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. As a consequence, we establish an approximation of the bootstrapped kernel-type density estimator.

Introduction and Main Results

Let X 1 , X 2 , . . . be a sequence of independent, identically distributed [i.i.d.] random variables with common distribution function F (t) = P (X 1 ≤ t). The empirical distribution function of X 1 , . . . , X n is

F n (t) = 1 n n i=1 1{X i ≤ t}, -∞ < t < ∞, (1) 
where 1{A} stands for the indicator function of the event A. Given the sample X 1 , . . . , X n , let X * 1 , . . . , X * m , be conditionally independent random variables with common distribution function

F n . Let F m,n (t) = 1 m m i=1 1{X * i ≤ t}, -∞ < t < ∞, (2) 
denote the classical Efron (or multinomial) bootstrap (see, e.g. [START_REF] Efron | Bootstrap methods: another look at the jackknife[END_REF] and [START_REF] Efron | An introduction to the bootstrap[END_REF] for more details). Define the bootstrapped empirical process, α m,n , by

α m,n (t) := √ n(F m,n (t) -F n (t)), -∞ < t < ∞.
(3) Among many other things, [START_REF] Bickel | Some asymptotic theory for the bootstrap[END_REF] established weak convergence of the process in (3), which enabled them to deduce the asymptotic validity of the bootstrap method in forming confidence bounds for F (•). [START_REF] Shorack | Bootstrapping robust regression[END_REF] gave a simple proof of weak convergence of the process in (3) [see also [START_REF] Shorack | Empirical processes with applications to statistics[END_REF], Section 23.1]. The Bickel and Freedman result for α m,n has been subsequently generalized for empirical processes based on observations in R d , d > 1 as well as in very general sample spaces and for various set and function-indexed random objects [see, for example [START_REF] Beran | Bootstrap methods in statistics[END_REF], [START_REF] Beran | Confidence sets for a multivariate distribution[END_REF], [START_REF] Beran | Convergence of stochastic empirical measures[END_REF], [START_REF] Gaenssler | Confidence bands for probability distributions on Vapnik-Chervonenkis classes of sets in arbitrary sample spaces using the bootstrap[END_REF], [START_REF] Lohse | Consistency of the bootstrap[END_REF]]. This line of research found its "final results" in the work of Giné andZinn (1989, 1990) and [START_REF] Csörgő | Bootstrapping empirical functions[END_REF]. By now, the bootstrap is a widely used tool and, therefore, the properties of α m,n (t) are of great interest in applied as well as in theoretical statistics. In fact, several procedures can actually be described in terms of the empirical process α n (t), the limit distributions being functionals of B(F (t)), where B is a Brownian bridge.

The fact that the limits may depend on the unknown distribution F (t) makes it important that good approximations of these limiting distributions be found and that is where the bootstrap proved to be a very effective tool.

There is a huge literature on the application of the bootstrap methodology to nonparametric kernel density and regression estimation, among other statistical procedures, and it is not the purpose of this paper to survey this extensive literature. This being said, it is worthwhile mentioning that the bootstrap as per Efron's original formulation (see [START_REF] Efron | Bootstrap methods: another look at the jackknife[END_REF]) presents some drawbacks. Namely, some observations may be used more than once while others are not sampled at all. To overcome this difficulty, a more general formulation of the bootstrap has been devised: the weighted (or smooth) bootstrap, which has also been shown to be computationally more efficient in several applications. For a survey of further results on weighted bootstrap the reader is referred to [START_REF] Barbe | The weighted bootstrap[END_REF]. Exactly as for Efron's bootstrap, the question of rates of convergence is an important one (both in probability and in statistics) and has occupied a great number of authors (see [START_REF] Csörgő | Strong approximations in probability and statistics[END_REF], [START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF[END_REF][START_REF] Horváth | Approximations for weighted bootstrap processes with an application[END_REF] and the references therein).

In this note, we will consider a version of the Mason-Newton bootstrap (see [START_REF] Mason | A rank statistics approach to the consistency of a general bootstrap[END_REF], and the references therein). As will be clear, this approach to bootstrap is very general and allows for a great deal of flexibility in applications. Let (X n ) n≥1 be a sequence of i.i.d. random variables defined on a probability space (Ω, A, P). We extend (Ω, A, P) to obtain a probability space (Ω (π) , A (π) , P ). The latter will carry the independent sequences (X n ) n≥1 and (Z n ) n≥1 (defined below) and will be considered rich enough as to allow the definition of another sequence (B * n ) of Brownian bridges, independent of all the preceding sequences. The possibility of such an extension is discussed in detail in literature; the reader is referred, e.g., to [START_REF] Csörgő | Strong approximations in probability and statistics[END_REF], [START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF[END_REF] and [START_REF] Berkes | An almost sure invariance principle for the empirical distribution function of mixing random variables[END_REF]. In the sequel, whenever an almost sure property is stated, it will be tacitly assumed that it holds with respect the the p.m. P defined on the extended space.

Define a sequence (Z n ) n≥1 of i.i.d. replicae of a strictly positive random variable Z with distribution function G(•), independent of the X n 's. In the sequel, the following assumptions on the Z n 's will prevail:

(A1) E(Z) = 1; E(Z 2 ) = 2 (or, equivalently, Var(Z) = 1).
(A2) There exists an ε > 0, such that E(e tZ ) < ∞ for all |t| ≤ ε.

For all n ≥ 1, let T n = Z 1 + • • • + Z n and define the random weights,

W i;n := Z i T n , i = 1, . . . , n. (4) 
The quantity

F * n (t) = n i=1 W i;n 1{X i ≤ t}, for -∞ < t < ∞.
(5) will be called generalized (or weighted) bootstrapped empirical distribution function. Analogously, recalling the empirical process based on X 1 , . . . , X n ,

α n (t) = n 1/2 (F n (t) -F (t)), -∞ < t < ∞, (6) 
define the corresponding generalized (or weighted) bootstrapped empirical process by

α * n (t) = n 1/2 (F * n (t) -F n (t)), -∞ < t < ∞. (7) 
The system of weights defined in (4) appears in [START_REF] Mason | A rank statistics approach to the consistency of a general bootstrap[END_REF], p.1617 where it is shown that it satisfies assumptions (W I ), (W II ) and (W III ) on p.1612 of the same reference, so that all the results therein hold for the objects to be treated in this note. In particular, weak convergence for the process α * n to a Brownian bridge is proved. For more results concerning this version of the the weighted boostrapped empirical process, we refer the reader to [START_REF] Deheuvels | Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme[END_REF]. Note that, as a special case of the system of weights we are considering, one can obtain the one used for Bayesian bootstrap (see [START_REF] Rubin | The Bayesian bootstrap[END_REF]).

In what follows, we obtain a KMT rate of convergence for this process in sup norm. More precisely, we consider deviations between the generalized bootstrapped empirical process {α * n (t) : t ∈ R} and a sequence of approximating Brownian bridges {B * n (F (t)) : t ∈ R} on R. Our main result goes as follows.

Theorem 1 Let assumptions (A1) and (A2) hold. Then, it is possible to define a sequence of Brownian bridges {B * n (y) : 0 ≤ y ≤ 1} such that, for all ε, η > 0, there exists N = N (ε, η), such that, for all n ≥ N and all x > 0,

P sup -∞<t<∞ |α * n (t) -B * n (F (t))| > 3n -1/2 (K 1 log n + x) ≤ K 2 exp - K 3 x (1 + ε) 2 + η, (8) 
where K 1 , K 2 and K 3 are positive universal constants.

The proof of Theorem 1 is given in Section 3.

Remark 1 Theorem 1 implies the following approximation of the weighted bootstrap:

sup -∞<t<∞ |α * n (t) -B * n (F (t))| = O P log n n 1/2 . ( 9 
)
Remark 2 Theorem 1 turns out be useful in obtaining confidence bands for the distribution function of the sample data. We formalize this idea as follows: for 0 < α < 1, one has

lim n→∞ P sup -∞<t<∞ √ n|F n (t) -F (t)| ≤ c(α) = P sup -∞<t<∞ |B(F (t))| ≤ c(α), . (10) 
Note that for each fixed t, B(F (t)) is a zero-mean Gaussian random variable with covariance structure

E(B(F (t))B(F (s))) = F (t ∧ s) -F (t)F (s)
where t ∧ s := min(t, s). In practice, c(α) can, of course, not be computed since the covariance structure of B(F (t)) depends on the unknown cdf F . Instead, suppose (Z

(1) 1 , . . . , Z (1) 
n ), . . . , (Z

(N ) 1 , . . . , Z (N ) 
n ) are N independent vectors of i.i.d. copies of Z, sampled independently of the X i 's. Define the random variables

ψ j := sup -∞<t<∞ α * n,j (t) , j = 1, . . . , N, (11) 
where α * n,j denotes the generalized bootstrapped empirical process constructed with the sample (Z

(j) 1 , . . . , Z (j) 
n ), j = 1, . . . , N . Theorem 1 accounts for the use of the smallest z > 0 such that

1 N N i=1 1 ψ j ≤ z ≥ 1 -α.
as an estimator of c(α).

A direct consequence of Theorem 1 and Theorem 1.5 in [START_REF] Horváth | Approximations for weighted bootstrap processes with an application[END_REF] is the following approximation for α * n (•) based on a Kiefer process Theorem 2 There is a Kiefer process {K(t; x);

0 ≤ t ≤ 1; 0 ≤ x ≤ ∞} such that max 1≤k≤n sup -∞<t<∞ k i=1 (W i;n -1/n)1{X i ≤ t} -K(F (t), k) = O P (n 1/4 (log n) 1/2 ). ( 12 
)

An application to kernel density estimation

Let X 1 , . . . , X n be independent random replicae of a random variable X ∈ R with distribution function F (•).

We assume that the distribution function F (•) has a density f (•) (with respect to the Lebesgue measure in R).

First of all, we introduce a kernel density estimator of f (•). To this end, let K(•) be a measurable function fulfilling the following conditions (K1) K(•) is of bounded variation and compactly supported on R;

(K2) K ≥ 0 and K(u)du = 1. Now, define the Akaike-Parzen-Rosenblatt kernel density estimator of f (•) (see [START_REF] Akaike | An approximation to the density function[END_REF], [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] and [START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF]) as follows: for all x ∈ R, estimate f (x) by

f n,hn (x) = 1 nh n n i=1 K x -X i h n , (13) 
where {h n : n ≥ 1} is a sequence of positive constants satisfying the conditions

h n ↓ 0 and nh n ↑ ∞, as n → ∞.
Secondly, we define the bootstrapped version of f n,hn (•), by setting for all h n > 0 and x ∈ R,

f * n,hn (x) = 1 h n n i=1 W i;n K x -X i h n , (14) 
where W i;n is defined in (4). We will provide an approximation rate for the following process

γ * n (x) = nh 2 n f * n,hn (x) -f n,hn (x) , -∞ < x < ∞. ( 15 
)
The following theorem, proved in the next Section, shows that a single bootstrap suffices to obtain the desired approximation for non-parametric kernel-type density estimators.

Theorem 3 Let conditions (A1), ( A2), ( K1) and (K2) prevail. Then we can define Brownian bridges {B * n (y) : 0 ≤ y ≤ 1} such that almost surely along X 1 , X 2 , . . . , as n tends to infinity, we have

sup -∞<x<∞ γ * n (x) -K x -s h n dB * n (F (s)) = O P log n √ n . ( 16 
)
If, moreover, we suppose boundedness of the unknown density, f, i.e. if we suppose the existence of M > 0 such that sup -∞<x<∞ f (x) ≤ M, then, almost surely along X 1 , X 2 , . . . , as n tends to infinity,

sup -∞<x<∞ γ * n (x) -B * n (F (x)) K(t)dt = O P log n √ n + h n log h -1 n . ( 17 
)
Remark 3. Under appropriate conditions, and using the same arguments rehearsed in the proof of Theorem 3, it is possible to obtain an approximation of a smoothed version of F * n .

Proofs

Proof of Theorem 1. In the sequel, we will write

• to indicate sup -∞<t<+∞ | • |. We have that α * n (t) -B * n (F (t)) = √ n(F * n (t) -F n (t)) -B * n (F (t)) . Now, it is easily seen that √ n(F * n (t) -F n (t)) = n T n 1 √ n n i=1 Z i 1{X i ≤ t} -F (t)T n + (F (t) -F n (t))T n , ( 18 
) so that α * n (t) -B * n (F (t)) ≤ S 1 (n) + S 2 (n) + S 3 (n), where S 1 (n) := n T n 1 √ n n i=1 Z i 1{X i ≤ t} -T n F (t) -B * n (F (t)) , (19) 
where

S 2 (n) := n T n T n √ n (F (t) -F n (t)) , (20) 
and where

S 3 (n) := n T n -1 B * n (F (t)) . (21) 
We start by dealing with the term S 3 (n). We will treat the cases x > Cn and x ≤ Cn (C being a strictly positive constant) separately. Fix x > Cn arbitrarily. Union bound gives for all n,

P S 3 (n) ≥ n -1/2 (x + c log n) ≤ P S 4 (n) ≥ x 2 √ n + P B * n (F (t)) ≥ x 2 √ n ,
where

S 4 (n) := n T n B * n (F (t)) . (22) 
Now, it is known that, for all n ≥ 1 and all x > n ≥ 1, there exists a positive constant c 1 , such that

P B * n (F (t)) ≥ x 2 √ n ≤ c 1 exp - x 2 4n ≤ exp - x 4 . (23) 
On the other hand, since strong law of large numbers gives

n T n -1 a.s. → 0,
for all ε, η 0, there exists

N 1 = N 1 (ε, η), such that, for all n ≥ N 1 , P n T n -1 ∈ (0, ε) ≥ 1 -η. (24) 
Consequently, denoting the law of n Tn by L n Tn , independence of the Z n 's from the B n 's gives

P S 4 (n) ≥ x 2 √ n = P S 4 (n) ≥ x 2 √ n , n T n -1 ∈ (0, ε) + P S 4 (n) ≥ x 2 √ n , n T n -1 ∈ (0, ε) ≤ P n T n B * n (F (t)) ≥ x 2 √ n | n T n -1 ∈ (0, ε) + P n T n -1 ∈ (0, ε) ≤ 1+ε 1-ε P B * n (F (t)) > x 2 ny 2 | n T n = y L n Tn (dy) + η ≤ P B * n (F (t)) > x 2 n(1 + ε) 2 + η ≤ c 1 exp - x 4(1 + ε) 2 + η, (25) 
where, in the last inequality, we have used (23). Combining ( 23) and ( 25), we have that, for all ε, η > 0, there exists N 1 = N 1 (ε, η), such that, for all n ≥ N 1 ,

P S 3 (n) ≥ n -1/2 (x + c log n) ≤ (1 + c 1 ) exp - x 4(1 + ε) 2 + η. ( 26 
)
Now we turn to the case 0 < x ≤ Cn. Again, by the union bound,

P S 3 (n) ≥ n -1/2 (x + c log n) ≤ P n T n -1 > x n + P B * n (F (t)) > √ x . (27) 
Again by ( 23), we have that for all n,

P B * n (F (t)) > √ x ≤ c 1 exp(-x/2). (28) 
On the other hand, by ( 24), for all ε, η > 0, there exists

N 1 = N 1 (ε, η) such that for all n ≥ N 1 , P n T n -1 > x n = P n T n -1 > x n , n T n -1 ∈ (0, ε) + P n T n -1 > x n , n T n -1 ∈ (0, ε) ≤ P n T n T n n -1 > x n , n T n -1 ∈ (0, ε) + η ≤ P T n n -1 > x n(1 + ε) 2 + η (29)
Use Theorem 2.6 in Petrov (1995) to find constants c 2 and c 3 such that

P T n n -1 > x n(1 + ε) 2 ≤ c 2 exp -c 3 x (1 + ε) 2 . ( 30 
)
Combining ( 28), ( 29) and ( 30), and plugging in ( 27), we deduce the existence of positive universal constants c 4 and c 5 such that

P S 3 (n) ≥ n -1/2 (x + c log n) ≤ c 4 exp -c 5 x (1 + ε) 2 + η, (31) 
so that one concludes, from ( 26) and ( 31), that for all ε, η > 0, there exists N = N (ε, η), such that, for all n ≥ N, and all x > 0

P S 3 (n) ≥ n -1/2 (x + c log n) ≤ c 6 exp -c 7 x (1 + ε) 2 + η, (32) 
for some universal constants c 6 and c 7 .

The proof is concluded once we show the existence of universal positive constants c 8 , c 9 , c 10 and c 11 such that, for all ε, η > 0, there exists N 2 = N 2 (ε, η), and N 3 = N 3 (ε, η) such that, for all n ≥ N 2 , and all x > 0

P S 1 (n) ≥ n -1/2 (x + c log n) ≤ c 8 exp -c 9 x (1 + ε) 2 + η, (33) 
and for all n ≥ N 3 and all x > 0,

P S 2 (n) ≥ n -1/2 (x + c log n) ≤ c 10 exp -c 11 x (1 + ε) 2 + η. (34) 
Since [START_REF] Horváth | Approximations for weighted bootstrap processes with an application[END_REF] combined with arguments similar to those used for the term S 3 (n) imply (33). As for (34), formula (3.5) in [START_REF] Horváth | Approximations for weighted bootstrap processes with an application[END_REF] together with the by now usual ε, η argument conclude the proof.

S 1 (n) = n T n 1 √ n n i=1 Z i 1{X i ≤ t} -T n F (t) -B * n (F (t)) , formula (3.7) in
Proof of Theorem 3. We start by proving ( 16). We have for

x ∈ R nh 2 n f * n,hn (x) -f n,hn (x) = K ((x -s)/h n ) d{n 1/2 (F * n (s) -F n (s))} = K ((x -s)/h n ) dα * n (s).
Integration by parts implies that

K x -s h n dα * n (s) = -α * n (x -th n )dK(t), (35) 
and

K x -s h n dB * n (F (s)) = -B * n (F (x -th n ))dK(t). (36) 
Now, Theorem 1 together with condition (K1) give

sup -∞<x<∞ α * n (x -th n )dK (t) -B * n (F (x -th n ))dK (t) ≤ sup -∞<u<∞ |α * n (u) -B * n (F (u))| d|K (t) | = O P log n √ n , (37) 
thus proving (16). Once ( 16) is at hand, to prove (17), it suffices to bound 

B * n (F (x -th n ))dK (t) -B * n (F (x)) ≤ |B * n (F (x -th n )) -B * n (F (x))| dK (t) , (38) 

  in probability. By condition (K1), and provided the unknown density f is bounded (by a strictly positive constant, say M ), for n large enough,|B * n (F (xth n )) -B * n (F (x))| ≤ sup |u-v|≤δn |B * n (u) -B * n (v)|(39)where δ n = M h n . Now, it is always possible to define a Brownian Bridge, {B * (y) : 0 ≤ y ≤ 1}, on the same probability space carrying the sequence of Brownian Bridges {B * n (y) : 0 ≤ y ≤ 1} n≥1 , such that for all n, and all ε > 0P {2δ n log δ -1 n } -1/2 sup |u-v|<h sup h∈[0,δn] |B * n (u) -B * n (v)| > 1 + ε = P {2δ n log δ -1 n } -1/2 sup |u-v|<h sup h∈[0,δn] |B * (u) -B * (v)| > 1 + ε .Since δ n → 0, by Theorem 1.4.1 in[START_REF] Csörgő | Strong approximations in probability and statistics[END_REF], we have with probability onen (x) -B * n (F (x)) dK(t) = O P log n √ n + h n log h -1 n ,thus completing the proof of Theorem.
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