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A Banaschewski function on a bounded lattice L is an antitone self-map of L that picks a complement for each element of L. We prove a set of results that include the following:

• Every countable complemented modular lattice has a Banaschewski function with Boolean range, the latter being unique up to isomorphism.

• Every sectionally complemented modular lattice with a Banaschewski trace (a weakening of the notion of a Banaschewski function) embeds, as a neutral ideal and within the same quasivariety, into some complemented modular lattice. This applies, in particular, to any sectionally complemented modular lattice with a countable cofinal subset. A sectionally complemented modular lattice L is coordinatizable, if it is isomorphic to the lattice L(R) of all principal right ideals of a von Neumann regular (not necessarily unital) ring R. We say that L has a large 4-frame, if it has a homogeneous sequence (a 0 , a 1 , a 2 , a 3 ) such that the neutral ideal generated by a 0 is L. Jónsson proved in 1962 that if L has a countable cofinal sequence and a large 4-frame, then it is coordinatizable. We prove that A sectionally complemented modular lattice with a large 4-frame is coordinatizable iff it has a Banaschewski trace.

Introduction

Bernhard Banaschewski proved in [START_REF] Banaschewski | Totalgeordnete Moduln (German)[END_REF] that on every vector space V , over an arbitrary division ring, there exists an order-reversing (we say antitone) map that sends any subspace X of V to a complement of X in V . Such a function was used in [START_REF] Banaschewski | Totalgeordnete Moduln (German)[END_REF] for a simple proof of Hahn's Embedding Theorem that states that every totally ordered abelian group embeds into a generalized lexicographic power of the reals.

By analogy with Banaschewski's result, we define a Banaschewski function on a bounded lattice L as an antitone self-map of L that picks a complement for each element of L (Definition 3.1). Hence Banaschewski's above-mentioned result from [START_REF] Banaschewski | Totalgeordnete Moduln (German)[END_REF] states that the subspace lattice of every vector space has a Banaschewski function. This result is extended to all geometric (not necessarily modular) lattices in Saarimäki and Sorjonen [START_REF] Saarimäki | On Banaschewski functions in lattices[END_REF].

We prove in Theorem 4.1 that Every countable complemented modular lattice has a Banaschewski function with Boolean range. We also prove (Corollary 4.8) that such a Boolean range is uniquely determined up to isomorphism. In a subsequent paper [START_REF] Wehrung | A non-coordinatizable sectionally complemented modular lattice with a large Jónsson four-frame[END_REF], we shall prove that the countability assumption is needed.

Then we extend the notion of a Banaschewski function to non-unital lattices, thus giving the notion of a Banaschewski measure (Definition 5.5) and the more general concept of a Banaschewski trace (Definition 5.1)-first allowing the domain to be a cofinal subset and then replacing the function by an indexed family of elements. It follows from [START_REF] Wehrung | A non-coordinatizable sectionally complemented modular lattice with a large Jónsson four-frame[END_REF]Lemma 5.2] that every Banaschewski measure on a cofinal subset is a Banaschewski trace. Banaschewski measures are proved to exist on any countable sectionally complemented modular lattice (Corollary 5.6), and every sectionally complemented modular lattice with a Banaschewski trace embeds, as a neutral ideal and within the same quasivariety, into some complemented modular lattice (Theorem 5.3). In particular (Corollary 5.4), Every sectionally complemented modular lattice with a countable cofinal subset embeds, as a neutral ideal and within the same quasivariety, into some complemented modular lattice.

We finally relate Banaschewski functions to the problem of von Neumann coordinatization. We recall what the latter is about. A ring (associative, not necessarily unital) R is von Neumann regular, if for each x ∈ R there exists y ∈ R such that xyx = x (cf. Fryer and Halperin [START_REF] Fryer | Coordinates in geometry[END_REF], Goodearl [START_REF] Goodearl | Von Neumann Regular Rings[END_REF]). The set L(R) of all principal right ideals of a (not necessarily unital) von Neumann regular ring R, that is,

L(R) := {xR | x ∈ R} = {xR | x ∈ R idempotent} .
ordered by inclusion, is a sublattice of the lattice of all ideals of L; hence it satisfies the modular law,

X ⊇ Z =⇒ X ∩ (Y + Z) = (X ∩ Y ) + Z .
(Here + denotes the addition of ideals.) Moreover, L(R) is sectionally complemented (cf. [START_REF] Fryer | Coordinates in geometry[END_REF]Section 3.2]), that is, for all principal right ideals X and Y such that X ⊆ Y , there exists a principal right ideal Z such that X ⊕ Z = Y . A lattice is coordinatizable, if it is isomorphic to L(R) for some von Neumann regular ring R; then we say that R coordinatizes L. In particular, every coordinatizable lattice is sectionally complemented modular. One of the weakest known sufficient conditions, for a sectionally complemented modular lattice, to be coordinatizable, is given by a result obtained by Bjarni Jónsson in 1960, see [START_REF] Jónsson | Representations of complemented modular lattices[END_REF]:

Jónsson's Coordinatization Theorem. Every complemented modular lattice L that admits a large 4-frame, or which is Arguesian and that admits a large 3-frame, is coordinatizable.

We refer to Section 2 for the definition of a large n-frame. Jónsson's result extends von Neumann's classical Coordinatization Theorem; his proof has been recently substantially simplified by Christian Herrmann [START_REF] Herrmann | Generators for complemented modular lattices and the von Neumann-Jónsson Coordinatization Theorems[END_REF]. On another track, the author proved that there is no first-order axiomatization for the class of all coordinatizable lattices with unit [START_REF] Wehrung | Von Neumann coordinatization is not first-order[END_REF].

We introduce a ring-theoretical analogue of Banaschewski functions (Definition 3.4), and we prove that a unital von Neumann regular ring R has a Banaschewski function iff the lattice L(R) has a Banaschewski function (Lemma 3.5).

Interestingly, the definition of a Banaschewski function for a ring does not involve the unit; this makes it possible to prove the following result (cf. Corollary 4.6):

For every countable (not necessarily unital ) von Neumann regular ring R, there exists a map ε from R to the idempotents of R such that xR = ε(x)R and ε(xy) = ε(x)ε(xy)ε(x) for all x, y ∈ R. Finally, we relate coordinatizability of a lattice L and existence of Banaschewski traces on L. Our main result in that direction is that A sectionally complemented modular lattice that admits a large 4-frame, or which is Arguesian and that admits a large 3-frame, is coordinatizable iff it has a Banaschewski trace (Theorem 6.6).

Basic concepts

By "countable" we will always mean "at most countable". We shall denote by ω the set of all non-negative integers.

Let P be a partially ordered set. We denote by 0 P (resp., 1 P ) the least element (resp. largest element) of P when they exist, also called zero (resp., unit ) of P , and we simply write 0 (resp., 1) in case P is understood. Furthermore, we set P -:= P \ {0 P }. We set

U ↓ X := {u ∈ U | (∃x ∈ X)(u ≤ x)} , U ↑ X := {u ∈ U | (∃x ∈ X)(u ≥ x)} ,
for any subsets U and X of P , and we set U ↓ x := U ↓ {x}, U ↑ x := U ↑ {x}, for any x ∈ P . We say that U is a lower subset (resp., upper subset ) of P , if U = P ↓ U (resp., U = P ↑ U ). We say that P is upward directed, if every pair of elements of P is contained in P ↓ x for some x ∈ P . We say that U is cofinal in P , if P ↓ U = P . An ideal of P is a nonempty, upward directed, lower subset of P . We set P [2] := {(x, y) ∈ P × P | x ≤ y} .

For partially ordered sets P and Q, a map f : P → Q is isotone (resp., antitone), if x ≤ y implies that f (x) ≤ f (y) (resp., f (y) ≤ f (x)), for all x, y ∈ P .

We refer to Birkhoff [START_REF] Birkhoff | Lattice Theory[END_REF] or Grätzer [START_REF] Grätzer | General Lattice Theory[END_REF] for basic notions of lattice theory. We recall here a sample of needed notation, terminology, and results. A family (a i | i ∈ I) of elements in a lattice L with zero is independent, if the equality

(a i | i ∈ X) ∧ (a i | i ∈ Y ) = (a i | i ∈ X ∩ Y )
holds for all finite subsets X and Y of I. In case L is modular and I = {0, . . . , n -1} for a non-negative integer n, this amounts to verifying that the equality a k ∧ i<k a i = 0 holds for each k < n. We denote by ⊕ the operation of finite independent sum in L; hence a = (a i | i ∈ I) means that I is finite, (a i | i ∈ I) is independent, and a = i<n a i . If L is modular, then ⊕ is both commutative and associative in the strongest possible sense for a partial operation, see [START_REF] Maeda | Kontinuierliche Geometrien[END_REF]Section II.1].

A lattice L with zero is sectionally complemented, if for all a ≤ b in L there exists

x ∈ L such that b = a ⊕ x. For elements a, x, b ∈ L, let a ∼ x b hold, if a ⊕ x = b ⊕ x.
We say that a is perspective to b, in notation a ∼ b, if there exists x ∈ L such that a ∼ x b. We say that L is complemented, if it has a unit and every element a ∈ L has a complement, that is, an element x ∈ L such that 1 = a⊕x. A bounded modular lattice is complemented if and only if it is sectionally complemented.

An ideal I of a lattice L is neutral, if {I, X, Y } generates a distributive sublattice of Id L for all ideals X and Y of L. In case L is sectionally complemented modular, this is equivalent to the statement that every element of L perspective to some element of I belongs to I. In that case, the assignment that to a congruence θ associates the θ-block of 0 is an isomorphism from the congruence lattice of L onto the lattice of all neutral ideals of L.

An independent finite sequence (a i | i < n) in a lattice L with zero is homogeneous, if the elements a i are pairwise perspective. An element x ∈ L is large, if the neutral ideal generated by x is L.

A pair ((

a i | 0 ≤ i < n), (c i | 1 ≤ i < n)), with (a i | 0 ≤ i < n) independent, is a • n-frame, if a 0 ∼ ci a i for each i with 1 ≤ i < n;
• large n-frame, if it is an n-frame and a 0 is large.

The assignment R → L(R) extends canonically to a functor from the category of all regular rings with ring homomorphisms to the category of sectionally complemented modular lattices with 0-lattice homomorphisms (cf. Micol [START_REF] Micol | On representability of * -regular rings and modular ortholattices[END_REF] for details). This functor preserves direct limits.

Denote by Idemp R the set of all idempotent elements in a ring R. For idempotents a and b in a ring R, let a b hold, if a = ab = ba; equivalently, a ∈ bRb.

We shall need the following folklore lemma. 

Banaschewski functions on lattices and rings

Definition 3.1. Let X be a subset in a bounded lattice L. A partial Banaschewski function on X in L is an antitone map f : X → L such that x ⊕ f (x) = 1 for each x ∈ X. In case X = L, we say that f is a Banaschewski function on L.

Trivially, every bounded lattice with a Banaschewski function is complemented. The following example shows that the converse does not hold as a rule.

Example 3.2. The finite lattice F diagrammed on Figure 1 is complemented. However, F does not have any Banaschewski function, because a ′ is the unique complement of a, b ′ is the unique complement of b, a ≤ b, while b ′ a ′ .

Although most lattices involved in the present paper will be modular, it is noteworthy to observe that Banaschewski functions may also be of interest in the 'orthogonal' case of meet-semidistributive lattices. By definition, a lattice L is meetsemidistributive, if x ∧ y = x ∧ z implies that x ∧ y = x ∧ (y ∨ z), for all x, y, z ∈ L.

The following result has been pointed to the author by Luigi Santocanale. Proposition 3.3. Let L be finite lattice. Consider the following conditions:

(i) the set of all atoms of L joins to the largest element of L;

(ii) L has a Banaschewski function;

(iii) L is complemented. 

Then (ii) implies (iii) implies (i). Furthermore, if L is meet-semidistributive, then (i), (
(i)⇒(ii) in case L is meet-semidistributive. Set f (x) := (p ∈ At L | p ∧ x = 0) , for each x ∈ L. For x ∈ L and p ∈ At L, if p x ∨ f (x)
, then p x, thus, as p is an atom, p ∧ x = 0, thus, by the definition of f , p ≤ f (x), a contradiction. Thus p ≤ x∨f (x) for each p ∈ At L, and thus, by assumption, x∨f (x) = 1. Furthermore, it follows from the meet-semidistributivity of

L that x ∧ f (x) = 0, for each x ∈ L. As f is obviously antitone, f is a Banaschewski function on L. (ii)⇒(iii) is trivial. (iii)⇒(i). Set a := At L. As L is complemented, there exists b ∈ L such that a ⊕ b = 1.
If b is nonzero, then there exists an atom p below b, thus p a, a contradiction. Hence b = 0, and so a = 1.

The conditions (i)-(iii) of Proposition 3.3 are not uncommon. They are, for example, satisfied for the permutohedron on a given finite number of letters. It follows that they are also satisfied for the associahedron (Tamari lattice), which is a quotient of the permutohedron.

We shall now introduce a ring-theoretical analogue of the definition of a Banaschewski function.

Definition 3.4. Let X be a subset in a ring R. A partial Banaschewski function on X in R is a mapping f : X → Idemp R such that (i) xR = f (x)R for each x ∈ X. (ii) xR ⊆ yR implies that f (x) f (y), for all x, y ∈ X. In case X = R we say that f is a Banaschewski function on R.
In the context of Definition 3.4, we put

L R (X) := {xR | x ∈ X} . (3.1)
Banaschewski functions in rings and in lattices are related by the following result. (ii) There exists a partial Banaschewski function on X in R.

Proof. (i)⇒(ii). Let ϕ : L R (X) → L(R) be a partial Banaschewski function. For each x ∈ X, as R = xR ⊕ ϕ(xR) it follows from Lemma 2.1 that the unique element f (x) ∈ xR such that 1 -f (x) ∈ ϕ(xR) is idempotent and satisfies both relations xR = f (x)R and ϕ(xR) = (1 -f (x))R. Let x, y ∈ X such that xR ⊆ yR. From f (x)R = xR ⊆ yR = f (y)R and the idempotence of f (y) it follows that f (x) = f (y)f (x). From (1 -f (y))R = ϕ(yR) ⊆ ϕ(xR) = (1 -f (x))R
together with the idempotence of f (x) we get f (x)(1f (y)) = 0, and thus

f (x) = f (x)f (y). Therefore, f (x) f (y). (ii)⇒(i). Let f : X → Idemp R be a partial Banaschewski function. As xR ⊆ yR ⇒ f (x) f (y) ⇒ 1 -f (y) 1 -f (x) ⇒ (1 -f (y))R ⊆ (1 -f (x))R , there exists a unique map ϕ : L R (X) → L(R) such that ϕ(xR) = (1 -f (x))R , for each x ∈ X ,
and ϕ is antitone. Furthermore, for each x ∈ X, from the idempotence of

f (x) it follows that R = f (x)R ⊕ (1 -f (x))R, that is, R = xR ⊕ ϕ(xR). Therefore, ϕ is a partial Banaschewski function on L R (X) in L(R).

Banaschewski functions on countable complemented modular lattices

A large part of the present section will be devoted to proving the following result. Let L be a complemented modular lattice. We denote by B the set of all finite sequences u = (u i | i < n), where n =: |u| < ω, of elements of L such that 1 = (u i | i < n). We set Z(u) := {k < |u| | u k = 0}, and, further, u <k := (u i | i < k) for each k ≤ |u| (with u <0 := 0). Furthermore, for each x ∈ L we set

F u (x) := {k < |u| | u k x ∨ u <k } , G u (x) := {k < |u| | u k ∧ (x ∨ u <k ) = 0} , f u (x) := (u k | k ∈ F u (x)) , g u (x) := (u k | k ∈ G u (x)) .
Lemma 4.2. The following statements hold, for each u ∈ B and each x ∈ L:

(i) x ∨ f u (x) = 1; (ii) x ∧ g u (x) = 0; (iii) g u (x) ≤ f u (x). Proof. (i). As (u k | k < |u|) = 1, it suffices to prove that u k ≤ x ∨ f u (x)
for each k < |u|. We argue by induction on k; the induction hypothesis is that

u <k ≤ x ∨ f u (x). If u k ≤ x ∨ u <k then, by the induction hypothesis, u k ≤ x ∨ f u (x) as well, while if u k x ∨ u <k , that is, k ∈ F u (x), then u k ≤ f u (x) ≤ x ∨ f u (x). (ii). For each k ∈ G u (x), from u k ∧ (x ∨ u <k ) = 0 it follows a fortiori that u k ∧ x∨ (u i | i < k and i ∈ G u (x)) = 0. Therefore, writing G u (x) = {k s | s < r} with k 0 < • • • < k r-1
, we obtain, by using the modularity of L, that the finite sequence (x, u k0 , . . . , u kr-1 ) is independent in L. In particular,

x ∧ g u (x) = x ∧ (u ks | s < r) = 0 . (iii) follows immediately from the containment G u (x) ⊆ F u (x) ∪ Z(u). Lemma 4.3. Let u ∈ B and let x, y ∈ L. If x ≤ y, then f u (y) ≤ f u (x).
Proof. From the inequality x ≤ y it follows that F u (y) ⊆ F u (x). The conclusion follows immediately from the definition of f u .

For u, v ∈ B and ϕ : {0, . . . , |v| -1} ։ {0, . . . , |u| -1} isotone and surjective, let ϕ : v ։ u hold, if

u k = (v l | l ∈ ϕ -1 {k}) for each k < |u| (4.1)
(observe that the join in (4.1) is necessarily independent). We say that v refines u, if there exists ϕ such that ϕ : v ։ u. Then we denote by ϕ -(k) (resp., ϕ + (k)) the least (resp., largest) element of ϕ -1 {k}, for each k < |u|. As ϕ is isotone and surjective, ϕ

-(k) ≤ ϕ + (k) and ϕ -1 {k} = [ϕ -(k), ϕ + (k)]. Say that an element u ∈ B decides an element x ∈ L, if F u (x) ⊆ G u (x). By Lemma 4.2(iii), it follows that f u (x) = g u (x). Lemma 4.4. Let u, v ∈ B, let ϕ : v ։ u,
and let x ∈ L. Then the following statements hold:

(i) v l ≤ u ϕ(l) and u <ϕ(l) ≤ v <l , for each l < |v|. (ii) ϕF v (x) ⊆ F u (x); (iii) ϕ -1 G u (x) ⊆ G v (x); (iv) f v (x) ≤ f u (x); (v) g u (x) ≤ g v (x); (vi) if v refines u and u decides x, then v decides x and f u (x) = f v (x).
Proof. (i) follows easily from (4.1).

(ii). Let l ∈ F v (x) and set k := ϕ(l). From v l x ∨ v <l together with (i) it follows that

u k x ∨ u <k , that is, k ∈ F u (x). (iii). Let l ∈ ϕ -1 G u (x), so k := ϕ(l) belongs to G u (x), that is, u k ∧(x∨u <k ) = 0.
As L is modular and by (4.1), this means that the finite sequence

(x ∨ u <k , v ϕ-(k) , . . . , v ϕ+(k) ) is independent, thus, as ϕ -(k) ≤ l ≤ ϕ + (k), v l ∧ x ∨ u <k ∨ (v i | ϕ -(k) ≤ i < l) = 0 , that is, by (4.1), v l ∧ (x ∨ v <l ) = 0, which means that l ∈ G v (x). (iv). For each l ∈ F v (x), it follows from (i) that v l ≤ u ϕ(l) and from (ii) that ϕ(l) ∈ F u (x), thus v l ≤ u ϕ(l) ≤ f u (x). As this holds for each l ∈ F v (x), we obtain that f v (x) ≤ f u (x). (v). Let k ∈ G u (x). It follows from (iii) that ϕ -1 {k} ⊆ G v (x), thus, by (4.1), u k ≤ (v l | l ∈ G v (x)) = g v (x). This holds for each k ∈ G u (x), thus g u (x) ≤ g v (x).
(vi). As F u (x) ⊆ G u (x), we obtain, by using (ii) and (iii),

F v (x) ⊆ ϕ -1 ϕF v (x) ⊆ ϕ -1 F u (x) ⊆ ϕ -1 G u (x) ⊆ G v (x) , so v decides x.
As both u and v decide x, we obtain that f u (x) = g u (x) and f v (x) = g v (x), so the conclusion follows from (iv) and (v). 

then v l = v 2k ≤ x ∨ u <k = x ∨ v <l . Suppose that l = 2k + 1 for some k < n. As u i = v 2i ∨ v 2i+1 for each i < k while v 2k ≤ x ∨ u <k , we get x ∨ v <l = x ∨ v 0 ∨ v 1 ∨ • • • ∨ v 2k = x ∨ u <k ∨ v 2k = x ∨ u <k , so v l ∧ (x ∨ v <l ) = v 2k+1 ∧ (x ∨ u <k ) = v 2k+1 ∧ u k ∧ (x ∨ u <k ) = v 2k+1 ∧ v 2k = 0.
Proof of Theorem 4.1. As L is countable, we can write L = {a n | n < ω} and denote by ν(x) the least non-negative integer n such that x = a n , for each x ∈ L. It follows from Lemmas 4.4(vi) and 4.5 that there exists a sequence (u n | n < ω) of elements of B such that u n decides all elements a 0 , . . . , a n and u n+1 refines u n , for each n < ω. We set f (x) := f u ν(x) (x), for each x ∈ L. Observe that, by Lemma 4.4(vi), f (x) = f un (x) for each integer n ≥ ν(x). From Lemma 4.2 it follows that 1 = x ⊕ f (x). Finally, from Lemma 4.3 it follows that the map f is antitone, so it is a Banaschewski function on L.

Furthermore, (the underlying set of) each u n is independent with join 1, thus it generates a Boolean sublattice B n of L with the same bounds as L. As u n+1 refines u n , B n+1 contains B n . As the range of each We emphasize that we do not require the ring be unital in Corollary 4.6.

f u n is contained in B n , the range of f is contained in the Boolean sublattice B := (B n | n < ω) of L. For each x ∈ B, f (x) is a complement of x in B,
Proof. Let R be a countable von Neumann regular ring. By Fuchs and Halperin [START_REF] Fuchs | On the imbedding of a regular ring in a regular ring with identity[END_REF], R embeds as a two-sided ideal into some unital von Neumann regular ring S. Starting with R ∪ {1} and closing under the ring operations and a given operation of quasi-inversion on S, we obtain a countable von Neumann regular subring of S containing R ∪ {1}; hence we may assume that S is countable. It follows from Theorem 4.1 that L(S) has a Banaschewski function. By Lemma 3.5, it follows that S has a Banaschewski function, say g. For each x ∈ R, as xS = g(x)S and R is a right ideal of S, g(x) belongs to R. Furthermore, there exists y ∈ S such that g(x) = xy, thus, as g(x) is idempotent, g(x) = xyxy. As R is a two-sided ideal of S, yxy belongs to R, and thus g(x) belongs to xR. As x = g(x)x, it follows that xR = g(x)R. It follows that the restriction of g from R to Idemp R is a Banaschewski function on R.

Say that a Banaschewski function on a lattice L is Boolean, if its range is a Boolean sublattice of L. In case L is the subspace lattice of a vector space V , the range B of a Boolean Banaschewski function on L may be chosen as the set of all spans of all subsets of a given basis of V . In particular, B is far from being unique.

However, we shall now prove that if L is a countable complemented modular lattice, then B is unique up to isomorphism. For a Boolean algebra B and a commutative monoid M , a V-measure (cf. Dobbertin [START_REF] Dobbertin | Refinement monoids, Vaught monoids, and Boolean algebras[END_REF]) from B to M is a map µ : B → M such that µ(x) = 0 if and only if x = 0, µ(x ⊕ y) = µ(x) + µ(y) for all disjoint x, y ∈ B, and if µ(z) = α + β, then there are x, y ∈ B such that z = x ⊕ y, µ(x) = α, and µ(y) = β.

Denote by ∆ the canonical map from L to its dimension monoid Dim L, see page 259 and Chapter 9 in Wehrung [START_REF] Wehrung | The dimension monoid of a lattice[END_REF]. For Boolean algebras A and B, a subset ρ of A × B is an additive V-relation, if 1 A ρ 1 B , x ρ 0 B if and only if x = 0 A , x ρ y 0 ⊕ y 1 if and only if there exists a decomposition x = x 0 ⊕ x 1 with x 0 ρ y 0 and x 1 ρ y 1 , and symmetrically with A and B interchanged. Vaught's isomorphism Theorem (cf. [15, Theorem 1.1.3]) implies that any additive V-relation between countable Boolean algebras A and B contains the graph of some isomorphism from A onto B.

c = c ∧ (x ∨ f (x)) = x ∨ (c ∧ f (x)) (because x ≤ c
In particular, if A and B are Boolean algebras, then, for any V-measures λ : A → M and µ : B → M such that λ(1 A ) = µ(1 B ), the binary relation

R := {(x, y) ∈ A × B | λ(x) = µ(y)}
is an additive V-relation between A and B. Therefore, if both A and B are countable, then, by Vaught's Theorem, there exists an isomorphism ϕ : A → B such that λ = µ • ϕ.

By the above paragraph, we obtain Corollary 4.8. Let L be a countable complemented modular lattice. Then for a Boolean Banaschewski function on L with range B, the pair (B, ∆↾ B ) is unique up to isomorphism. In particular, B is unique up to isomorphism.

Banaschewski measures and Banaschewski traces

Definition 5.1. A Banaschewski trace on a lattice L with zero is a family (a j i | i ≤ j in Λ) of elements in L, where Λ is an upward directed partially ordered set with zero, such that (i)

a k i = a j i ⊕ a k j for all i ≤ j ≤ k in Λ; (ii) {a i 0 | i ∈ Λ} is cofinal in L.
We say that the Banaschewski trace above is normal, if i ≤ j and a i 0 = a j 0 implies that i = j, for all i, j ∈ Λ.

It is trivial that every bounded lattice has a normal Banaschewski trace (if L = {0} take Λ = {0} and a 0 0 = 0; if L is bounded nontrivial take Λ = {0, 1} and a 0 0 = a 1 1 = 0 while a 1 0 = 1), so this notion is interesting only for unbounded lattices. It is obvious that every sectionally complemented modular lattice embeds into a reduced product of its principal ideals, thus into a complemented modular lattice.

first application of Banaschewski traces, namely Theorem 5.3, deals with the question whether such an embedding can be taken with ideal range. We will use the following well-known lemma.

Lemma 5.2 (Folklore). Let x, y, z be elements in a modular lattice L.

If (x ∨ y) ∧ z ≤ y, then x ∧ (y ∨ z) = x ∧ y and (x ∨ z) ∧ (y ∨ z) = (x ∧ y) ∨ z.
Note. It is not hard to verify that the conclusion of Lemma 5.2 can be strengthened by stating that the sublattice of L generated by {x, y, z} is distributive.

Proof. We start by computing, using the modularity of L and the assumption,

(x ∨ y) ∧ (y ∨ z) = y ∨ (x ∨ y) ∧ z) = y .

It follows that

x ∧ (y ∨ z) = x ∧ (x ∨ y) ∧ (y ∨ z) = x ∧ y . It follows, by using again the modularity of L, that

(x ∨ z) ∧ (y ∨ z) = x ∧ (y ∨ z) ∨ z = (x ∧ y) ∨ z .
Theorem 5.3. Every sectionally complemented modular lattice with a Banaschewski trace embeds, as a neutral ideal and within the same quasivariety, into some complemented modular lattice.

Proof. Let (a j i | i ≤ j in Λ) be a Banaschewski trace in a sectionally complemented modular lattice L. The conclusion of the theorem for L is trivial in case L has a unit, so suppose that L has no unit.

We denote by F the filter on Λ generated by all principal upper subsets Λ ↑ i, for i ∈ Λ, and we denote by L the reduced product of the family (L ↓ a i 0 | i ∈ Λ) modulo F. For any i 0 ∈ Λ and any family (

x i | i ∈ Λ ↑ i 0 ) in i∈Λ↑i0 (L ↓ a i 0 ), we shall denote by [x i | i → ∞] the equivalence class modulo F of the family (y i | i ∈ Λ) defined by y i := x i , if i ≥ i 0 , 0 , otherwise, for every i ∈ Λ .
In particular, for each x ∈ L, the subset {j ∈ Λ | x ≤ a j 0 } contains a principal filter of Λ, thus we can define a map ε : L → L by the rule

ε(x) := [x | j → ∞] , for each x ∈ L .
Furthermore, for each i ∈ Λ, define a map ε i : L ↓ a i 0 → L by the rule

ε i (x) := [x ∨ a j i | j → ∞] , for each x ∈ L ↓ a i 0 .
Consider the following subset of L.

L := im ε ∪ (im ε i | i ∈ Λ) .
(5.1)

The following claim shows that the union on the right hand side of (5.1) is directed.

Claim 1. i ≤ j implies that im ε i ⊆ im ε j , for all i, j ∈ Λ.

Proof of Claim. For all x ∈ L ↓ a i 0 , ε i (x) = [x ∨ a k i | k → ∞] = [x ∨ a j i ∨ a k j | k → ∞] = ε j (x ∨ a j i ) . Claim 1.
Now it is obvious that ε is a 0-lattice embedding from L into L, while ε i is a join-homomorphism, for each i ∈ Λ. Furthermore, ε(x) ∨ ε i (y) = ε i (x ∨ y), for all i ∈ Λ and all x, y ∈ L ↓ a i 0 . In particular, by Claim 1, the subset L defined in (5.1) is a (∨, 0)-subsemilattice of L.

Claim 2. Let i ∈ Λ and let x, y ∈ L↓a i 0 . Then both equalities ε(x)∧ε i (y) = ε(x∧y) and ε i (x) ∧ ε i (y) = ε i (x ∧ y) hold. In particular, ε i is a lattice homomorphism from L ↓ a i 0 to L. Proof of Claim. Let j ∈ Λ ↑ i. From x ∨ y ≤ a i
0 and a i 0 ∧ a j i = 0 it follows that (x ∨ y) ∧ a j i = 0. By Lemma 5.2, we obtain the following equations:

x ∧ (y ∨ a j i ) = x ∧ y and (x ∨ a j i ) ∧ (y ∨ a j i ) = (x ∧ y) ∨ a j i . Therefore, by evaluating the equivalence class modulo F of both sides of each of the equalities above as j → ∞, we obtain the desired conclusion.

Claim 2.

In particular, from Claims 1 and 2 it follows that L is a meet-subsemilattice of L. Therefore, L is a 0-sublattice of L. As L is a reduced product of sublattices of L, it belongs to the same quasivariety as L; hence so does L.

Furthermore, for all x, y ∈ L and all i ∈ Λ such that

x ∨ y ≤ a i 0 , if ε i (y) ≤ ε(x), then, by Claim 2, ε i (y) = ε i (y) ∧ ε(x) = ε(x ∧ y) ,
thus ε i (y) belongs to im ε. Therefore, im ε is an ideal of L. Now we verify that L is a complemented modular lattice. It has a unit, namely

1 L = ε 0 (0) = [a i 0 | i → ∞]. Let x ∈ L and let i ∈ Λ such that x ≤ a i 0 . As L is sectionally complemented, there exists y ∈ L ↓ a i 0 such that x ⊕ y = a i 0 . Hence ε(x) ∨ ε i (y) = ε i (x ∨ y) = ε i (a i 0 ) = [a i 0 ∨ a j i | j → ∞] = [a j 0 | j → ∞] = 1 L , while, by Claim 2, ε(x) ∧ ε i (y) = ε(x ∧ y) = ε(0) = 0 . Therefore, 1 L = ε(x) ⊕ ε i (y)
. By symmetry between x and y, we also obtain 1 L = ε i (x) ⊕ ε(y). Therefore, L is complemented.

It remains to prove that im ε is a neutral ideal of L. By [2, Theorem III.20], it suffices to prove that im ε contains any element of L perspective to some element of im ε. By using Claim 1, it suffices to prove that for any i ∈ Λ and any x, y, z ∈ L ↓ a i 0 , none of the relations

ε i (x) ∼ ε(z) ε(y) and ε i (x) ∼ εi(z) ε(y) can occur. If ε i (x) ∼ ε(z) ε(y), then ε i (x ∨ z) = ε i (x) ∨ ε(z) = ε(y) ∨ ε(z) = ε(y ∨ z), thus there exists j ∈ Λ ↑ i such that x ∨ z ∨ a k i = y ∨ z for each k ∈ Λ ↑ j . In particular, a k i ≤ y ∨ z, thus a k 0 ≤ a i 0 ∨ y ∨ z = a i 0 , for each k ∈ Λ ↑ j.
This contradicts the assumption that L has no unit.

The other possibility is ε i (x) ∼ εi(z) ε(y). In such a case, ε i (x) ∧ ε i (z) = 0, thus, a fortiori, ε i (0) = 0, that is, a k i = 0 for all large enough k ∈ Λ. As L has no unit, this is impossible.

Corollary 5.4. Every sectionally complemented modular lattice with a countable cofinal subset has a Banaschewski trace. Hence it embeds, as a neutral ideal and within the same quasivariety, into some complemented modular lattice.

Proof. Let L be a sectionally complemented modular lattice with an increasing cofinal sequence (e n | n < ω). We may assume that e 0 = 0. Pick a n ∈ L such that e n ⊕ a n = e n+1 , for each n < ω, and set

a n m := (a i | m ≤ i < n), for all non-negative integers m ≤ n. It is straightforward to verify that the family (a n m | m ≤ n < ω) is a Banaschewski trace in L.
The second part of the statement of Corollary 5.4 follows from Theorem 5.3.

The following definition gives an analogue, for lattices without unit, of Banaschewski functions. Definition 5.5. Let X be a subset in a lattice L with zero. A L-valued Banaschewski measure on X is a map ⊖ : X [2] → L, (x, y) → y ⊖ x, isotone in y and antitone in x, such that y = x ⊕ (y ⊖ x) for all x ≤ y in X.

Our subsequent paper [START_REF] Wehrung | A non-coordinatizable sectionally complemented modular lattice with a large Jónsson four-frame[END_REF] will make a heavy use of Banaschewski measures.

Corollary 5.6. Every countable sectionally complemented modular lattice L has a Banaschewski measure on L.

Proof. By Corollary 5.4, L embeds, as an ideal, into a complemented modular lattice L. Furthermore, the lattice L constructed in the proof of Theorem 5.3 is countable as well (Λ = ω is countable). By Theorem 4.1, there exists a Banaschewski function f on L. The map L [2] → L, (x, y) → y ⊖ x := y ∧ f (x) is obviously isotone in y and antitone in x. Furthermore, it follows from the modularity of L that y = x ⊕ (y ⊖ x) for all x ≤ y in L. Therefore, ⊖ is as required.

For von Neumann regular rings the result of Corollary 4.6 is apparently stronger.

Banaschewski traces and coordinatizability

Coordinatizability provides another large class of lattices admitting a Banaschewski trace. Proposition 6.1. Every coordinatizable sectionally complemented modular lattice has a normal Banaschewski trace.

Proof. Let R be a von Neumann regular ring, and set Λ := Idemp R, endowed with its ordering (cf. Section 2). Set A j i := (ji)R, for all i j in Λ. It follows from the proof of Lemma 2 in Faith and Utumi [START_REF] Faith | On a new proof of Litoff 's theorem[END_REF] that R is the directed union of its corner rings eRe, where e ∈ Idemp R. Hence, (Λ, ) is upward directed and

{A i 0 | i ∈ Λ} is cofinal in L(R). It is straightforward to verify that A k i = A j i ⊕ A k j for all i ≤ j ≤ k in Λ. Furthermore, for i, j ∈ Λ with i j, if A i 0 = A j 0 , that is, iR = jR, then j = ij = i. Therefore, (A j i | i ≤ j in Λ) is a normal Banaschewski trace.
See also the comments following the statement of Problem 1, Section 7. The following definition is taken from [START_REF] Herrmann | Generators for complemented modular lattices and the von Neumann-Jónsson Coordinatization Theorems[END_REF]. Definition 6.2. A coordinatizable lattice L is uniquely rigidly coordinatizable, if for all von Neumann regular rings R and S coordinatizing L, every isomorphism from L(R) onto L(S) has the form L(f ), for a unique isomorphism f : R → S.

Hence the von Neumann regular ring coordinatizing a uniquely rigidly coordinatizable lattice is unique up to unique isomorphism. Lemma 6.3. Let K be a uniquely rigidly coordinatizable principal ideal in a coordinatizable lattice L, let R and S be von Neumann regular rings with isomorphisms ε : K → L(R) and η : L → L(S), and let e be an idempotent element of S such that η(1 K ) = eS. Then there exists a unique ring homomorphism f : R → S with range eSe such that η↾ K = L(f ) • ε. Denote by u : eSe ֒→ S the inclusion map and by η ′ the restriction of η from K = L ↓ 1 K onto η(L) ↓ η(1 K ) = L(S) ↓ eS. We consider the following sequence of lattice embeddings:

L(R) ε -1 ∼ = / / K η ′ ∼ = / / L(S) ↓ eS β ∼ = / / L(eSe) L(u) / / L(S)
In particular, β •η ′ •ε -1 : L(R) → L(eSe) is an isomorphism, so both R and eSe coordinatize K, and so, by assumption, there exists a unique isomorphism g : R ։ eSe such that L(g) = β•η ′ •ε -1 . As any g satisfying L(g) = β•η ′ •ε -1 is necessarily oneto-one, it follows that there exists a unique surjective homomorphism g : R ։ eSe such that L(g

) = β • η ′ • ε -1 . As β -1 = α is the restriction of L(u) from L(eSe) onto L(S) ↓ eS, we get L(u) • β • η ′ = η ↾ K . (6.1)
Now a ring homomorphism f : R → S with range eSe has the form u • h, for some surjective ring homomorphism h : R ։ eSe.

Then η↾ K = L(f ) • ε iff L(f ) = (η↾ K ) • ε -1 , iff (using (6.1) together with L(f ) = L(u) • L(h)) L(u) • L(h) = L(u) • β • η ′ • ε -1 , iff (as L(u) is one-to-one) L(h) = β • η ′ • ε -1 , that is, h = g, which is equivalent to f = u • g.
Observe that any f satisfying the condition in Lemma 6.3 is necessarily an embedding from R into S, so it defines by restriction an isomorphism from R onto eSe.

Hence the given condition on f is equivalent to the conjunction of the two following statements:

• f is an embedding from R into S with range eSe,

• the equality f (x)S = (η • ε -1 )(xR) holds for each x ∈ R. Now a variant of the argument of [START_REF] Jónsson | Representations of relatively complemented modular lattices[END_REF]Theorem 10.3] gives the following. Proposition 6.4. Let L be a sectionally complemented modular lattice with a Banaschewski trace (a j i | i ≤ j in Λ) such that L ↓ a i 0 is uniquely rigidly coordinatizable for each i ∈ Λ. Then L is coordinatizable.

Proof. For each i ∈ Λ, we fix a von Neumann regular ring R i and an isomorphism ε i : L ↓ a i 0 → L(R i ), and we denote by 1 i the unit of the ring R i . For all i ≤ j in Λ, it follows from the relations R j = ε j (a j 0 ) = ε j (a i 0 ) ⊕ ε j (a j i ) and Lemma 2.1 that there exists a unique element e j i ∈ ε j (a i 0 ) such that 1 je j i ∈ ε j (a j i ), and then e j i ∈ Idemp(R j ) , ε j (a i 0 ) = e j i R j , and ε j (a j i ) = (1 je j i )R j . (6.2) By Lemma 6.3, there exists a unique ring embedding f j i : R i ֒→ R j with range e j i R j e j i such that

L(f j i ) • ε i = ε j ↾ L↓a i 0 . (6.3) 
In particular,

f j i (1 i ) = e j i . Trivially, f i i = id Ri . Claim. The equality f k j (e j i ) = e k i holds, for all i ≤ j ≤ k in Λ. Proof of Claim. We compute f k j (e j i ) ∈ L(f k j )(e j i R j ) = (L(f k j ) • ε j )(a i 0 ) (use (6.2)) = ε k (a i 0 ) (use (6.3)). (6.4) Observe further that 1 k -f k j (1 j ) R k = (1 k -e k j )R k = ε k (a k j ) while f k j (1 j ) -f k j (e j i ) R k = L(f k j ) (1 j -e j i )R j = (L(f k j ) • ε j )(a j i ) = ε k (a j i ) . Hence, 1 k -f k j (e j i ) = 1 k -f k j (1 j ) + f k j (1 j ) -f k j (e j i ) ∈ ε k (a k j ) ⊕ ε k (a j i ) = ε k (a k i ) . (6.5) 
It follows from (6.4) that f k j (e j i ) ∈ ε k (a i 0 ) while it follows from (6.5) that 1

k -f k j (e j i ) ∈ ε k (a k i ).
The conclusion follows from the definition of e k i . Claim.

Let i ≤ j ≤ k in Λ. It follows from the claim above that 

e k i • e k j = f k j (e j i ) • f k j (1 j ) = f k j (e j i • 1 j ) = f k j (e j i ) = e k i ,
(f k j • f j i ) = f k j (e j i R j e j i ) (because im f j i = e j i R j e j i ) = f k j (e j i ) e k j R k e k j f k j (e j i ) (because im f k j = e k j R k e k j ) = e k i e k j R k e k j e k i (by the claim above) = e k i R k e k i .
Now for each x ∈ R i , it follows from (6.3) that f

j i (x)R j = (ε j • ε -1 i )(xR i ), while, setting y := f j i (x), we get f k j (y)R k = (ε k • ε -1 j )(yR j ), so (f k j • f j i )(x)R k = f k j (y)R k = (ε k • ε -1 j • ε j • ε -1 i )(xR i ) = (ε k • ε -1 i )(xR i ) .
Therefore, by the uniqueness of the property defining f k i , we obtain that the equality

f k i = f k j • f j i holds. It follows that we can form the direct limit (R, f i | i ∈ Λ) = lim -→ (R i , f j i | i ≤ j in Λ) .
As R is a direct limit of von Neumann regular rings, it is a von Neumann regular ring. As the functor L preserves direct limits, we obtain that

L = lim -→ i∈Λ (L ↓ a i 0 ) ∼ = lim -→ i∈Λ L(R i ) ∼ = L(R) ,
and so L is coordinatizable.

Remark 6.5. The example, presented at the bottom of Page 301 in [START_REF] Jónsson | Representations of relatively complemented modular lattices[END_REF], of the lattice of all finite-dimensional subspaces of a vector space of countable infinite dimension, shows that the conclusion of Proposition 6.4 cannot be strengthened to saying that L is uniquely coordinatizable.

Theorem 6.6. Let L be a sectionally complemented modular lattice that admits a large 4-frame, or which is Arguesian and that admits a large 3-frame. Then the following are equivalent:

(i) L is coordinatizable;

(ii) L has a normal Banaschewski trace;

(iii) L has a Banaschewski trace.

Proof. The direction (i)⇒(ii) follows from Proposition 6.1, while (ii)⇒(iii) is trivial. Now let L be a sectionally complemented modular lattice with a large n-frame ((a s | 0 ≤ s < n), (c s | 1 ≤ s < n)), where n ≥ 4, or only n ≥ 3 in case L is Arguesian; set a := s<n a s . If L has a Banaschewski trace (e j i | i ≤ j in Λ), then we may assume, replacing Λ by Λ ↑ i 0 for an index i 0 such that a ≤ e i0 0 , that the inequality a ≤ e i 0 holds for each i ∈ Λ. As the element a is large in L, it follows easily from [START_REF] Jónsson | Representations of complemented modular lattices[END_REF]Lemma 1.4] that a is large in each L ↓ e i 0 as well. Now it is observed in [START_REF] Jónsson | Representations of relatively complemented modular lattices[END_REF]Theorem 10.4] that every complemented modular lattice that admits a large 4-frame, or which is Arguesian and that admits a large 3-frame, is uniquely coordinatizable; the conclusion is strengthened to "uniquely rigidly coordinatizable" in [START_REF] Micol | On representability of * -regular rings and modular ortholattices[END_REF]Corollary 4.12], see also [START_REF] Herrmann | Generators for complemented modular lattices and the von Neumann-Jónsson Coordinatization Theorems[END_REF]Theorem 18]. In particular, all the lattices L ↓ e i 0 , for i ∈ Λ, are uniquely rigidly coordinatizable. Therefore, by Proposition 6.4, L is coordinatizable.

We shall prove in [START_REF] Wehrung | A non-coordinatizable sectionally complemented modular lattice with a large Jónsson four-frame[END_REF] that there exists a non-coordinatizable sectionally complemented modular lattice L with a large 4-frame. Hence L does not have a Banaschewski trace as well. The construction of L requires techniques far beyond those involved in the present paper.

Problems

By Fuchs and Halperin [START_REF] Fuchs | On the imbedding of a regular ring in a regular ring with identity[END_REF], every von Neumann regular ring R can be embedded as a two-sided ideal into some unital von Neumann regular ring S. Consequently, L(R) embeds as a neutral ideal into L(S). This gives a proof, that uses neither Theorem 5.3 nor Proposition 6.1, that every coordinatizable sectionally complemented modular lattice embeds as a neutral ideal into some coordinatizable complemented modular lattice. We do not know the general answer in the non-coordinatizable case:

Problem 1. Does every sectionally complemented modular lattice embed as a (neutral) ideal into some complemented modular lattice? It is proved in Theorem 4.1 that every countable complemented modular lattice has a Boolean Banaschewski function. The range of such a Banaschewski function is easily seen to be a maximal Boolean sublattice of L.

Problem 2. Is every maximal Boolean sublattice of a countable complemented modular lattice L the range of some Banaschewski function on L? Are any two such Boolean sublattices isomorphic? Finally, we should mention that while the present paper is devoted to modular lattices, the notion of a Banaschewski function is also well-defined for non-modular lattices.

Problem 3. Does every countable, bounded, relatively complemented lattice have a Banaschewski function?

Observe that Example 3.2 gives a finite complemented lattice without a Banaschewski function. Also observe that the existence of a Banaschewski function on a bounded lattice L does not imply in general that L is relatively complemented, which suggests that Problem 3 may not be the "right" question.
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 21 Let A and B be right ideals in a ring R and let e be an idempotent element of R. If eR = A ⊕ B, then there exists a unique pair (a, b) ∈ A × B such that e = a + b. Furthermore, both a and b are idempotent, ab = ba = 0, A = aR, and B = bR.

Figure 1 .

 1 Figure 1. A finite complemented lattice without a Banaschewski function
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 35 Let R be a unital von Neumann regular ring and let X ⊆ R. Then the following are equivalent:(i) There exists a partial Banaschewski function on L R (X) in L(R).

Theorem 4 . 1 .

 41 Every countable complemented modular lattice has a Banaschewski function with Boolean range.

Lemma 4 . 5 .

 45 For each u ∈ B and each x ∈ L, there exists v ∈ B such that v refines u and v decides x.Proof. Set n := |u|. For each k < n, we set v 2k := u k ∧ (x ∨ u <k ) and we pick v 2k+1 such that u k = v 2k ⊕ v 2k+1 . It is obvious that the finite sequence v := (v l | l < 2n) belongs to B and refines u.It remains to verify that v decides x. So let l < 2n. If l = 2k for some k < n,

  thus it is the unique complement of x in B-denote it by ¬x. As B = {¬x | x ∈ B}, it follows that the range of f is exactly B. For von Neumann regular rings we get the following corollary.Corollary 4.6. Every countable von Neumann regular ring has a Banaschewski function.

Proposition 4 . 7 .

 47 Let f be a Banaschewski function with Boolean range B on a complemented modular lattice L. Then the restriction of ∆ from B to Dim L is a V-measure on B. Proof. It is obvious that ∆(x) = 0 if and only if x = 0, for each x ∈ L, and that ∆(x ∨ y) = ∆(x) + ∆(y) whenever x and y are disjoint elements in B (for they are also disjoint in L). Now let c ∈ B and let α, β ∈ Dim L such that ∆(c) = α + β. It follows from [17, Corollary 9.6] that there are x, y ∈ L such that c = x ⊕ y, ∆(x) = α, and ∆(y) = β. Put b := c ∧ f (x). As both c and f (x) belong to B, the element b also belongs to B. Furthermore, x ∧ b = x ∧ f (x) = 0, and

  and L is modular) = x ∨ b , so c = x⊕ y = x⊕ b and so y and b are perspective. In particular, ∆(b) = ∆(y) = β. Likewise, there exists a ∈ B such that c = x⊕b = a⊕b, so ∆(a) = ∆(x) = α.

Proof. By [ 11 ,

 11 Lemma 10.2], there are mutually inverse isomorphismsα : L(eSe) → L(S) ↓ eS , J → JS , β : L(S) ↓ eS → L(eSe) , J → J ∩ eSe .
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