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REGULAR STEINHAUS GRAPHS OF ODD DEGREE

A Steinhaus matrix is a binary square matrix of size n which is symmetric, with diagonal of zeros, and whose upper-triangular coefficients satisfy a i,j = a i-1,j-1 +a i-1,j for all 2 i < j n. Steinhaus matrices are determined by their first row. A Steinhaus graph is a simple graph whose adjacency matrix is a Steinhaus matrix. We give a short new proof of a theorem, due to Dymacek, which states that even Steinhaus graphs, i.e. those with all vertex degrees even, have doubly-symmetric Steinhaus matrices. In 1979 Dymacek conjectured that the complete graph on two vertices K 2 is the only regular Steinhaus graph of odd degree. Using Dymacek's theorem, we prove that if (a i,j ) 1 i,j n is a Steinhaus matrix associated with a regular Steinhaus graph of odd degree then its sub-matrix (a i,j ) 2 i,j n-1 is a multi-symmetric matrix, that is a doubly-symmetric matrix where each row of its upper-triangular part is a symmetric sequence. We prove that the multi-symmetric Steinhaus matrices of size n whose Steinhaus graphs are regular modulo 4, i.e. where all vertex degrees are equal modulo 4, only depend on n 24 parameters for all even numbers n, and on n 30 parameters in the odd case. This result permits us to verify the Dymacek's conjecture up to 1500 vertices in the odd case.

Introduction

Let s = (a 1 , a 2 , . . . , a n-1 ) be a binary sequence of length n -1 1 with entries a j in F 2 = {0, 1}. The Steinhaus matrix associated with s is the square matrix M(s) = (a i,j ) of size n, defined as follows:

• a i,i = 0 for all 1 i n,

• a 1,j = a j-1 for all 2 j n,

• a i,j = a i-1,j-1 + a i-1,j for all 2 i < j n,

• a i,j = a j,i for all 1 i, j n.

By convention M(∅) = (0) is the Steinhaus matrix of size n = 1 associated with the empty sequence. For example, the following matrix M(s) in M 5 (F 2 ) is the Steinhaus matrix associated with the binary sequence s = (1, 1, 0, 0) of length 4.

M(s) =       0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0 0      
The set of all Steinhaus matrices of size n 2 will be denoted by SM n (F 2 ). It is clear that, for every positive integer n, the set SM n (F 2 ) has a cardinality of 2 n-1 .

The Steinhaus triangle associated with s is the upper-triangular part of the Steinhaus matrix M(s). It was introduced by Hugo Steinhaus in 1963 [START_REF] Steinhaus | One hundred problems in elementary mathematics[END_REF], who asked whether there exists a Steinhaus triangle containing as many 0's as 1's for each admissible size. Solutions of this problem appeared in [START_REF] Harborth | Solution of Steinhaus's problem with plus and minus signs[END_REF][START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF]. A generalization of this problem to all finite cyclic groups was posed in [START_REF] Molluzzo | Steinhaus graphs[END_REF] and was partially solved in [START_REF] Chappelon | On a problem of Molluzzo concerning Steinhaus triangles in finite cyclic groups[END_REF].

The Steinhaus graph associated with s is the simple graph G(s) on n vertices whose adjacency matrix is the Steinhaus matrix M(s). A vertex of a Steinhaus graph G(s) is usually labelled by its corresponding row number in M(s) and the ith vertex of G(s) will be denoted by V i . For instance, the following graph is the Steinhaus graph G(s) associated with the sequence s = (1, 1, 0, 0). 1 2 3 5 4

For every positive integer n, the zero-edge graph on n vertices is the Steinhaus graph associated with the sequence of zeros of length n -1.

Steinhaus graphs were introduced by Molluzzo in 1978 [START_REF] Molluzzo | Steinhaus graphs[END_REF]. A general problem on Steinhaus graphs is that of characterizing those satisfying a given graph property. The bipartite Steinhaus graphs were characterized in [START_REF] Chang | Characterizations of bipartite Steinhaus graphs[END_REF][START_REF] Dymacek | Bipartite Steinhaus graphs[END_REF][START_REF] Dymacek | Generating strings for bipartite Steinhaus graphs[END_REF] and the planar ones in [START_REF] Dymacek | Planar Steinhaus graphs[END_REF]. In [START_REF] Dymacek | Steinhaus graphs[END_REF], the following conjectures were made: Conjecture 1. The regular Steinhaus graphs of even degree are the zero-edge graph on n vertices, for all positive integers n, and the Steinhaus graph G(s) on n = 3m + 1 vertices generated by the periodic sequence s = (1, 1, 0, . . . , 1, 1, 0) of length 3m, for all positive integers m.

Conjecture 2. The complete graph on two vertices K 2 is the only regular Steinhaus graph of odd degree. These conjectures were verified up to n 25 in 1988 by exhaustive search [START_REF] Bailey | Regular Steinhaus graphs[END_REF]. More recently [START_REF] Augier | Parity-regular Steinhaus graphs[END_REF], Augier and Eliahou extended the verification up to n 117 vertices by considering the weaker notion of parity-regular Steinhaus graphs, i.e. Steinhaus graphs where all vertex degrees have the same parity. They searched regular graphs in the set of parityregular Steinhaus graphs. This has enabled them to perform the verification because it is known that Steinhaus matrices associated with parity-regular Steinhaus graphs on n vertices depend on approximately n/3 parameters [START_REF] Bailey | Regular Steinhaus graphs[END_REF][START_REF] Augier | Parity-regular Steinhaus graphs[END_REF]. This result is based on a theorem, due to Dymacek, which states that Steinhaus matrices associated with parity-regular Steinhaus graphs of even type are doubly-symmetric matrices, i.e. where all the entries are symmetric with respect to the diagonal and the anti-diagonal of the matrices. A short new proof of this theorem is given in Section 2. Using Dymacek's theorem, Bailey and Dymacek showed [START_REF] Bailey | Regular Steinhaus graphs[END_REF] that binary sequences associated with regular Steinhaus graphs of odd degree are of the form (x 1 , x 2 , . . . , x k , x k , . . . , x 2 , x 1 , 1). In Section 3, we refine this result and, more precisely, we prove that if (a i,j ) 1 i,j n is a Steinhaus matrix associated with a regular Steinhaus graph of odd degree, then its sub-matrix (a i,j ) 2 i,j n-1 is a multi-symmetric Steinhaus matrix, i.e. a doubly-symmetric matrix where each row of the upper-triangular part is a symmetric sequence. A parametrization and a counting of multi-symmetric Steinhaus matrices of size n are also given in Section 3 for all n 1. In Section 4, we show that, for a Steinhaus graph whose Steinhaus matrix is multi-symmetric, the knowledge of the vertex degrees modulo 4 leads to a system of binary equations on the entries of its Steinhaus matrix. In Section 5, we study the special case of multi-symmetric Steinhaus matrices whose Steinhaus graphs are regular modulo 4, i.e. where all vertex degrees are equal modulo 4. We show that a such matrix of size n only depends on n 24 parameters for all n even, and on n 30 parameters in the odd case. Using these parametrizations, we obtain, by computer search, that for all positive integers n 1500, the zero-edge graph on n vertices is the only Steinhaus graph on n vertices with a multi-symmetric matrix and which is regular modulo 4. This permits us to extend the verification of Conjecture 2 up to 1500 vertices.

A new proof of Dymacek's theorem

Recall that a square matrix M = (a i,j ) of size n 1 is said to be doubly-symmetric if the entries of M are symmetric with respect to the diagonal and to the anti-diagonal of M, that is a i,j = a j,i = a n-j+1,n-i+1 , for all 1 i, j n.

In [START_REF] Dymacek | Steinhaus graphs[END_REF], Dymacek characterized the parity-regular Steinhaus graphs. These results are based on the following theorem on parity-regular Steinhaus graphs of even type, where all vertex degrees are even.

Theorem 2.1 (Dymacek's theorem). The Steinhaus matrix of a parity-regular Steinhaus graph of even type is doubly-symmetric.

In this section we give a new easier proof of Dymacek's theorem. The main idea of our proof is that the anti-diagonal entries of a Steinhaus matrix are determined by the vertex degrees of its associated Steinhaus graph.

Theorem 2.2. Let G be a Steinhaus graph on n 2 vertices and M = (a i,j ) its associated Steinhaus matrix. Then every anti-diagonal entry of M can be expressed by means of the vertex degrees of G. If we denote by deg(V i ) the degree of the vertex V i in G, then for all 1 i n 2 , we have

a i,n-i+1 ≡ i-1 k=0 i -1 k deg (V i+k+1 ) ≡ i-1 k=0 i -1 k deg (V n-i-k ) (mod 2).
The proof is based on the following lemma which shows that each entry of the uppertriangular part of a Steinhaus matrix M = (a i,j ) can be expressed by means of the entries of the first row {a 1,2 , . . . , a 1,n }, the last column {a 1,n , . . . , a n-1,n } or the over-diagonal {a 1,2 , . . . , a n-1,n } of M. Lemma 2.3. Let M = (a i,j ) be a Steinhaus matrix of size n 2. Then, for all 1 i < j n, we have

a i,j = i-1 k=0 i -1 k a 1,j-k = n-j k=0 n -j k a i+k,n = j-i-1 k=0 j -i -1 k a i+k,i+k+1 .
Proof. Easily follows from the relation: a i,j = a i-1,j-1 + a i-1,j for all 2 i < j n.

Proof of Theorem 2.2. We begin by expressing each vertex degree of the Steinhaus graph G by means of the entries of the first row, the last column and the over-diagonal of M. Here we view the entries a i,j as 0,1 integers. For all 2 i n -1, we obtain

deg(V i ) = n j=1 a i,j = i-1 j=1 a j,i + n j=i+1 a i,j ≡ i-1 j=1 (a j,i+1 + a j+1,i+1 ) + n j=i+1 (a i-1,j-1 + a i-1,j ) ≡ i-1 j=1 a j,i+1 + i j=2 a j,i+1 + n-1 j=i a i-1,j + n j=i+1 a i-1,j ≡ a 1,i+1 + a i,i+1 + a i-1,i + a i-1,n (mod 2). By Lemma 2.3, it follows that i-1 k=0 i -1 k deg (V i+k+1 ) ≡ i-1 k=0 i -1 k (a 1,i+k+2 + a i+k+1,i+k+2 + a i+k,i+k+1 + a i+k,n ) ≡ i-1 k=0 i -1 k a 1,2i-k+1 + i-1 k=0 i -1 k a i+k+1,i+k+2 + i-1 k=0 i -1 k a i+k,i+k+1 + i-1 k=0 i -1 k a i+k,n ≡ a i,2i+1 + a i+1,2i+1 + a i,2i + a i,n-i+1 ≡ a i,n-i+1 (mod 2), for all 1 i n 2 .
The second congruence can be treated by the same way. Remark. We deduce from Theorem 2.2 a necessary condition on the vertex degrees of a given labelled graph to be a Steinhaus graph. Indeed, vertex degrees of a Steinhaus graph on n vertices must satisfy the following binary equations:

i-1 k=0 i -1 k deg (V i+k+1 ) ≡ i-1 k=0 i -1 k deg (V n-i-k ) (mod 2), for all 1 i n 2 .
More generally, an open problem, corresponding to Question 3 in [START_REF] Dymacek | A survey of Steinhaus graphs[END_REF], is to determine if an arbitrary graph, not necessary labelled, is isomorphic to a Steinhaus graph. Now, we characterize doubly-symmetric Steinhaus matrices.

Proposition 2.4. Let M = (a i,j ) be a Steinhaus matrix of size n 3. Then the following assertions are equivalent:

(i) the matrix M is doubly-symmetric, (ii) the over-diagonal of M is a symmetric sequence, (iii) the entries a i,n-i+1 of the anti-diagonal of M vanish for all 1 i n-1 2 .
Proof.

(i) =⇒ (ii) : Trivial.

(ii) =⇒ (iii) : Suppose that the over-diagonal of M is a symmetric sequence, that is

a i,i+1 = a n-i,n-i+1 ,
for all 1 i n -1. If n is odd, then we have

a i,n-i+1 = n-2i k=0 n -2i k a i+k,i+k+1 = n-2i+1 2 k=0 n -2i k (a i+k,i+k+1 + a n-i-k,n-i-k+1 ) = 0, for all 1 i n-1 2
. Otherwise, if n is even, then we obtain

a i,n-i+1 = n 2 -i-1 k=0 n -2i k (a i+k,i+k+1 + a n-i-k,n-i-k+1 ) + 2 n -2i -1 n 2 -i a n 2 , n 2 +1 = 0, for all 1 i n-1 2 
.

(iii) =⇒ (i) : By induction on n. Consider the sub-matrix N = (a i,j ) 2 i,j n-1 that is a Steinhaus matrix of size n -2. By induction hypothesis, the matrix N is doubly-symmetric.

Then it remains to prove that a 1,j = a n-j+1,n for all 2 j n. First, since a 1,n = 0, it follows that a 1,n-1 = a 1,n + a 2,n = a 2,n and for all 2 j n -2, we have

a 1,j = n-1 k=j+1 a 2,k + a 1,n-1 = n-j k=2 a k,n-1 + a 2,n = a n-j+1,n .
We are now ready to prove Dymacek's theorem.

Proof of Theorem 2.1. Let G be a parity-regular Steinhaus graph of even type on n vertices and M = (a i,j ) its Steinhaus matrix. If n = 1, then M = (0) which is trivially doublysymmetric. Otherwise, for n 2, Theorem 2.2 implies that

a i,n-i+1 ≡ i-1 k=0 i -1 k deg (V i+k+1 ) ≡ 0 (mod 2),
for all 1 i n 2 . Finally, the matrix M is doubly-symmetric by Proposition 2.4.

Multi-symmetric Steinhaus matrices

In this section, we will study in detail the structure of Steinhaus matrices associated with regular Steinhaus graphs of odd degree.

Let G be a Steinhaus graph on n 1 vertices. Then, for every integer 1 i n, we denote by G \ {V i } the graph obtained from G by deleting its ith vertex V i and its incident edges in G. Since the adjacency matrix of the graph G\{V 1 } (resp. G\{V n }) is the Steinhaus matrix obtained by removing the first row (resp. the last column) in the adjacency matrix of G, it follows that the graph

G \ {V 1 } (resp. G \ {V n }) is a Steinhaus graph on n -1 vertices.
Bailey and Dymacek studied the regular Steinhaus graphs of odd degree in [START_REF] Bailey | Regular Steinhaus graphs[END_REF], where the following theorem is stated, using Dymacek's theorem.

Theorem 3.1 ([2]

). Let G be a regular Steinhaus graph of odd degree d on 2n 4 vertices. Then d = n, the Steinhaus graph G \ {V 1 , V 2n } is regular of even degree n -1, and a 1,j = a 1,2n-j+1 for all 2 j 2n -1.

Remark. In every simple graph, there are an even number of vertices of odd degree. Therefore parity-regular Steinhaus graphs of odd type and thus regular Steinhaus graphs of odd degree have an even number of vertices.

In their theorem, the authors studied the form of the sequence associated with G. We are more interested in the Steinhaus matrix of G \ {V 1 , V 2n } in the sequel.

Recall that a square matrix of size n 1 is said to be multi-symmetric if M is doublysymmetric and each row of the upper-triangular part of M is a symmetric sequence, that is a i,j = a i,n-j+i+1 , for all 1 i < j n.

First, it is easy to see that each column of the upper-triangular part of a multi-symmetric matrix is also a symmetric sequence. Proposition 3.2. Let M = (a i,j ) be a multi-symmetric matrix of size n. Then, each column of the upper-triangular part of M is a symmetric sequence, that is a i,j = a j-i,j for all 1 i < j n.

Proof. Easily follows from the relation: a i,j = a i,n-j+i+1 = a j-i,n-i+1 = a j-i,j for all 1 i < j n.

As for doubly-symmetric Steinhaus matrices, multi-symmetric Steinhaus matrices can be characterized as follows.

Proposition 3.3. Let M = (a i,j ) be a Steinhaus matrix of size n 3. Then the following assertions are equivalent: (i) the matrix M is multi-symmetric, (ii) the first row, the last column and the over-diagonal of M are symmetric sequences, (iii) the entries a i,n-i+1 , a n-2i+1,n-i+1 and a i,2i vanish for all 1 i n-1 2

.

Proof. Similar to the proof of Proposition 2.4 and by using Lemma 2.3 and Proposition 3.2.

We now refine Theorem 3.1. Proof. Let M = (a i,j ) be the Steinhaus matrix associated with G. Theorem 3.1 implies that the Steinhaus graph G \ {V 1 , V 2n } is regular of even degree n -1 and that we have

a 1,j = a 1,2n-j+1 ,
for all 2 j 2n -1. Therefore, for all 3 j 2n -1, we have a 2,j +a 2,2n-j+2 = (a 1,j-1 +a 1,j )+(a 1,2n-j+1 +a 1,2n-j+2 ) = (a 1,j-1 +a 1,2n-j+2 )+(a 1,j +a 1,2n-j+1 ) = 0.

Then the first row of the matrix B = (a i,j ) 2 i,j 2n-1 , the Steinhaus matrix of the graph In the sequel of this section we will study in detail the multi-symmetric Steinhaus matrices. First, in order to determine a parametrization of these matrices, we introduce the following operator

G \ {V 1 , V 2n },
T : SM n (F 2 ) -→ SM n-3 (F 2 ),
which assigns to each matrix M = (a i,j ) in SM n (F 2 ) the Steinhaus matrix T (M) = (b i,j ) in SM n-3 (F 2 ) defined by b i,j = a i-1,j-2 , for all 1 i < j n -3. As depicted in the following matrix, the upper-triangular part of M is an extension of the upper-triangular part of T (M). 

                        0 a 1,2 a 1,3 a 1,4 a 1,5 a 1,6 • • • • • • a 1,n-4 a 1,n-3 a 1,n-2 a 1,n-1 a 1,n 0 a 2,3 b 1,2 b 1,3 b 1,4 • • • • • • • • • b 1,n-5 b 1,n-4 b 1,n-3 a 2,n 0 a 3,4 b 2,3 b 2,4 b 2,n-4 b 2,n-3 a 3,n 0 a 4,
0 a n-5,n-4 b n-6,n-5 b n-6,n-4 b n-6,n-3 a n-5,n 0 a n-4,n-3 b n-5,n-4 b n-5,n-3 a n-4,n 0 a n-3,n-2 b n-4,n-3 a n-3,n 0 a n-2,n-1 a n-2,n 0 a n-1,n 0                         Proposition 3.5. Let M = (a i,j
) be a Steinhaus matrix of size n 4. Then the extension M of T (M) only depends on the parameters a 1,2 , a 1,j 0 and a 1,n , with j 0 in {3, . . . , n -1}.

Proof. Let 3 j 0 n -1. Each entry a 1,j , for 3 j n -1, can be expressed by means of a 1,j 0 and the entries of T (M) = (b i,j ). Indeed, we have

a 1,j = a 1,j 0 + j 0 -2 k=j-1 b 1,k , for all 3 j < j 0 , a 1,j = a 1,j 0 + j-2 k=j 0 -1 b 1,k , for all j 0 < j n -1.
Then the entries a 1,2 , a 1,j 0 and a 1,n determine the extension M of T (M).

Therefore, for every Steinhaus matrix N of size n -3, there exist 8 distinct Steinhaus matrices M of size n such that T (M) = N. We can also use this operator to determine parametrizations of multi-symmetric Steinhaus matrices. Proposition 3.6. Let M = (a i,j ) be a multi-symmetric Steinhaus matrix of size n. Let j i be an element of the set {2i + 1, . . . , n -i} for all 1 i n-1 3

. Then the matrix M depends on the following parameters:

• a 1,j 1 and a 2i,j 2i 1 i n 6 -1 , for n even, • a 2i+1,j 2i+1 0 i n-3 6 -1 , for n odd.
Proof. Let M = (a i,j ) be a multi-symmetric matrix of size n. We consider the sub-matrices T (M), T 2 (M) = T (T (M)), T 3 (M), T 4 (M), . . .. By successive application of Proposition 3.5 on the extension T i-1 (M) of T i (M) and since the entries a i,n-i+1 , a n-2i+1,n-i+1 and a i,2i vanish for all 1 i 

MS(n) = 2 ⌈ n 6 ⌉ , for n even, 2 ⌈ n-3
6 ⌉ , for n odd.

Vertex degrees of Steinhaus graphs associated with multi-symmetric Steinhaus matrices

In this section, we analyse the vertex degrees of a Steinhaus graph associated with a multisymmetric Steinhaus matrix of size n. We begin with the case of doubly-symmetric Steinhaus matrices.

Proposition 4.1. Let n be a positive integer and G be a Steinhaus graph on n vertices whose Steinhaus matrix is doubly-symmetric. Then, for all 1 i n, we have

deg(V i ) = deg(V n-i+1 ).
Proof. If we denote by M = (a i,j ) the Steinhaus matrix associated with the graph G, then, for all 1 i n, we have

deg(V i ) = n j=1 a i,j = n j=1 a n-j+1,n-i+1 = n j=1 a j,n-i+1 = deg(V n-i+1 ).
We shall now see that, for a Steinhaus graph associated with a multi-symmetric Steinhaus matrix, the knowledge of the vertex degrees modulo 4 imposes strong conditions on the entries of its Steinhaus matrix. In order to prove this result, we distinguish different cases depending on the parity of n. Proposition 4.2. Let n be an even number and G be a Steinhaus graph on n vertices whose Steinhaus matrix M = (a i,j ) is multi-symmetric. Then, we have

deg(V 1 ) = deg(V n ) ≡ a 1, n 2 +1 (mod 2), deg(V 2 ) = deg(V n-1 ) ≡ 2a 1, n 2 +1 (mod 4), deg(V 3 ) = deg(V n-2 ) ≡ 2a 2, n 2 +1 (mod 4), deg(V 2i ) = deg(V n-2i+1 ) ≡ 2a 2,2i+1 + 2a i,2i+1 (mod 4), for all 2 i n 2 -2.
Proof. First, Proposition 3.3 implies that the entries a i,2i and a 2i+1, n 2 +i+1 vanish for all 1 i n 2 -1. This leads to

deg(V 1 ) = n j=2 a 1,j = n 2 j=2 (a 1,j + a 1,n-j+2 ) + a 1, n 2 +1 ≡ a 1, n 2 +1 (mod 2), deg(V 2 ) = a 1,2 + n 2 +1 j=3 (a 2,j + a 2,n-j+3 ) = 2 n 2 +1 j=3 a 2,j ≡ 2a 1,2 + 2a 1, n 2 +1 ≡ 2a 1, n 2 +1
(mod 4),

deg(V 3 ) = (a 1,3 + a 2,3 ) + n 2 +1 j=4 (a 3,j + a 3,n-j+4 ) + a 3, n 2 +2 = 2a 2,3 + 2 n 2 +1 j=4 a 3,j ≡ 2a 2, n 2 +1 
(mod 4), and, for all 2 i n 2 -2, we have

deg(V 2i ) = 2i-1 j=i+1 (a j,2i + a 2i-j,2i ) + a i,2i + n 2 +i j=2i+1 (a 2i,j + a 2i,n-j+2i+1 ) = 2 2i-1 j=i+1 a j,2i + 2 n 2 +i j=2i+1 a 2i,j ≡ 2 2i-1 j=i+1 a j,2i+1 + 2 2i j=i+2 a j,2i+1 + 2 n 2 +i-1 j=2i a 2i-1,j + 2 n 2 +i j=2i+1 a 2i-1,j ≡ 2a i+1,2i+1 + 2a 2i,2i+1 + 2a 2i-1,2i + 2a 2i-1, n 2 +i ≡ 2a i+1,2i+1 + 2a 2i-1,2i+1 ≡ 2a 2,2i+1 + 2a i,2i+1 (mod 4).
Finally, we complete the proof by Proposition 4.1.

Remark. Let n be an even number. In every Steinhaus graph on n vertices whose Steinhaus matrix is multi-symmetric the fourth vertex V 4 has a degree divisible by 4.

Proposition 4.3. Let n be an odd number and G be a Steinhaus graph on n vertices whose Steinhaus matrix M = (a i,j ) is multi-symmetric. Then, we have

deg(V 1 ) = deg(V n ) ≡ 0 (mod 2), deg(V 2 ) = deg(V n-1 ) ≡ 2a 1, n+1 2 
(mod 4), deg(V 2i ) ≡ 2a i+1,2i+1 + 2a 2i-1,2i+1 + 2a 2i-1, n-1 2 +i (mod 4), for all 2 i n-3 2 , deg(V 2i+1 ) ≡ 2a 2,2i+2 (mod 4), for all 1 i n-3 2 .
Proof. Proposition 3.3 implies that the entries a i,2i and a 2i,(n+1)/2+i vanish for all 1 i n-3 2 . Since each row and each column of the upper triangular part of M is symmetric, we can use the relation m k=1 a i,j+k ≡ a i-1,j + a i-1,j+m (mod 2), for all 2 i < j nm + 1 as in the proof of Proposition 4.2, and the results follow.

Remark. Let n be an odd number. In every Steinhaus graph on n vertices whose Steinhaus matrix is multi-symmetric the third vertex V 3 has a degree divisible by 4.

Multi-symmetric Steinhaus matrices of Steinhaus graphs with regularity modulo 4

In this section, we consider the multi-symmetric Steinhaus matrices associated with Steinhaus graphs which are regular modulo 4, i.e. where all vertex degrees are equal modulo 4. First, we determine an upper bound of the number of these matrices. Two cases are distinguished, according to the parity of n. Proof. Let n be an odd number and M = (a i,j ) a multi-symmetric Steinhaus matrix of size n. By Proposition 3.6, the matrix M depends on the parameters a 2i+1, n+1

2 +i for 0 i n-3 6

-1. If the Steinhaus graph associated with M is regular modulo 4, then Proposition 4.3 implies that a 2,2j = 0 for all 2 j n-1 2 and thus

a 2i,2j = i-1 k=0 a 2,2j-2k = 0,
for all 1 i < j n-1 2 . If n ≡ 1 (mod 4), then n+1

2 is odd and

a 4i+1, n+1 2 +2i = a 4i, n-1 2 +2i + a 4i, n+1 2 +2i = 0, for all 0 i ⌈ n-3 6 ⌉-1 2 
. Therefore the matrix M can be parametrized by

a 4i+3, n+3 2 +2i 0 i m -1 , with m = n-3 6 - 1 2 
.

Suppose that we know the p parameters in

P = a 4i+3, n+3 2 +2i
mp i m -1 .

Then, by Proposition 3.6 again, the multi-symmetric matrix T 4(m-p)-1 (M) can be parametrized by P . Therefore the entries

a i,2i+1 4(m -p) i n -1 2 -2(m -p)
in T 4(m-p)-1 (M) depend on the parameters in P . Moreover, if the Steinhaus graph associated with M is regular modulo 4, then Proposition 4.3 implies that

a 2,2i+1 = a 2i-1,2i+1 ≡ a i+1,2i+1 + a 2i-1, n-1 2 +i ≡ a i+1,2i+1 + a ( n+1 2 -i)+1,2( n+1 2 -i)+1 (mod 2), for all 1 i n-1 2 . If the inequality n + 1 2 -4(m -p) 4(m -p)
holds, then the entries a 2,2i+1 depend on the parameters in P for all 4(mp) i n+1 2 -4(mp). Since we have a 2,2i = 0 for all 4(mp) i n+3 2 -4(mp), it follows that the entries

a i,j 2 i n + 5 -16(m -p) 8(m -p) + i -1 j n + 3 -8(m -p)
depend on the parameters in P . Suppose now that p is solution of the following inequality

n + 5 -16(m -p) 4(m -p) -1.
Therefore the extension M of T (4(m-p)-1) (M) depends on the entries a i,n+3-8(m-p) for 2 i 4(mp) -1 and a 1, n+1 2 which vanishes by Proposition 4.3. Thus, all the entries of the matrix M depend on the p parameters in P . Finally, a solution of this inequality can be obtained when

p = n 30 n-3 6 -1 2 - n + 6 20 .
If n ≡ 3 (mod 4), then n+1 2 is even and

a 4i+3, n+3 2 +2i = a 4i+2, n+1 2 +2i + a 4i+2, n+3 2 +2i = 0, for all 0 i ⌈ n-3 6 ⌉-1 2 -1.
Therefore the matrix M can be parametrized by

a 4i+1, n+1 2 +2i 0 i m with m = n-3 6 -1 2 .
As above, in the case n ≡ 1 (mod 4), we can prove that all the entries of the matrix M depend on the p parameters in

a 4i+1, n+1 2 +2i m -p + 1 i m if p is solution of the following inequality n -16(m -p) -4 4(m -p) + 1.
A solution is obtained when

p = n 30 n-3 6 -1 2 - n -5 20 .
Theorem 5.2. For all even numbers n, there are at most 2 ⌈ n 24 ⌉ multi-symmetric Steinhaus matrices of size n whose associated Steinhaus graphs are regular modulo 4.

Sketch of proof. Similar to the proof of Theorem 5.1. Let M = (a i,j ) be a multi-symmetric Steinhaus matrix of even size n. First, by Proposition 3.6, for all positive integers p < m -1 with m = n 6 , the multi-symmetric Steinhaus matrix T 2(m-p-1) (M) can be parametrized by the p entries in

P = {a 2i,4i+1 | m -p i m -1} .
Moreover, if the Steinhaus graph associated with M is regular modulo 4, then Proposition 4.2 implies that a 1, n 2 +1 = 0 and a 2,2i+1 = a i,2i+1 for all 2 i n 2 -1. It follows that the entries a 2i,n-2(m-p)+1 also depends on the parameters in P for all 1 i n 2 -3(mp) + 2. Finally, we can see that, if p is solution of the following inequality

n 2 -3(m -p) + 2 m -p -1,
then, as in the proof of Proposition 3.6, the extension M of T 2(m-p-1) (M) depends on the entries a 2i,n-2(m-p)+1 for 1 i mp -1 and thus all the entries of the matrix M can be expressed by means of the p parameters in P . We conclude the proof by observing that the inequality is obtained when

p = n 24 n 6 - n + 6 8 .
Using these explicit parametrizations of the multi-symmetric Steinhaus matrices whose Steinhaus graphs are regular modulo 4, we obtain the following result by computer search:

Computational Result. For all positive integers n 1500, the zero-edge graph on n vertices is the only Steinhaus graph on n vertices with a multi-symmetric Steinhaus matrix and which is regular modulo 4. This result can be easily proved for all odd numbers in the special case of regular Steinhaus graphs on n vertices whose Steinhaus matrices are multi-symmetric. This leads to deg(V i ) = 0 for all 1 i n and thus G is the zero-edge graph on n vertices.

Finally, the above computational result permits us to extend the verification of Conjecture 2 up to n 1500 vertices. Indeed, as proved in the remark following Theorem 3.4, for a Steinhaus graph G on 2n vertices, if G \ {V 1 , V 2n } is the zero-edge graph on 2n -2 vertices, then G is the star graph on 2n vertices which is not a regular graph. Therefore, by Theorem 3.4, we obtain Theorem 5.4. There is no regular Steinhaus graph of odd degree on 2 < n 1500 vertices.

Theorem 3 . 4 .

 34 Let G be a regular Steinhaus graph of odd degree n on 2n 4 vertices. Then G \ {V 1 , V 2n } is a regular Steinhaus graph of even degree n -1 whose associated Steinhaus matrix is multi-symmetric.

n-1 2 by

 2 Proposition 3.3, the parametrizations of the multisymmetric matrix M follow. For all positive integers n, the number of multi-symmetric Steinhaus matrices of size n immediately follows. Theorem 3.7. Let n be a positive integer. If we denote by MS(n) the number of multisymmetric Steinhaus matrices of size n, then we have

Theorem 5 . 1 .

 51 For all odd numbers n, there are at most 2 ⌈ n 30 ⌉ multi-symmetric Steinhaus matrices of size n whose associated Steinhaus graphs are regular modulo 4.

Theorem 5 . 3 . 2 j=2(a 3 ,= 2a 2, 3 + n-3 2 j=2(a 2 ,

 5323322 For all odd numbers n, there is no regular Steinhaus graph on n vertices whose Steinhaus matrix is multi-symmetric, except the zero-edge graph on n vertices.Proof. Let n be an odd number. Let G be a regular Steinhaus graph on n vertices and M = (a i,j ) its Steinhaus matrix. Then Proposition 4.3 implies that deg(V i ) ≡ 0 (mod 4), for all 1 i n and a 2,2i+2 = 0, for all 1 i n-3 2 . If we denote by ⊕ the addition in F 2 and + the addition in the integers, then we obtaindeg(V 3 ) = a 1,3 + a 2,3 + n j=4 a 3,j = (a 1,2 ⊕ a 2,3 + a 2,3 ) + n-3 2j+1 + a 3,2j+2 ) + 2a 3,n 2j ⊕ a 2,2j+1 + a 2,2j+1 ⊕ a 2,2j+2 ) + 2(a 2,n-1 ⊕ a 2,n ) j ) = 2 × deg(V 2 ).

  is a symmetric sequence. Moreover, by Dymacek's theorem, the matrix B is doubly-symmetric. Finally, by Proposition 3.3, the matrix B is multi-symmetric.Remark. By Theorem 3.4, it is easy to show that Conjecture 1 implies Conjecture 2. Indeed, if Conjecture 1 is true, then the zero-edge graph on n vertices is the only regular Steinhaus graph of even degree whose Steinhaus matrix is multi-symmetric. It follows, byTheorem 3.4, 

that if G(s) is a regular Steinhaus graph of odd degree on n + 2 vertices then s = (0, . . . , 0, 1) or s = (1, . . . , 1). Therefore the Steinhaus graph G(s) is the star graph on n + 2 vertices which is not a regular Steinhaus graph.
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