 0

P
(
S3(n) ≥ n−1/2(x+ c log n)

)
≤ c6 exp

( −c7x
(1 + ε)2

)
+ η, (32)

for some universal constantsc6 andc7.
The proof is concluded once we show the existence of universal positive constantsc8, c9, c10 andc11 such that,
for all ε, η > 0, there existsN2 = N2(ε, η), andN3 = N3(ε, η) such that, for alln ≥ N2, and allx > 0

P
(
S1(n) ≥ n−1/2(x+ c log n)

)
≤ c8 exp

( −c9x
(1 + ε)2

)
+ η, (33)

and for alln ≥ N3 and allx > 0,

P
(
S2(n) ≥ n−1/2(x+ c log n)

)
≤ c10 exp

( −c11x
(1 + ε)2

)
+ η. (34)

Since

S1(n) =

(
n

Tn

)∥∥∥∥∥
1√
n

(
n∑

i=1

Zi1{Xi ≤ t} − TnF (t)

)

−B∗
n(F (t))

∥∥∥∥∥ ,

formula (3.7) in Horváthet al. (2000) combined with arguments similar to those used for thetermS3(n) imply
(33). As for (34), formula (3.5) in Horváthet al. (2000) together with the by now usualε, η argument conclude
the proof. �
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Proof of Theorem 3.We start by proving (16). We have forx ∈ R

√
nh2

n

(
f̂∗n,hn

(x) − f̂n,hn
(x)
)

=

∫
K ((x− s)/hn) d{n1/2(F ∗

n(s) − Fn(s))}

=

∫
K ((x− s)/hn) dα∗

n(s).

Integration by parts implies that
∫
K

(
x− s

hn

)
dα∗

n(s) = −
∫
α∗

n(x− thn)dK(t), (35)

and ∫
K

(
x− s

hn

)
dB∗

n(F (s)) = −
∫
B∗

n(F (x− thn))dK(t). (36)

Now, Theorem 1 together with condition (K1) give

sup
−∞<x<∞

∣∣∣∣
∫
α∗

n(x− thn)dK (t) −
∫
B∗

n(F (x− thn))dK (t)

∣∣∣∣

≤ sup
−∞<u<∞

|α∗
n(u) −B∗

n(F (u))|
∫

d|K (t) | = OP

(
log n√
n

)
, (37)

thus proving (16).
Once (16) is at hand, to prove (17), it suffices to bound

∣∣∣∣
∫
B∗

n(F (x− thn))dK (t) −B∗
n(F (x))

∣∣∣∣ ≤
∫

|B∗
n(F (x− thn)) −B∗

n(F (x))| dK (t) , (38)

in probability. By condition (K1), and provided the unknowndensityf is bounded (by a strictly positive
constant, sayM ), for n large enough,

|B∗
n(F (x− thn)) −B∗

n(F (x))| ≤ sup
|u−v|≤δn

|B∗
n(u) −B∗

n(v)| (39)

whereδn = Mhn. Now, it is always possible to define a Brownian Bridge,{B∗(y) : 0 ≤ y ≤ 1}, on the same
probability space carrying the sequence of Brownian Bridges{B∗

n(y) : 0 ≤ y ≤ 1}n≥1, such that for alln, and
all ε > 0

P

(
{2δn log δ−1

n }−1/2 sup
|u−v|<h

sup
h∈[0,δn]

|B∗
n(u) −B∗

n(v)| > 1 + ε

)

= P

(
{2δn log δ−1

n }−1/2 sup
|u−v|<h

sup
h∈[0,δn]

|B∗(u) −B∗(v)| > 1 + ε

)
.

Sinceδn → 0, by Theorem 1.4.1 in Csörgő and Révész (1981), we have with probability one

lim
n→∞

{2δn log δ−1
n }−1/2 sup

|u−v|<h
sup

h∈[0,δn]
|B∗(u) −B∗(v)| = 1. (40)

Thus, asn→ ∞,

P

(
{2δn log δ−1

n }−1/2 sup
|u−v|<h

sup
h∈[0,δn]

|B∗
n(u) −B∗

n(v)| > 1 + ε

)
→ 0,

giving

sup
|u−v|≤h

sup
h∈[0,δn]

|B∗
n(u) −B∗

n(v)| = OP

(√
2δn log δ−1

n

)
. (41)

Put (35), (36), (38), (39) and (41) together to obtain

sup
−∞<x<∞

∣∣∣∣γ
∗
n(x) −B∗

n(F (x))

∫
dK(t)

∣∣∣∣ = OP

(
log n√
n

+ hn

√
log h−1

n

)
,

thus completing the proof of Theorem. �
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