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Abstract

The purpose of this note is to provide an approximation fer generalized bootstrapped empirical pro-
cess achieving the rate in Komlésal. (1975). The proof is based on much the same arguments used in
Horvathet all (2000). As a consequence, we establish an approximatidmedbaotstrapped kernel-type
density estimator.
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1 Introduction and Main Results

Let X, X5, ... be a sequence of independent, identically distributedl [j.irandom variables with common
distribution functionF'(t) = P(X; < t). The empirical distribution function ok, ..., X,, is

1 n
Fy(t) =~ Y M{X; <t} —oco<t <o, (1)
i=1

wherel{A} stands for the indicator function of the evefit Given the sampleX, ..., X,,, let X7, ..., X},
be conditionally independent random variables with comutistribution functionf,. Let

1 m
Fra(t)=—> X[ <t}, —oco<t<oo, 2)
i=1

denote theclassicalEfron (or multinomial) bootstrap (see, elg. Efron (1979 &fron and Tibshirani (1993)
for more details). Define thieootstrapped empirical process,,, ,,, by

Oém,n(t) = \/E(Fm,n(t) - Fn(t))v —00 <1 < oo. (€)

Among many other things, Bickel and Freedman (1981) estaddi weak convergence of the procesgin (3),
which enabled them to deduce the asymptotic validity of thatstrap method in forming confidence bounds for
F(-).!Shoracki(1982) gave a simple proof of weak convergenceeqitthcess irL(3) [see also Shorack and Wellner
(1986), Section 23.1]. The Bickel and Freedman resultfgy, has been subsequently generalized for empiri-
cal processes based on observatiod&ind > 1 as well as in very general sample spaces and for various@et an
function-indexed random objects [see, for example Ber@B84), Beran and Millar (1986), Berast al. (1987),
Gaensslern (1992), Lohse (1987)]. This line of researchddtsm“final results” in the work of Giné and Zinn
(1989, 1990) and Csorgd and Mason (1989).

By now, the bootstrap is a widely used tool and, therefore,pitoperties ofv,, ,,(t) are of great interest in
applied as well as in theoretical statistics. In fact, salvprocedures can actually be described in terms of the
empirical processy,(t), the limit distributions being functionals @ (F(t)), whereB is a Brownian bridge.
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The fact that the limits may depend on the unknown distribufi'(¢) makes it important that good approxima-
tions of these limiting distributions be found and that isandthe bootstrap proved to be a very effective tool.
There is a huge literature on the application of the bogistnathodology to nonparametric kernel density and
regression estimation, among other statistical proceganad it is not the purpose of this paper to survey this
extensive literature. This being said, it is worthwhile ti@ming that the bootstrap as per Efron’s original for-
mulation (see Efron (1979)) presents some drawbacks. Naswhe observations may be used more than once
while others are not sampled at all. To overcome this diffyjcid more general formulation of the bootstrap
has been devised: theeighted(or smooth bootstrap, which has also been shown to be computationedhe
efficient in several applications. For a survey of furthesutes on weighted bootstrap the reader is referred to
Barbe and Bertail (1995). Exactly as for Efron’s bootsttae, question of rates of convergence is an important
one (both in probability and in statistics) and has occupigepleat number of authors (see Csodrgd and Révész
(1981), Komlbset all (1975) Horvathet al. (2000) and the references therein).

In this note, we will consider a version of the Mason-Newtaotstrap (see Mason and Newton (1992), and
the references therein). As will be clear, this approaclotuidirap is very general and allows for a great deal of
flexibility in applications. Let X,,),>1 be a sequence of i.i.d. random variables defined on a prdtysdpkce
(Q, A, P). We extend(Q2, A, P) to obtain a probability spaceg2(™, A P). The latter will carry the inde-
pendent sequencés,,),>1 and(Z,),>1 (defined below) and will be considered rich enough as to atlesv
definition of another sequen¢®&;) of Brownian bridges, independent of all the preceding sece® The pos-
sibility of such an extension is discussed in detail in &itare; the reader is referred, e.gl, to Csorgb and Révés
(1981), Komloset all (1975) and Berkes and Philipp (1977). In the sequel, whermvelmost sure property

is stated, it will be tacitly assumed that it holds with respgbe the p.mP defined on the extended space.

Define a sequencg”,,),>1 of i.i.d. replicee of astrictly positiverandom variableZ with distribution function
G(-), independent of th&(,,’s. In the sequel, the following assumptions on #)gs will prevail:

(Al) E(Z) =1; E(Z?) =2 (or, equivalentlyVar(Z) = 1).

(A2) There exists aa > 0, such that
E(e!?) < 0o forall |t <e.

Foralln > 1, letT, = Z; + - -- + Z, and define the random weights,

Win —%, i=1,...,n. (4)
The quantity
Fr(t)=> #inl{X; <t}, for —oo<t< o0, (5)

i=1
will be calledgeneralized (or weighted) bootstrapped empirical disttibn function Analogously, recalling
the empirical process based &1, ..., X,

an(t) = n'/2(F,(t) = F(1)), —o0 <t < o0, 6)
define the correspondirgeneralized (or weighted) bootstrapped empirical prodess
ol (t) = nY2(EX(t) — Fu(t)), —oo <t < o0. 7)

The system of weights defined inl (4) appears_in Mason and Ne(@@92), p.1617 where it is shown that it
satisfies assumptiongt), (#71) and (#717) on p.1612 of the same reference, so that all the resultgither
hold for the objects to be treated in this note. In particuagak convergence for the procegsto a Brownian
bridge is proved. For more results concerning this versichethe weighted boostrapped empirical process,
we refer the reader to Deheuvels and Derzko (2008). Notedkad special case of the system of weights we
are considering, one can obtain the one used for Bayesiasttam (see Rubin (1981)).

In what follows, we obtain a KMT rate of convergence for thi®gess in sup norm. More precisely, we
consider deviations between the generalized bootstrappgirical procesga (¢) : t € R} and a sequence
of approximating Brownian bridgeisB; (F'(t)) : t € R} onRR. Our main result goes as follows.
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Theorem 1 Let assumptionéAl) and(A2) hold. Then, it is possible to define a sequence of Browniatgbs
{B}(y) : 0 <y < 1} such that, for alls,n > 0, there existdV = N (e, n), such that, for alln > N and all
z >0,

P < sup | (t) — B (F(t))] > 3n71/2(K1 logn + 56)) < Kyexp <— Kaz 2> +n, (8)
—co<t<o0 (1+¢)

whereK, K5 and K5 are positive universal constants.

The proof of Theorerl1 is given in Sectibh 3.

Remark 1 Theorenil implies the following approximation of the weghbootstrap:

logn
sup o 0) - BF()] = 0n (7). ©

—oo<t<oo

Remark 2 Theorenlll turns out be useful in obtaining confidence bandthéodistribution function of the
sample data. We formalize this idea as follows:dot « < 1, one has

dn P (s VARG - POl @) =P (s B0 < o), ) (10)

—oo<t<oo —oo<t<oo

Note that for each fixed, B(F'(t)) is a zero-mean Gaussian random variable with covarianeetste
E(B(F(t))B(F(s))) = F(t \s) = F(t)F(s)

wheret A s := min(¢,s). In practice,c(«) can, of course, not be computed since the covariance steuctu
of B(F'(t)) depends on the unknown cdf. Instead, suppos@{l), ey Zr(f)), ey (Z{N), ey ZT(LN)) are N
independent vectors of i.i.d. copies Bf sampled independently of thé;'s. Define the random variables

= sup {a;,j(t){, j=1,...,N, (12)
—oo<t<oo
whereqay, ; denotes the generalized bootstrapped empirical procestraoted with the samp(é?{j ), e Z,(lj )),

j=1,...,N. Theorenill accounts for the use of the smallest0 such that

N
%Z]l{wjgz}Zl—a.
i=1

as an estimator af(«).

A direct consequence of Theorérn 1 and Theorem 1.5 in Hoeit&dh (2000) is the following approximation
for o (-) based on a Kiefer process

Theorem 2 There is a Kiefer procesgK (t;2);0 < t < 1;0 < z < oo} such that
k

max  sup |y (#im — 1/n)1{X; <t} — K(F(t),k)| = Op(n'/*(logn)'/?). (12)

1<k<n —co<t<oo |4 1
1=

2 An application to kernel density estimation

Let Xy,..., X, be independent random replicae of a random variable R with distribution functionF'(-).
We assume that the distribution functiéf{-) has a densityf (-) (with respect to the Lebesgue measur&n
First of all, we introduce a kernel density estimatorfgf). To this end, letK'(-) be a measurable function
fulfilling the following conditions

(K1) K(-)is of bounded variation and compactly supportedion



(K2) K > 0and [ K(u)du = 1.

Now, define the Akaike-Parzen-Rosenblatt kernel denstiynasor of f(-) (see_Akaike|(1954), Parzen (1962)
and_Rosenblatt (1956)) as follows: for alle R, estimatef(z) b

Fu ) = = ZK(””‘ ) (13)

where{h,, : n > 1} is a sequence of positive constants satisfying the comditio

h, |0 and nh, oo, as n— oco.

Secondly, we define the bootstrapped versior,of . (-), by setting for all,, > 0 andz € R,

n

fin (@) = hin S Wik <w ZnX> | (14)

=1

where;.,, is defined in[(#). We will provide an approximation rate foe flollowing process

’71;;( ) V nh2 (fn hn( ) - fn,hn(x)) ’ —00 < x < 0. (15)

The following theorem, proved in the next Section, shows #hsingle bootstrap suffices to obtain the desired
approximation for non-parametric kernel-type densitynestors.

Theorem 3 Let conditiongAl), (A2), (K1) and(K2) prevail. Then we can define Brownian bridges; (y) :

0 <y < 1} such that almost surely alony;, X», ..., asn tends to infinity, we have
T —5 logn)
su (x)— | K dB, (F(s))| =0 . 16
If, moreover, we suppose boundedness of the unknown ddnisityif we suppose the existenceléf> 0 such
thatsup_ ., f(x) < M, then, almost surely along;, Xo, ..., asn tends to infinity,
logn 1
su *(z) — B (F(x /tht‘zO( + hpy/lo hn>. 17
S (@) = Bu(F(z)) [ K() P\ m V/1og (17)

Remark 3. Under appropriate conditions, and using the same argumeimésirsed in the proof of Theoréin 3,
it is possible to obtain an approximation of a smoothed wversi F;.

3 Proofs

Proof of Theorem[d. In the sequel, we will writg| - || to indicatesup_ ;. | - |- We have that

la (t) = BR(F @) = [Vn(E; () = Fu(t)) — BR(F(®))]-

Now, it is easily seen that

VAE () — Fa(t)) = (ﬁ) y (Zzn{x <t} — PU)T, + (F(1) - Fn<t>>Tn> ..
so that
an(t) = BL(F@®)| < Si(n) + S2(n) + S3(n),
where
Si(n) := <ﬁ> ‘ 7 (Z“{X <t} —T,F(t )) BX(F (1)), (19)

4



where

saln) = (- ) | Zr 0 - Fte)| (20)

S3(n) := ;

and where

' 1BLEW)] . (21)

We start by dealing with the terifis(n). We will treat the cases > Cn andz < Cn (C being a strictly
positive constant) separately. Fix> Cn arbitrarily. Union bound gives for ai,

P (Sa00) 2 072 4 ctog) < P (8ulm) > 522 ) + P (IBLFO) = 572).

where
n *
sitn) = (75 ) IBAFO). @2)
Now, it is known that, for alh > 1 and allz > n > 1, there exists a positive constant such that
X 562 X
. > — )< )< e I
P(IBFON 2 35 < cren (- ) <o (-5) @3)
On the other hand, since strong law of large numbers gives
% — 1| %o,

for all e, > 0, there existsV; = Nj(g,n), such that, for alh > Ny,

P(ﬁ—l
T

n

€ (0,5)) >1-—m. (24)

Consequently, denoting the law gf by ﬁTL, independence of th&,’s from the B,,’s gives

(54() 7) - P<S4(n)2ﬁ, %—1‘6(0,6))

+P<S4(n)zi ‘ez 06)
< P(%HBZ(F(@)H_%! - e<o,a>)
+P<T£n_1‘¢(0’6)>
1+¢ x n
< /1 (HB( ())H>2\/n—zﬂlﬁzy>ﬁz(dy)+n
< P(HBZ(F(t))H>m>+’7
< crexp <—4(1xf€)2>+n, (25)

where, in the last inequality, we have used (23). Combirid®) and[(25), we have that, for alln > 0, there
existsN; = Nj(g,n), such that, for alh > Ny,

P (Sg(n) > n~Y2(z 4 clog n)> < (14 c1)exp <_4(1xf€)2> + 7. (26)

(6]



Now we turn to the case < x < Cn. Again, by the union bound,

P (Sg(’l’L) >n 2z +clogn)> <P (

§;_4>v§>+Puwmnwm>¢@- @7)

n

Again by [23), we have that for afl,

P(IBL(F)Il > V) < c1exp(—2/2). (28)
On the other hand, by (24), for aln > 0, there existsV; = Ny (e,n) such that for alh > Ny,
P(T%—l'> %) — P(Tﬂn—l'>\/§, %—1'6(0,5))
+P<T%_1 >\/%, T%—l‘ ¢(0,5)>
< P((%) %— >\/%, %—1 e(O,e)) +1
< P(%—1‘> ﬁ)Jrn (29)

Use Theorem 2.6 in Petrov (1995) to find constantandcs such that

p(T

> areer) <oee () 0

Combining [(Z8),[(ZB) and (30), and plugging ink27), we dedine existence of positive universal constants
andcs such that

P <53(n) > n—l/Q(x + clog n)) < cgexp <%) +n, (31)

so that one concludes, from (26) anhdl(31), that forall > 0, there existsV = N(e,n), such that, for all
n > N,andallx > 0

P <Sg(n) > n‘1/2(x + clog n)) < cg exp <%> +n, (32)

for some universal constants andc;.
The proof is concluded once we show the existence of univpositive constantss, cg, c1g andc;; such that,
for all e, > 0, there existsVo = N»(g,n), and N3 = N3(e, n) such that, for alh > N, and allz > 0

P <Sl(n) > n_1/2(x + clog n)) < cgexp <%> +n, (33)

and for alln > N3 and allx > 0,

P (SQ(TL) >n"12(z + clog n)) < cjp9exp ( e > + . (34)
Since .
= (Z ZA{X; <t} - TnF(t)> ~ BI(F(1))

(1+¢)?
SW”:<%ﬁ‘¢ﬁiﬂ w

formula (3.7) in Horvattet all (2000) combined with arguments similar to those used foteha Ss(n) imply
(33). As for [34), formula (3.5) in Horvatét al. (2000) together with the by now usualy argument conclude
the proof. O




Proof of Theorem[3. We start by proving[(16). We have farc R
VA (B @) = @) = [ K (= s)/m) dfn2(55(5) - Falo)}
= [ K (@9 dai(o)

Integration by parts implies that

/K <xh_ S> da (s) = —/a;;(x — thy)dEK (1), (35)

n

and

/K <”Ch_ S> dB* (F(s)) = —/B;;(F(x — thy))dE (t). (36)

n

Now, Theoreni Il together with condition (K1) give

sup ‘ / o (2 — thy)dK () — / B (F(x — thy))dK (t)‘

—oo<r<oo
* * . logn
< w0 - BF@)| [dr @] =0p (1), @
thus proving[(16).
Once[(16) is at hand, to prove {17), it suffices to bound
[ BitF @~ tha))di ()~ Bi(F@)| < [1Bi(F@—tha) - By(F@)dE (0, (39

in probability. By condition (K1), and provided the unknowdensity f is bounded (by a strictly positive
constant, say/), for n large enough,

B, (F (2 = thy)) = B, (F(2))| < sup |By(u) — B, (v)| (39)

lu—v[<én

whered,, = Mh,,. Now, it is always possible to define a Brownian Bridg&*(y) : 0 < y < 1}, on the same
probability space carrying the sequence of Brownian Bsddge’ (v) : 0 < y < 1},>1, such that for alh, and
alle >0

P({20,l0g6; Y2 sup  sup |Bi(u)—Bi(v)] >1+¢
|u—v|<h h€[0,5,]

= P({26,10g0;'}7 Y2 sup sup |B*(u)—B*(v)] >1+¢].
|[u—v|<h h€[0,6x]
Sinced,, — 0, by Theorem 1.4.1 in Csorg6 and Révész (1981), we hatlepubbability one

lim {26, logd; '} "Y/2 sup sup |B*(u)— B*(v)| = 1. (40)
n—oo |lu—v|<h h€[0,5,]

Thus, as1 — oo,

P ( (20,1087} sup  sup |Bi(w) — Bi(w) > 14¢) -0,
|lu—v|<h he[0,0n]

sup sup |B;(u)— B (v)|=O0p (\/2511 log 5n1> . (41)

|lu—v|<h h€[0,6,]

Put [35), [(36),[(38)[(39) and (1) together to obtain
. « logn —
70082%)@0 yo(z) — Bn(F(x))/dK(t)‘ =Op < \/gﬁ +hn\/loghn1> ,

thus completing the proof of Theorem. O

giving
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