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Let n be a positive integer and α n be the arithmetic function which assigns the multiplicative order of a n modulo n to every integer a coprime to n and vanishes elsewhere. Similarly, let β n assign the projective multiplicative order of a n modulo n to every integer a coprime to n and vanishes elsewhere. In this paper, we present a study of these two arithmetic functions. In particular, we prove that for positive integers n 1 and n 2 with the same square-free part, there exists an exact relationship between the functions α n 1 and α n 2 and between the functions β n 1 and β n 2 . This allows us to reduce the determination of α n and β n to the case where n is square-free. These arithmetic functions recently appeared in the context of an old problem of Molluzzo, and more precisely in the study of which arithmetic progressions yield a balanced Steinhaus triangle in Z/nZ for n odd.

Introduction

We start by introducing some notation relating to the order of certain elements modulo n. For every positive integer n and every prime number p, we denote by v p (n) the padic valuation of n, i.e., the greatest exponent e 0 for which p e divides n. The prime factorization of n may then be written as n = p∈P p vp (n) , where P denotes the set of all prime numbers. We denote by rad(n) the radical of n, i.e., the largest square-free divisor of n, namely rad(n) = p∈P p|n p.

For every positive integer n and every integer a coprime to n, we denote by O n (a) the multiplicative order of a modulo n, i.e., the smallest positive integer e such that a e ≡ 1 (mod n), namely O n (a) = min {e ∈ N * | a e ≡ 1 (mod n)} and we denote by R n (a) the multiplicative remainder of a modulo n, i.e., the multiple of n defined by R n (a) = a On(a) -1.

The multiplicative order of a modulo n also corresponds with the order of the element π n (a), where π n : Z -։ Z/nZ is the canonical surjective morphism, in the multiplicative group (Z/nZ) * , the group of units of Z/nZ. Note that O n (a) divides ϕ(n), ϕ being the Euler's totient function.

For every positive integer n, we define and denote by α n the arithmetic function

α n : Z -→ N a -→ O n (a n ) , for all gcd(a, n) = 1; 0, otherwise,
where gcd(a, n) denotes the greatest common divisor of a and n, with the convention that gcd(0, n) = n. Observe that, for every a coprime to n, the integer α n (a) divides ϕ(n)/ gcd(ϕ(n), n). This follows from the previous remark on O n (a) and the equality

α n (a) = O n (a n ) = O n (a)/ gcd(O n (a), n).
For every positive integer n and every integer a coprime to n, we denote by PO n (a) the projective multiplicative order of a modulo n, i.e., the smallest positive integer e such that a e ≡ ±1 (mod n), namely

PO n (a) = min {e ∈ N * | a e ≡ ±1 (mod n)} .
The projective multiplicative order of a modulo n also corresponds with the order of the element π n (a) in the multiplicative quotient group (Z/nZ) * /{-1, 1}.

For every positive integer n, we define and denote by β n the arithmetic function

β n : Z -→ N a -→ PO n (a n ) , for all gcd(a, n) = 1; 0, otherwise.
Observe that we have the alternative

α n = β n or α n = 2β n .
In this paper, we study in detail these two arithmetic functions. In particular, we prove that, for every positive integers n 1 and n 2 such that rad(n 1 )|n 2 and

n 2 |n 1 , if v 2 (n 1 ) 1; 2 rad(n 1 )|n 2 and n 2 |n 1 , if v 2 (n 1 ) 2, the integer α n 1 (a) (respectively β n 1 (a)) divides α n 2 (a) (resp. β n 2 (a)
), for every integer a. More precisely, we determine the exact relationship between the functions α n 1 and α n 2 and between β n 1 and β n 2 . We prove that we have

α n 1 (a) = α n 2 (a) gcd α n 2 (a), gcd(n 1 ,Rn 2 (a)) n 2
for all gcd(a, n 1 ) = 1 in Theorem 2.5 of Section 2 and that we have

β n 1 (a) = β n 2 (a) gcd β n 2 (a), gcd(n 1 ,Rn 2 (a)) n 2
for all gcd(a, n 1 ) = 1 in Theorem 3.3 of Section 3. Thus, for every integer a coprime to n, the determination of α n (a) is reduced to the computation of α rad(n) (a) and

R rad(n) (a) if v 2 (n) 1 and of α 2 rad(n) (a) and R 2 rad(n) (a) if v 2 (n) 2.
These theorems on the functions α n and β n are derived from Theorem 2.6 of Section 2, which states that

O n 1 (a) = O n 2 (a) • n 1 gcd(n 1 , R n 2 (a)) ,
for all integers a coprime to n 1 and n 2 . This result generalizes the following theorem of Nathanson which, in the above notation, states that for every odd prime number p and for every positive integer k, we have the equality

O p k (a) = O p (a) • p k gcd(p k , R p (a))
for all integers a not divisible by p. Theorem 3.6 of [START_REF] Nathanson | Elementary Methods in Number Theory[END_REF]. Let p be an odd prime, and let a = ±1 be an integer not divisible by p. Let d be the order of a modulo p. Let k 0 be the largest integer such that a d ≡ 1 (mod p k 0 ). Then the order of a modulo p k is d for k = 1, . . . , k 0 and dp k-k 0 for k k 0 .

For every finite sequence S = (a 1 , . . . , a m ) of length m 1 in Z/nZ, we denote by ∆S the Steinhaus triangle of S, that is the finite multiset of cardinality m+1 2 in Z/nZ defined by

∆S = i k=0 i k a j+k 0 i m -1 , 1 j m -i .
A finite sequence S in Z/nZ is said to be balanced if each element of Z/nZ occurs in its Steinhaus triangle ∆S with the same multiplicity. For instance, the sequence (2, 2, 3, 3) of length 4 is balanced in Z/5Z. Indeed, as depicted in Figure 1, its Steinhaus triangle is composed by each element of Z/5Z occuring twice. Note that, for a sequence S of length m 1 in Z/nZ, a necessary condition on m for S to be balanced is that the integer n divides the binomial coefficient m+1 . In 1976, John C. Molluzzo [START_REF] Molluzzo | Steinhaus graphs[END_REF] posed the problem to determine whether this necessary condition on m is also sufficient to guarantee the existence of a balanced sequence. In [START_REF] Chappelon | On a problem of Molluzzo concerning Steinhaus triangles in finite cyclic groups[END_REF], it was proved that, for each odd number n, there exists a balanced sequence of length m for every m ≡ 0 or -1 (mod α n (2) • n) and for every m ≡ 0 or -1 (mod β n (2) • n). This was achieved by analyzing the Steinhaus triangles generated by arithmetic progressions. In particular, since β 3 k (2) = 1 for all k 1, the above result implies a complete and positive solution of Molluzzo's Problem in Z/nZ for all n = 3 k .

The arithmetic function α n
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Proof. This follows from the definition of the greatest common divisor of two integers and from the definition of the radical of an integer. Proposition 2.2. Let n 1 and n 2 be two positive integers such that rad(n 1 )|n 2 and n 2 |n 1 . Then, for every integer a, the integer α n 1 (a) divides α n 2 (a).

Proof. If a is not coprime to n 1 and n 2 , then, by definition of the functions α n and α n 2 and by Lemma 2.1, we have

α n 1 (a) = α n 2 (a) = 0.
Suppose that a is coprime to n 1 and n 2 . If v p (n 1 ) = 1 for all prime factors p of n 1 , then n 2 = n 1 . Otherwise, let p be a prime factor of n 1 such that v p (n 1 ) 2. We shall show that α n 1 (a) divides α n 1 /p (a). By definition of α n 1 /p (a), there exists an integer u such that

a α n 1 /p (a)• n 1 p = 1 + u • n 1 p .
Therefore, by the binomial theorem, we have

a α n 1 /p (a)•n 1 = a α n 1 /p (a)• n 1 p p = 1 + u • n 1 p p = 1 + u • n 1 + p k=2 p k • u k • n 1 p k .
Since v p (n 1 ) 2, it follows that (n 1 /p) k is divisible by n 1 for every integer k 2 and so

a α n 1 /p (a)•n 1 ≡ 1 (mod n 1 ).
Hence α n 1 (a) divides α n 1 /p (a). This completes the proof.

An exact relationship between α n 1 (a) and α n 2 (a), for every integer a coprime to n 1 and n 2 , is determined at the end of this section. We first settle the easy prime power case.

Proposition 2.3. Let p be a prime number and let a be an integer. Then we have

α p k (a) = O p (a)
for every positive integer k.

Proof. Let k be a positive integer. If a is not coprime to p, then we have α p k (a) = α p (a) = 0. Suppose now that a is coprime to p. By Proposition 2.2, the integer α p k (a) divides α p (a). It remains to prove that α p (a) divides α p k (a). The congruence

a α p k (a)•p k ≡ 1 (mod p k ) implies that a α p k (a)•p k ≡ 1 (mod p),
and hence, by Fermat's Little Theorem, it follows that

a α p k (a)•p ≡ a α p k (a)•p k ≡ 1 (mod p).
Therefore α p (a) divides α p k (a). Finally, we have

α p k (a) = α p (a) = O p (a p ) = O p (a).
This completes the proof.

Remark. If p = 2, then, for every positive integer k, we obtain

α 2 k (a) = O 2 (a) =
0, for a even; 1, for a odd.

Proposition 2.4. Let n 1 and n 2 be two coprime numbers and let a be an integer. Then α n 1 n 2 (a) divides lcm(α n 1 (a), α n 2 (a)), the least common multiple of α n 1 (a) and α n 2 (a).

Proof. If gcd(a, n 1 n 2 ) = 1, then gcd(a, n 1 ) = 1 or gcd(a, n 2 ) = 1 and so

α n 1 n 2 (a) = lcm(α n 1 (a), α n 2 (a)) = 0.
Suppose now that gcd(a, n 1 n 2 ) = 1 and hence that the integers a, n 1 and n 2 are coprime pairwise. Let i ∈ {1, 2}. The congruences

a αn i (a)•n i ≡ 1 (mod n i )
imply that a n 1 n 2 lcm(αn 1 (a),αn 2 (a)) ≡ 1 (mod n i ).

Therefore

α n 1 n 2 (a) divides lcm(α n 1 (a), α n 2 (a)
) by the Chinese remainder theorem.

Let By definition, we know that α n 1 (a) = α n 2 (a) = 0 for every integer a not coprime to n 1 and n 2 . We end this section by determining the exact relationship between α n 1 (a) and α n 2 (a) for every integer a coprime to n 1 and n 2 .
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Theorem 2.5. Let n 1 and n 2 be two positive integers such that

rad(n 1 )|n 2 and n 2 |n 1 , if v 2 (n 1 ) 1; 2 rad(n 1 )|n 2 and n 2 |n 1 , if v 2 (n 1 ) 2.
Then, for every integer a coprime to n 1 and n 2 , we have

α n 1 (a) = α n 2 (a) gcd α n 2 (a), gcd(n 1 ,Rn 2 (a)) n 2
This result is a corollary of the following theorem.

Theorem 2.6. Let n 1 and n 2 be two positive integers such that

rad(n 1 )|n 2 and n 2 |n 1 , if v 2 (n 1 ) 1; 2 rad(n 1 )|n 2 and n 2 |n 1 , if v 2 (n 1 ) 2.
Then, for every integer a coprime to n 1 and n 2 , we have

O n 1 (a) = O n 2 (a) • n 1 gcd(n 1 , R n 2 (a))
.

The proof of this theorem is based on the following lemma.

Lemma 2.7. Let n be a positive integer and let a be an integer coprime to n. Let m be an integer such that rad(m)| rad n. Then, there exists an integer u m , coprime to n if m is odd, or coprime to n/2 if m is even, such that

a On(a)•m = 1 + u m • R n (a) • m.
Proof. We distinguish different cases based upon the parity of m. First, we prove the odd case by induction on m. If m = 1, then, by definition of the integer R n (a), we have

a On(a) = 1 + R n (a).
Therefore the assertion is true for m = 1. Now, let p be a prime factor of m and suppose that the assertion is true for the odd number m/p, i.e., there exists an integer u m/p , coprime to n, such that

a On(a)• m p = 1 + u m/p • R n (a) • m p .
Then, we obtain

a On(a)•m = a On(a)• m p p = 1 + u m/p • R n (a) • m p p = 1 + u m/p • R n (a) • m + p-1 k=2 p k u m/p • R n (a) • m p k + u m/p • R n (a) • m p p = 1 + u m/p + p-1 k=2 p k p • (u m/p ) k • R n (a) k-1 • m p k-1 + +(u m/p ) p • R n (a) p-1 p • m p p-1 • R n (a) • m = 1 + u m • R n (a) • m. Since n divides R n (a) which divides u m -u m/p = p-1 k=2 p k p • (u m/p ) k • R n (a) k-1 • m p k-1 + (u m/p ) p • R n (a) p-1 p • m p p-1
, it follows that gcd(u m , n) = gcd(u m/p , n) = 1. This completes the proof for the odd case. Suppose now that n and m are even. We proceed by induction on v 2 (m). If v 2 (m) = 1, then m/2 is odd and by the first part of this proof,

a m 2 •On(a) = 1 + u m/2 • m 2 • R n (a)
where u m/2 is coprime to n and hence to n/2. Now assume that v 2 (m) > 1 and that

a m 2 •On(a) = 1 + u m/2 • m 2 • R n (a)
with u m/2 coprime to n/2. Then, we obtain

a On(a)•m = a On(a)• m 2 2 = 1 + u m/2 • R n (a) • m 2 2 = 1 + u m/2 • R n (a) • m + u m/2 • R n (a) • m 2 2 = 1 + u m/2 + (u m/2 ) 2 • R n (a) 2 • m 2 • R n (a)m = 1 + u m • R n (a) • m.
Since n/2 divides R n (a)/2 which divides u m -u m/2 , it follows that gcd(u m , n/2) = gcd(u m/2 , n/2) = 1. This completes the proof.

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. The proof is by induction on the integer n 1 /n 2 . If n 1 = n 2 , then we have

n 1 gcd(n 1 , R n 2 (a)) = n 1 gcd(n 1 , R n 1 (a)) = n 1 n 1 = 1, since R n 1 (a)
is divisible by n 1 , and thus the statement is true. Let p be a prime factor of n 1 and n 2 such that n 2 divides n 1 /p and suppose that

O n 1 /p (a) = O n 2 (a) • n 1 /p gcd(n 1 /p, R n 2 (a))
.

First, the congruence a On 1 (a) ≡ 1 (mod n 1 )

implies that a On 1 (a) ≡ 1 (mod

n 1 p )
and so O n 1 /p (a) divides O n 1 (a). We consider two cases.

First Case: v p (n 1 ) v p (R n 2 (a)). Since n 2 divides n 1 /p, it follows that O n 2 (a) divides O n 1 /p (a). Let r = O n 1 /p (a)
On 2 (a) . Hence

R n 1 /p (a) = a O n 1 /p (a) -1 = a On 2 (a)•r -1 = a On 2 (a) -1 r-1 k=0 a kOn 2 (a) = R n 2 (a) r-1 k=0 a kOn 2 (a)
and so R n 1 /p (a) is divisible by R n 2 (a). This leads to

v p (n 1 ) v p (R n 2 (a)) v p R n 1 /p (a) .
Therefore R n 1 /p (a) is divisible by n 1 and hence we have

a O n 1 /p (a) = 1 + R n 1 /p (a) ≡ 1 (mod n 1 ). This implies that O n 1 (a) = O n 1 /p (a). Moreover, the hypothesis v p (n 1 ) v p (R n 2 (a)) implies that gcd(n 1 /p, R n 2 (a)) = gcd(n 1 , R n 2 (a))/p. Finally, we obtain O n 1 (a) = O n 1 /p (a) = O n 2 (a) • n 1 /p gcd(n 1 /p, R n 2 (a)) = O n 2 (a) • n 1 gcd(n 1 , R n 2 (a))
.

Second Case: v p (n 1 ) > v p (R n 2 (a)). If v 2 (n 1 ) 1, then (n 1 /p)/ gcd(n 1 /p, R n 2 (a)) is odd. Otherwise, if v 2 (n 1 ) 2, then v 2 (n 2 )
2 and every integer coprime to n 2 /2 is also coprime to n 2 . In both cases, v 2 (n 1 ) 1 or v 2 (n 1 ) 2, we know, by Lemma 2.7, that there exists an integer u, coprime to n 2 , such that

a O n 1 /p (a) = a On 2 (a)• n 1 /p gcd(n 1 /p,Rn 2 (a)) = 1 + u • R n 2 (a) • n 1 /p gcd(n 1 /p, R n 2 (a)) = 1 + u • R n 2 (a) gcd(n 1 /p, R n 2 (a)) • n 1 p . As v p (R n 2 (a)) v p (n 1 /p), it follows that R n 2 (a)/ gcd(n 1 /p, R n 2 (a)
) is coprime to p, and hence

O n 1 /p (a) is a proper divisor of O n 1 (a) since a O n 1 /p (a) ≡ 1 (mod n 1 ).
Moreover, by Lemma 2.7 again, there exists an integer u p such that

a O n 1 /p (a)•p = 1 + u p • R n 1 /p (a) • p ≡ 1 (mod n 1 ).
This leads to

O n 1 (a) = O n 1 /p (a) • p = O n 2 (a) • n 1 gcd(n 1 /p, R n 2 (a)) = O n 2 (a) • n 1 gcd(n 1 , R n 2 (a))
.

This completes the proof of Theorem 2.6.

We may view Theorem 2.6 as a generalization of Theorem 3.6 of [START_REF] Nathanson | Elementary Methods in Number Theory[END_REF], where n 2 = p is an odd prime number and n 1 = p k for some positive integer k. Note that the conclusion of Theorem 2.6 fails in general in the case where v 2 (n 1 ) 2 and n 2 = rad(n 1 ). For instance, for n 1 = 24 = 3 • 2 3 , n 2 = 6 = 3 • 2 and a = 7, we obtain that O n 1 (a) = 2 while O n 2 (a)n 1 / gcd(n 1 , R n 2 (a)) = 24/ gcd(24, 6) = 4.

We now turn to the proof of the main result of this paper.

Proof of Theorem 2.5. From Theorem 2.6, we obtain

α n 1 (a) = O n 1 (a n 1 ) = O n 1 (a) gcd(O n 1 (a), n 1 ) = O n 2 (a) • n 1 gcd(n 1 ,Rn 2 (a)) gcd O n 2 (a) • n 1 gcd(n 1 ,Rn 2 (a)) , n 1 = O n 2 (a) gcd(O n 2 (a), n 1 , R n 2 (a))
.

Thus,

α n 2 (a) α n 1 (a) = On 2 (a) gcd(On 2 (a),n 2 ) On 2 (a) gcd(On 2 (a),n 1 ,Rn 2 (a)) = gcd(O n 2 (a), n 1 , R n 2 (a)) gcd(O n 2 (a), n 2 ) = gcd O n 2 (a) gcd(O n 2 (a), n 2 ) , n 2 gcd(O n 2 (a), n 2 ) • gcd(n 1 , R n 2 (a)) n 2 .
Finally, since we have

gcd O n 2 (a) gcd(O n 2 (a), n 2 ) , n 2 gcd(O n 2 (a), n 2 ) = gcd(O n 2 (a), n 2 ) gcd(O n 2 (a), n 2 ) = 1, it follows that α n 2 (a) α n 1 (a) = gcd O n 2 (a) gcd(O n 2 (a), n 2 ) , gcd(n 1 , R n 2 (a)) n 2 = gcd α n 2 (a), gcd(n 1 , R n 2 (a)) n 2 .
Thus, the determination of α n is reduced to the case where n is square-free.

Corollary 2.8. Let n be a positive integer such that v 2 (n) 1. Then, for every integer a, coprime to n, we have

α n (a) = α rad(n) (a) gcd α rad(n) (a), gcd(n,R rad(n) (a)) rad(n)
.

Corollary 2.9. Let n be a positive integer such that v 2 (n) 2. Then, for every integer a, coprime to n, we have for every integer a coprime to n. There is no general formula known to compute α n (a)/β n (a) but, however, we get the following proposition.

α n (a) = α 2 rad(n) (a) gcd α 2 rad(n) (a), gcd(n,R 2 rad(n) (a)) 2 rad(n) . 3 
Proposition 3.1. Let n 1 and n 2 be two positive integers such that rad(n 1 ) = rad(n 2 ).

Let a be an integer coprime to n 1 and n 2 . If v 2 (n 1 ) 1, then we have

α n 1 (a) β n 1 (a) = α n 2 (a) β n 2 (a) .
If v 2 (n 1 ) 2, then we have α n 1 (a) = β n 1 (a).

Proof. Let n 1 be a positive integer such that v 2 (n 1 ) 1 and a be an integer coprime to n 1 . Let p be an odd prime factor of n 1 such that v p (n 1 ) 2. We will prove that

α n 1 (a) β n 1 (a) = α n 1 /p (a) β n 1 /p (a) . If α n 1 (a) = 2β n 1 (a), then a βn 1 (a)•n 1 ≡ -1 (mod n 1 )
and thus

a βn 1 (a)•p• n 1 p ≡ -1 (mod n 1 p ).
This implies that α n 1 /p (a) = 2β n 1 /p (a). Conversely, if α n 1 /p (a) = 2β n 1 /p (a), then we have

a β n 1 /p (a)• n 1 p ≡ -1 (mod n 1 p ).
Since v p (n 1 ) 2, it follows that

a β n 1 /p (a)• n 1 p ≡ -1 (mod p)
and thus

a β n 1 /p (a)•n 1 +1 = 1--a β n 1 /p (a)• n 1 p p = 1 + a β n 1 /p (a)• n 1 p p-1 k=0 -a β n 1 /p (a)• n 1 p k ≡ 0 (mod n 1 ).
This implies that α n 1 (a) = 2β n 1 (a). Continuing this process we have

α n 1 (a) β n 1 (a) = α rad(n 1 ) (a) β rad(n 1 ) (a) 
and since rad(n 1 ) = rad(n 2 ), α n 1 (a)

β n 1 (a) = α n 2 (a) β n 2 (a) . 
Now, let n 1 be a positive integer such that v 2 (n 1 ) 2, and let a be a non-zero integer. Suppose that we have α n 1 (a) = 2β n 1 (a). Since

a βn 1 (a)•n 1 ≡ -1 (mod n 1 ) it follows that a βn 1 (a)• n 1 4 4 ≡ -1 (mod 4) in contradiction with a βn 1 (a)• n 1 4 4 ≡ 1 (mod 4). Thus α n 1 (a) = β n 1 (a).
If n is a prime power, then β n = β rad(n) , in analogy with Proposition 2.3 for α n .

Proposition 3.2. Let p be a prime number and let a be an integer. Then we have

β p k (a) = β p (a)
for every positive integer k.

Proof. This result is trivial for every integer a not coprime to p. Suppose now that a is coprime to p. For p = 2, then, by Proposition 3.1, we have

β 2 k (a) = α 2 k (a) = 1
for every positive integer k. For an odd prime number p 3, Proposition 3.1 and Proposition 2. for every positive integer k. This completes the proof.

Let Let a be an integer coprime to n 1 and n 2 . Then, we have Thus, as for α n , the determination of β n is reduced to the case where n is square-free. .
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 34 Let n be a positive integer such that v 2 (n) 1. Then, for every integer a, coprime to n, we haveβ n (a) = β rad(n) (a) gcd β rad(n) (a), gcd(n,R rad(n) (a)) rad(n).Corollary 3.5. Let n be a positive integer such that v 2 (n) 2. Then, for every integer a, coprime to n, we haveβ n (a) = β 2 rad(n) (a) gcd β 2 rad(n) (a),gcd(n,R 2 rad(n) (a)) 2 rad(n)

  1 and n 2 be two positive integers such that rad(n 1 )|n 2 and n 2 |n 1 , if v 2 (n 1 ) 1; 2 rad(n 1 )|n 2 and n 2 |n 1 , if v 2 (n 1 ) 2.

  n 1 and n 2 be two positive integers such that rad(n 1 )|n 2 and n 2 |n 1 , if v 2 (n 1 ) 1; 2 rad(n 1 )|n 2 and n 2 |n 1 , if v 2 (n 1 ) 2. It immediately follows that β n 1 (a) = β n 2 (a) = 0 for every integer a not coprime to n 1 and n 2 . Finally, we determine the relationship between β n 1 (a) and β n 2 (a) for every integer a coprime to n 1 and n 2 . Theorem 3.3. Let n 1 and n 2 be two positive integers such that rad(n 1 )|n 2 and n 2 |n 1 , if v 2 (n 1 ) 1; 2 rad(n 1 )|n 2 and n 2 |n 1 , if v 2 (n 1 ) 2.
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