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Abstract

A Steinhaus matrix is a binary square matrix of size n which is symmetric, with
diagonal of zeros, and whose upper-triangular coefficients satisfy ai,j = ai−1,j−1+ai−1,j

for all 2 6 i < j 6 n. Steinhaus matrices are determined by their first row. A Steinhaus
graph is a simple graph whose adjacency matrix is a Steinhaus matrix. We give a short
new proof of a theorem, due to Dymacek, which states that even Steinhaus graphs, i.e.
those with all vertex degrees even, have doubly-symmetric Steinhaus matrices. In 1979
Dymacek conjectured that the complete graph on two vertices K2 is the only regular
Steinhaus graph of odd degree. Using Dymacek’s theorem, we prove that if (ai,j)16i,j6n

is a Steinhaus matrix associated with a regular Steinhaus graph of odd degree then
its sub-matrix (ai,j)26i,j6n−1 is a multi-symmetric matrix, that is a doubly-symmetric
matrix where each row of its upper-triangular part is a symmetric sequence. We prove
that the multi-symmetric Steinhaus matrices of size n whose Steinhaus graphs are
regular modulo 4, i.e. where all vertex degrees are equal modulo 4, only depend on
⌈

n
24

⌉

parameters for all even numbers n, and on
⌈

n
30

⌉

parameters in the odd case. This
result permits us to verify the Dymacek’s conjecture up to 1500 vertices in the odd
case.

1 Introduction

Let s = (a1, a2, . . . , an−1) be a binary sequence of length n − 1 > 1 with entries aj in
F2 = {0, 1}. The Steinhaus matrix associated with s is the square matrix M(s) = (ai,j) of
size n, defined as follows:

• ai,i = 0 for all 1 6 i 6 n,

• a1,j = aj−1 for all 2 6 j 6 n,
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• ai,j = ai−1,j−1 + ai−1,j for all 2 6 i < j 6 n,

• ai,j = aj,i for all 1 6 i, j 6 n.

By convention M(∅) = (0) is the Steinhaus matrix of size n = 1 associated with the empty
sequence. For example, the following matrix M(s) in M5(F2) is the Steinhaus matrix asso-
ciated with the binary sequence s = (1, 1, 0, 0) of length 4.

M(s) =













0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 0
0 0 1 0 0













The set of all Steinhaus matrices of size n > 2 will be denoted by SMn(F2). It is clear that,
for every positive integer n, the set SMn(F2) has a cardinality of 2n−1.

The Steinhaus triangle associated with s is the upper-triangular part of the Steinhaus
matrix M(s). It was introduced by Hugo Steinhaus in 1963 [14], who asked whether there
exists a Steinhaus triangle containing as many 0’s as 1’s for each admissible size. Solutions
of this problem appeared in [12, 11]. A generalization of this problem to all finite cyclic
groups was posed in [13] and was partially solved in [4].

The Steinhaus graph associated with s is the simple graph G(s) on n vertices whose
adjacency matrix is the Steinhaus matrix M(s). A vertex of a Steinhaus graph G(s) is
usually labelled by its corresponding row number in M(s) and the ith vertex of G(s) will
be denoted by Vi. For instance, the following graph is the Steinhaus graph G(s) associated
with the sequence s = (1, 1, 0, 0).

1 2

3

5 4

For every positive integer n, the zero-edge graph on n vertices is the Steinhaus graph asso-
ciated with the sequence of zeros of length n− 1.

Steinhaus graphs were introduced by Molluzzo in 1978 [13]. A general problem on Stein-
haus graphs is that of characterizing those satisfying a given graph property. The bipartite
Steinhaus graphs were characterized in [3, 7, 10] and the planar ones in [9]. In [6], the
following conjectures were made:

Conjecture 1. The regular Steinhaus graphs of even degree are the zero-edge graph on n
vertices, for all positive integers n, and the Steinhaus graph G(s) on n = 3m + 1 vertices
generated by the periodic sequence s = (1, 1, 0, . . . , 1, 1, 0) of length 3m, for all positive
integers m.
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Conjecture 2. The complete graph on two vertices K2 is the only regular Steinhaus graph
of odd degree.

These conjectures were verified up to n 6 25 in 1988 by exhaustive search [2]. More
recently [1], Augier and Eliahou extended the verification up to n 6 117 vertices by con-
sidering the weaker notion of parity-regular Steinhaus graphs, i.e. Steinhaus graphs where
all vertex degrees have the same parity. They searched regular graphs in the set of parity-
regular Steinhaus graphs. This has enabled them to perform the verification because it is
known that Steinhaus matrices associated with parity-regular Steinhaus graphs on n ver-
tices depend on approximately n/3 parameters [2, 1]. This result is based on a theorem, due
to Dymacek, which states that Steinhaus matrices associated with parity-regular Steinhaus
graphs of even type are doubly-symmetric matrices, i.e. where all the entries are symmetric
with respect to the diagonal and the anti-diagonal of the matrices. A short new proof of
this theorem is given in Section 2. Using Dymacek’s theorem, Bailey and Dymacek showed
[2] that binary sequences associated with regular Steinhaus graphs of odd degree are of the
form (x1, x2, . . . , xk, xk, . . . , x2, x1, 1). In Section 3, we refine this result and, more precisely,
we prove that if (ai,j)16i,j6n is a Steinhaus matrix associated with a regular Steinhaus graph
of odd degree, then its sub-matrix (ai,j)26i,j6n−1 is a multi-symmetric Steinhaus matrix, i.e.
a doubly-symmetric matrix where each row of the upper-triangular part is a symmetric se-
quence. A parametrization and a counting of multi-symmetric Steinhaus matrices of size n
are also given in Section 3 for all n > 1. In Section 4, we show that, for a Steinhaus graph
whose Steinhaus matrix is multi-symmetric, the knowledge of the vertex degrees modulo 4
leads to a system of binary equations on the entries of its Steinhaus matrix. In Section 5,
we study the special case of multi-symmetric Steinhaus matrices whose Steinhaus graphs are
regular modulo 4, i.e. where all vertex degrees are equal modulo 4. We show that a such
matrix of size n only depends on

⌈

n
24

⌉

parameters for all n even, and on
⌈

n
30

⌉

parameters
in the odd case. Using these parametrizations, we obtain, by computer search, that for all
positive integers n 6 1500, the zero-edge graph on n vertices is the only Steinhaus graph on
n vertices with a multi-symmetric matrix and which is regular modulo 4. This permits us
to extend the verification of Conjecture 2 up to 1500 vertices.

2 A new proof of Dymacek’s theorem

Recall that a square matrix M = (ai,j) of size n > 1 is said to be doubly-symmetric if the
entries of M are symmetric with respect to the diagonal and to the anti-diagonal of M , that
is

ai,j = aj,i = an−j+1,n−i+1, for all 1 6 i, j 6 n.

In [6], Dymacek characterized the parity-regular Steinhaus graphs. These results are
based on the following theorem on parity-regular Steinhaus graphs of even type, where all
vertex degrees are even.
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Theorem 2.1 (Dymacek’s theorem). The Steinhaus matrix of a parity-regular Steinhaus
graph of even type is doubly-symmetric.

In this section we give a new easier proof of Dymacek’s theorem. The main idea of our
proof is that the anti-diagonal entries of a Steinhaus matrix are determined by the vertex
degrees of its associated Steinhaus graph.

Theorem 2.2. Let G be a Steinhaus graph on n > 2 vertices and M = (ai,j) its associated
Steinhaus matrix. Then every anti-diagonal entry of M can be expressed by means of the
vertex degrees of G. If we denote by deg(Vi) the degree of the vertex Vi in G, then for all
1 6 i 6

⌊

n
2

⌋

, we have

ai,n−i+1 ≡
i−1
∑

k=0

(

i− 1

k

)

deg (Vi+k+1) ≡
i−1
∑

k=0

(

i− 1

k

)

deg (Vn−i−k) (mod 2).

The proof is based on the following lemma which shows that each entry of the upper-
triangular part of a Steinhaus matrix M = (ai,j) can be expressed by means of the en-
tries of the first row {a1,2, . . . , a1,n}, the last column {a1,n, . . . , an−1,n} or the over-diagonal
{a1,2, . . . , an−1,n} of M .

Lemma 2.3. Let M = (ai,j) be a Steinhaus matrix of size n > 2. Then, for all 1 6 i < j 6 n,
we have

ai,j =

i−1
∑

k=0

(

i− 1

k

)

a1,j−k =

n−j
∑

k=0

(

n− j

k

)

ai+k,n =

j−i−1
∑

k=0

(

j − i− 1

k

)

ai+k,i+k+1.

Proof. Easily follows from the relation: ai,j = ai−1,j−1 + ai−1,j for all 2 6 i < j 6 n.

Proof of Theorem 2.2. We begin by expressing each vertex degree of the Steinhaus graph G
by means of the entries of the first row, the last column and the over-diagonal of M . Here
we view the entries ai,j as 0,1 integers. For all 2 6 i 6 n− 1, we obtain

deg(Vi) =

n
∑

j=1

ai,j =

i−1
∑

j=1

aj,i +

n
∑

j=i+1

ai,j

≡
i−1
∑

j=1

(aj,i+1 + aj+1,i+1) +
n

∑

j=i+1

(ai−1,j−1 + ai−1,j)

≡
i−1
∑

j=1

aj,i+1 +

i
∑

j=2

aj,i+1 +

n−1
∑

j=i

ai−1,j +

n
∑

j=i+1

ai−1,j

≡ a1,i+1 + ai,i+1 + ai−1,i + ai−1,n (mod 2).
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By Lemma 2.3, it follows that

i−1
∑

k=0

(

i− 1

k

)

deg (Vi+k+1) ≡
i−1
∑

k=0

(

i− 1

k

)

(a1,i+k+2 + ai+k+1,i+k+2 + ai+k,i+k+1 + ai+k,n)

≡
i−1
∑

k=0

(

i− 1

k

)

a1,2i−k+1 +
i−1
∑

k=0

(

i− 1

k

)

ai+k+1,i+k+2

+
i−1
∑

k=0

(

i− 1

k

)

ai+k,i+k+1 +
i−1
∑

k=0

(

i− 1

k

)

ai+k,n

≡ ai,2i+1 + ai+1,2i+1 + ai,2i + ai,n−i+1 ≡ ai,n−i+1 (mod 2),

for all 1 6 i 6
⌊

n
2

⌋

. The second congruence can be treated by the same way.

Remark. We deduce from Theorem 2.2 a necessary condition on the vertex degrees of a given
labelled graph to be a Steinhaus graph. Indeed, vertex degrees of a Steinhaus graph on n
vertices must satisfy the following binary equations:

i−1
∑

k=0

(

i− 1

k

)

deg (Vi+k+1) ≡
i−1
∑

k=0

(

i− 1

k

)

deg (Vn−i−k) (mod 2), for all 1 6 i 6
⌊n

2

⌋

.

More generally, an open problem, corresponding to Question 3 in [8], is to determine if an
arbitrary graph, not necessary labelled, is isomorphic to a Steinhaus graph.

Now, we characterize doubly-symmetric Steinhaus matrices.

Proposition 2.4. Let M = (ai,j) be a Steinhaus matrix of size n > 3. Then the following
assertions are equivalent:

(i) the matrix M is doubly-symmetric,

(ii) the over-diagonal of M is a symmetric sequence,

(iii) the entries ai,n−i+1 of the anti-diagonal of M vanish for all 1 6 i 6
⌊

n−1
2

⌋

.

Proof.

(i) =⇒ (ii) : Trivial.

(ii) =⇒ (iii) : Suppose that the over-diagonal of M is a symmetric sequence, that is

ai,i+1 = an−i,n−i+1,

for all 1 6 i 6 n− 1. If n is odd, then we have

ai,n−i+1 =
n−2i
∑

k=0

(

n− 2i

k

)

ai+k,i+k+1 =

n−2i+1

2
∑

k=0

(

n− 2i

k

)

(ai+k,i+k+1 + an−i−k,n−i−k+1) = 0,
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for all 1 6 i 6
⌊

n−1
2

⌋

. Otherwise, if n is even, then we obtain

ai,n−i+1 =

n

2
−i−1
∑

k=0

(

n− 2i

k

)

(ai+k,i+k+1 + an−i−k,n−i−k+1) + 2

(

n− 2i− 1
n
2
− i

)

an

2
,n
2
+1 = 0,

for all 1 6 i 6
⌊

n−1
2

⌋

.

(iii) =⇒ (i) : By induction on n. Consider the sub-matrix N = (ai,j)26i,j6n−1 that is a
Steinhaus matrix of size n− 2. By induction hypothesis, the matrix N is doubly-symmetric.
Then it remains to prove that a1,j = an−j+1,n for all 2 6 j 6 n. First, since a1,n = 0, it
follows that a1,n−1 = a1,n + a2,n = a2,n and for all 2 6 j 6 n− 2, we have

a1,j =

n−1
∑

k=j+1

a2,k + a1,n−1 =

n−j
∑

k=2

ak,n−1 + a2,n = an−j+1,n.

We are now ready to prove Dymacek’s theorem.

Proof of Theorem 2.1. Let G be a parity-regular Steinhaus graph of even type on n vertices
and M = (ai,j) its Steinhaus matrix. If n = 1, then M = (0) which is trivially doubly-
symmetric. Otherwise, for n > 2, Theorem 2.2 implies that

ai,n−i+1 ≡
i−1
∑

k=0

(

i− 1

k

)

deg (Vi+k+1) ≡ 0 (mod 2),

for all 1 6 i 6
⌊

n
2

⌋

. Finally, the matrix M is doubly-symmetric by Proposition 2.4.

3 Multi-symmetric Steinhaus matrices

In this section, we will study in detail the structure of Steinhaus matrices associated with
regular Steinhaus graphs of odd degree.

Let G be a Steinhaus graph on n > 1 vertices. Then, for every integer 1 6 i 6 n, we
denote by G \ {Vi} the graph obtained from G by deleting its ith vertex Vi and its incident
edges in G. Since the adjacency matrix of the graph G\{V1} (resp. G\{Vn}) is the Steinhaus
matrix obtained by removing the first row (resp. the last column) in the adjacency matrix of
G, it follows that the graph G \ {V1} (resp. G \ {Vn}) is a Steinhaus graph on n− 1 vertices.

Bailey and Dymacek studied the regular Steinhaus graphs of odd degree in [2], where the
following theorem is stated, using Dymacek’s theorem.
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Theorem 3.1 ([2]). Let G be a regular Steinhaus graph of odd degree d on 2n > 4 vertices.
Then d = n, the Steinhaus graph G \ {V1, V2n} is regular of even degree n − 1, and a1,j =
a1,2n−j+1 for all 2 6 j 6 2n− 1.

Remark. In every simple graph, there are an even number of vertices of odd degree. Therefore
parity-regular Steinhaus graphs of odd type and thus regular Steinhaus graphs of odd degree
have an even number of vertices.

In their theorem, the authors studied the form of the sequence associated with G. We
are more interested in the Steinhaus matrix of G \ {V1, V2n} in the sequel.

Recall that a square matrix of size n > 1 is said to be multi-symmetric if M is doubly-
symmetric and each row of the upper-triangular part of M is a symmetric sequence, that
is

ai,j = ai,n−j+i+1, for all 1 6 i < j 6 n.

First, it is easy to see that each column of the upper-triangular part of a multi-symmetric
matrix is also a symmetric sequence.

Proposition 3.2. Let M = (ai,j) be a multi-symmetric matrix of size n. Then, each column
of the upper-triangular part of M is a symmetric sequence, that is ai,j = aj−i,j for all 1 6

i < j 6 n.

Proof. Easily follows from the relation: ai,j = ai,n−j+i+1 = aj−i,n−i+1 = aj−i,j for all 1 6 i <
j 6 n.

As for doubly-symmetric Steinhaus matrices, multi-symmetric Steinhaus matrices can be
characterized as follows.

Proposition 3.3. Let M = (ai,j) be a Steinhaus matrix of size n > 3. Then the following
assertions are equivalent:

(i) the matrix M is multi-symmetric,

(ii) the first row, the last column and the over-diagonal of M are symmetric sequences,

(iii) the entries ai,n−i+1, an−2i+1,n−i+1 and ai,2i vanish for all 1 6 i 6
⌊

n−1
2

⌋

.

Proof. Similar to the proof of Proposition 2.4 and by using Lemma 2.3 and Proposition 3.2.

We now refine Theorem 3.1.

Theorem 3.4. Let G be a regular Steinhaus graph of odd degree n on 2n > 4 vertices. Then
G \ {V1, V2n} is a regular Steinhaus graph of even degree n − 1 whose associated Steinhaus
matrix is multi-symmetric.
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Proof. Let M = (ai,j) be the Steinhaus matrix associated with G. Theorem 3.1 implies that
the Steinhaus graph G \ {V1, V2n} is regular of even degree n− 1 and that we have

a1,j = a1,2n−j+1,

for all 2 6 j 6 2n− 1. Therefore, for all 3 6 j 6 2n− 1, we have

a2,j+a2,2n−j+2 = (a1,j−1+a1,j)+(a1,2n−j+1+a1,2n−j+2) = (a1,j−1+a1,2n−j+2)+(a1,j+a1,2n−j+1) = 0.

Then the first row of the matrix B = (ai,j)26i,j62n−1, the Steinhaus matrix of the graph
G \ {V1, V2n}, is a symmetric sequence. Moreover, by Dymacek’s theorem, the matrix B is
doubly-symmetric. Finally, by Proposition 3.3, the matrix B is multi-symmetric.

Remark. By Theorem 3.4, it is easy to show that Conjecture 1 implies Conjecture 2. Indeed,
if Conjecture 1 is true, then the zero-edge graph on n vertices is the only regular Steinhaus
graph of even degree whose Steinhaus matrix is multi-symmetric. It follows, by Theorem 3.4,
that if G(s) is a regular Steinhaus graph of odd degree on n+2 vertices then s = (0, . . . , 0, 1)
or s = (1, . . . , 1). Therefore the Steinhaus graph G(s) is the star graph on n + 2 vertices
which is not a regular Steinhaus graph.

In the sequel of this section we will study in detail the multi-symmetric Steinhaus ma-
trices. First, in order to determine a parametrization of these matrices, we introduce the
following operator

T : SMn(F2) −→ SMn−3(F2),

which assigns to each matrix M = (ai,j) in SMn(F2) the Steinhaus matrix T (M) = (bi,j) in
SMn−3(F2) defined by bi,j = ai−1,j−2, for all 1 6 i < j 6 n− 3. As depicted in the following
matrix, the upper-triangular part of M is an extension of the upper-triangular part of T (M).

















































0 a1,2 a1,3 a1,4 a1,5 a1,6 · · · · · · a1,n−4 a1,n−3 a1,n−2 a1,n−1 a1,n
0 a2,3 b1,2 b1,3 b1,4 · · · · · · · · · b1,n−5 b1,n−4 b1,n−3 a2,n

0 a3,4 b2,3 b2,4 b2,n−4 b2,n−3 a3,n
0 a4,5 b3,4 b3,n−3 a4,n

0 a5,6
. . .

... a5,n

0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

0 an−5,n−4 bn−6,n−5 bn−6,n−4 bn−6,n−3 an−5,n

0 an−4,n−3 bn−5,n−4 bn−5,n−3 an−4,n

0 an−3,n−2 bn−4,n−3 an−3,n

0 an−2,n−1 an−2,n

0 an−1,n

0

















































Proposition 3.5. Let M = (ai,j) be a Steinhaus matrix of size n > 4. Then the extension
M of T (M) only depends on the parameters a1,2, a1,j0 and a1,n, with j0 in {3, . . . , n− 1}.
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Proof. Let 3 6 j0 6 n− 1. Each entry a1,j , for 3 6 j 6 n− 1, can be expressed by means of
a1,j0 and the entries of T (M) = (bi,j). Indeed, we have

a1,j = a1,j0 +

j0−2
∑

k=j−1

b1,k, for all 3 6 j < j0,

a1,j = a1,j0 +

j−2
∑

k=j0−1

b1,k, for all j0 < j 6 n− 1.

Then the entries a1,2, a1,j0 and a1,n determine the extension M of T (M).

Therefore, for every Steinhaus matrix N of size n − 3, there exist 8 distinct Steinhaus
matrices M of size n such that T (M) = N . We can also use this operator to determine
parametrizations of multi-symmetric Steinhaus matrices.

Proposition 3.6. Let M = (ai,j) be a multi-symmetric Steinhaus matrix of size n. Let ji be
an element of the set {2i+ 1, . . . , n− i} for all 1 6 i 6

⌊

n−1
3

⌋

. Then the matrix M depends
on the following parameters:

• a1,j1 and
{

a2i,j2i
∣

∣ 1 6 i 6
⌈

n
6

⌉

− 1
}

, for n even,

•
{

a2i+1,j2i+1

∣

∣ 0 6 i 6
⌈

n−3
6

⌉

− 1
}

, for n odd.

Proof. Let M = (ai,j) be a multi-symmetric matrix of size n. We consider the sub-matrices
T (M), T 2(M) = T (T (M)), T 3(M), T 4(M), . . .. By successive application of Proposi-
tion 3.5 on the extension T i−1(M) of T i(M) and since the entries ai,n−i+1, an−2i+1,n−i+1 and
ai,2i vanish for all 1 6 i 6

⌊

n−1
2

⌋

by Proposition 3.3, the parametrizations of the multi-
symmetric matrix M follow.

For all positive integers n, the number of multi-symmetric Steinhaus matrices of size n
immediately follows.

Theorem 3.7. Let n be a positive integer. If we denote by MS(n) the number of multi-
symmetric Steinhaus matrices of size n, then we have

MS(n) =

{

2⌈
n

6 ⌉ , for n even,

2⌈
n−3

6 ⌉ , for n odd.

4 Vertex degrees of Steinhaus graphs associated with

multi-symmetric Steinhaus matrices

In this section, we analyse the vertex degrees of a Steinhaus graph associated with a multi-
symmetric Steinhaus matrix of size n. We begin with the case of doubly-symmetric Steinhaus
matrices.
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Proposition 4.1. Let n be a positive integer and G be a Steinhaus graph on n vertices whose
Steinhaus matrix is doubly-symmetric. Then, for all 1 6 i 6 n, we have

deg(Vi) = deg(Vn−i+1).

Proof. If we denote by M = (ai,j) the Steinhaus matrix associated with the graph G, then,
for all 1 6 i 6 n, we have

deg(Vi) =
n

∑

j=1

ai,j =
n

∑

j=1

an−j+1,n−i+1 =
n

∑

j=1

aj,n−i+1 = deg(Vn−i+1).

We shall now see that, for a Steinhaus graph associated with a multi-symmetric Steinhaus
matrix, the knowledge of the vertex degrees modulo 4 imposes strong conditions on the entries
of its Steinhaus matrix. In order to prove this result, we distinguish different cases depending
on the parity of n.

Proposition 4.2. Let n be an even number and G be a Steinhaus graph on n vertices whose
Steinhaus matrix M = (ai,j) is multi-symmetric. Then, we have

deg(V1) = deg(Vn) ≡ a1,n
2
+1 (mod 2),

deg(V2) = deg(Vn−1) ≡ 2a1,n
2
+1 (mod 4),

deg(V3) = deg(Vn−2) ≡ 2a2,n
2
+1 (mod 4),

deg(V2i) = deg(Vn−2i+1) ≡ 2a2,2i+1 + 2ai,2i+1 (mod 4), for all 2 6 i 6 n
2
− 2.

Proof. First, Proposition 3.3 implies that the entries ai,2i and a2i+1,n
2
+i+1 vanish for all 1 6

i 6 n
2
− 1. This leads to

deg(V1) =
n

∑

j=2

a1,j =

n

2
∑

j=2

(a1,j + a1,n−j+2) + a1,n
2
+1 ≡ a1,n

2
+1 (mod 2),

deg(V2) = a1,2 +

n

2
+1

∑

j=3

(a2,j + a2,n−j+3) = 2

n

2
+1

∑

j=3

a2,j ≡ 2a1,2 + 2a1,n
2
+1 ≡ 2a1,n

2
+1 (mod 4),

deg(V3) = (a1,3 + a2,3) +

n

2
+1

∑

j=4

(a3,j + a3,n−j+4) + a3,n
2
+2 = 2a2,3 + 2

n

2
+1

∑

j=4

a3,j ≡ 2a2,n
2
+1 (mod 4),

10



and, for all 2 6 i 6 n
2
− 2, we have

deg(V2i) =

2i−1
∑

j=i+1

(aj,2i + a2i−j,2i) + ai,2i +

n

2
+i

∑

j=2i+1

(a2i,j + a2i,n−j+2i+1)

= 2
2i−1
∑

j=i+1

aj,2i + 2

n

2
+i

∑

j=2i+1

a2i,j

≡ 2

2i−1
∑

j=i+1

aj,2i+1 + 2

2i
∑

j=i+2

aj,2i+1 + 2

n

2
+i−1
∑

j=2i

a2i−1,j + 2

n

2
+i

∑

j=2i+1

a2i−1,j

≡ 2ai+1,2i+1 + 2a2i,2i+1 + 2a2i−1,2i + 2a2i−1,n
2
+i

≡ 2ai+1,2i+1 + 2a2i−1,2i+1 ≡ 2a2,2i+1 + 2ai,2i+1 (mod 4).

Finally, we complete the proof by Proposition 4.1.

Remark. Let n be an even number. In every Steinhaus graph on n vertices whose Steinhaus
matrix is multi-symmetric the fourth vertex V4 has a degree divisible by 4.

Proposition 4.3. Let n be an odd number and G be a Steinhaus graph on n vertices whose
Steinhaus matrix M = (ai,j) is multi-symmetric. Then, we have

deg(V1) = deg(Vn) ≡ 0 (mod 2),
deg(V2) = deg(Vn−1) ≡ 2a1,n+1

2

(mod 4),

deg(V2i) ≡ 2ai+1,2i+1 + 2a2i−1,2i+1 + 2a2i−1,n−1

2
+i (mod 4), for all 2 6 i 6 n−3

2
,

deg(V2i+1) ≡ 2a2,2i+2 (mod 4), for all 1 6 i 6 n−3
2
.

Proof. Proposition 3.3 implies that the entries ai,2i and a2i,(n+1)/2+i vanish for all 1 6 i 6 n−3
2
.

Since each row and each column of the upper triangular part of M is symmetric, we can use
the relation

m
∑

k=1

ai,j+k ≡ ai−1,j + ai−1,j+m (mod 2), for all 2 6 i < j 6 n−m+ 1

as in the proof of Proposition 4.2, and the results follow.

Remark. Let n be an odd number. In every Steinhaus graph on n vertices whose Steinhaus
matrix is multi-symmetric the third vertex V3 has a degree divisible by 4.

5 Multi-symmetric Steinhaus matrices

of Steinhaus graphs with regularity modulo 4

In this section, we consider the multi-symmetric Steinhaus matrices associated with Stein-
haus graphs which are regular modulo 4, i.e. where all vertex degrees are equal modulo
4. First, we determine an upper bound of the number of these matrices. Two cases are
distinguished, according to the parity of n.

11



Theorem 5.1. For all odd numbers n, there are at most 2⌈
n

30⌉ multi-symmetric Steinhaus
matrices of size n whose associated Steinhaus graphs are regular modulo 4.

Proof. Let n be an odd number and M = (ai,j) a multi-symmetric Steinhaus matrix of size
n. By Proposition 3.6, the matrix M depends on the parameters a2i+1,n+1

2
+i for 0 6 i 6

⌈

n−3
6

⌉

−1. If the Steinhaus graph associated withM is regular modulo 4, then Proposition 4.3
implies that a2,2j = 0 for all 2 6 j 6 n−1

2
and thus

a2i,2j =
i−1
∑

k=0

a2,2j−2k = 0,

for all 1 6 i < j 6 n−1
2
.

If n ≡ 1 (mod 4), then n+1
2

is odd and

a4i+1,n+1

2
+2i = a4i,n−1

2
+2i + a4i,n+1

2
+2i = 0,

for all 0 6 i 6

⌊

⌈n−3

6 ⌉−1

2

⌋

. Therefore the matrix M can be parametrized by

{

a4i+3,n+3

2
+2i

∣

∣

∣
0 6 i 6 m− 1

}

,

with

m =

⌈

⌈

n−3
6

⌉

− 1

2

⌉

.

Suppose that we know the p parameters in

P =
{

a4i+3,n+3

2
+2i

∣

∣

∣
m− p 6 i 6 m− 1

}

.

Then, by Proposition 3.6 again, the multi-symmetric matrix T 4(m−p)−1(M) can be parametrized
by P . Therefore the entries

{

ai,2i+1

∣

∣

∣

∣

4(m− p) 6 i 6
n− 1

2
− 2(m− p)

}

in T 4(m−p)−1(M) depend on the parameters in P . Moreover, if the Steinhaus graph associated
with M is regular modulo 4, then Proposition 4.3 implies that

a2,2i+1 = a2i−1,2i+1 ≡ ai+1,2i+1 + a2i−1,n−1

2
+i ≡ ai+1,2i+1 + a(n+1

2
−i)+1,2(n+1

2
−i)+1 (mod 2),

for all 1 6 i 6 n−1
2
. If the inequality

n + 1

2
− 4(m− p) > 4(m− p)

12



holds, then the entries a2,2i+1 depend on the parameters in P for all 4(m − p) 6 i 6
n+1
2

− 4(m − p). Since we have a2,2i = 0 for all 4(m − p) 6 i 6 n+3
2

− 4(m − p), it follows
that the entries

{

ai,j

∣

∣

∣

∣

2 6 i 6 n + 5− 16(m− p)
8(m− p) + i− 1 6 j 6 n + 3− 8(m− p)

}

depend on the parameters in P . Suppose now that p is solution of the following inequality

n + 5− 16(m− p) > 4(m− p)− 1.

Therefore the extension M of T (4(m−p)−1)(M) depends on the entries ai,n+3−8(m−p) for 2 6

i 6 4(m− p)− 1 and a1,n+1

2

which vanishes by Proposition 4.3. Thus, all the entries of the

matrix M depend on the p parameters in P . Finally, a solution of this inequality can be
obtained when

p =
⌈ n

30

⌉

>

⌈

⌈

n−3
6

⌉

− 1

2

⌉

−
n+ 6

20
.

If n ≡ 3 (mod 4), then n+1
2

is even and

a4i+3,n+3

2
+2i = a4i+2,n+1

2
+2i + a4i+2,n+3

2
+2i = 0,

for all 0 6 i 6

⌈

⌈n−3

6 ⌉−1

2

⌉

− 1. Therefore the matrix M can be parametrized by

{

a4i+1,n+1

2
+2i

∣

∣

∣
0 6 i 6 m

}

with

m =

⌊

⌈

n−3
6

⌉

− 1

2

⌋

.

As above, in the case n ≡ 1 (mod 4), we can prove that all the entries of the matrix M
depend on the p parameters in

{

a4i+1,n+1

2
+2i

∣

∣

∣
m− p+ 1 6 i 6 m

}

if p is solution of the following inequality

n− 16(m− p)− 4 > 4(m− p) + 1.

A solution is obtained when

p =
⌈ n

30

⌉

>

⌊

⌈

n−3
6

⌉

− 1

2

⌋

−
n− 5

20
.
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Theorem 5.2. For all even numbers n, there are at most 2⌈
n

24⌉ multi-symmetric Steinhaus
matrices of size n whose associated Steinhaus graphs are regular modulo 4.

Sketch of proof. Similar to the proof of Theorem 5.1. Let M = (ai,j) be a multi-symmetric
Steinhaus matrix of even size n. First, by Proposition 3.6, for all positive integers p < m−1
with m =

⌈

n
6

⌉

, the multi-symmetric Steinhaus matrix T 2(m−p−1)(M) can be parametrized by
the p entries in

P = {a2i,4i+1 | m− p 6 i 6 m− 1} .

Moreover, if the Steinhaus graph associated withM is regular modulo 4, then Proposition 4.2
implies that a1,n

2
+1 = 0 and a2,2i+1 = ai,2i+1 for all 2 6 i 6 n

2
− 1. It follows that the entries

a2i,n−2(m−p)+1 also depends on the parameters in P for all 1 6 i 6 n
2
− 3(m− p) + 2. Finally,

we can see that, if p is solution of the following inequality

n

2
− 3(m− p) + 2 > m− p− 1,

then, as in the proof of Proposition 3.6, the extension M of T 2(m−p−1)(M) depends on the
entries a2i,n−2(m−p)+1 for 1 6 i 6 m− p− 1 and thus all the entries of the matrix M can be
expressed by means of the p parameters in P . We conclude the proof by observing that the
inequality is obtained when

p =
⌈ n

24

⌉

>

⌈n

6

⌉

−
n + 6

8
.

Using these explicit parametrizations of the multi-symmetric Steinhaus matrices whose
Steinhaus graphs are regular modulo 4, we obtain the following result by computer search:

Computational Result. For all positive integers n 6 1500, the zero-edge graph on n
vertices is the only Steinhaus graph on n vertices with a multi-symmetric Steinhaus matrix
and which is regular modulo 4.

This result can be easily proved for all odd numbers in the special case of regular Steinhaus
graphs on n vertices whose Steinhaus matrices are multi-symmetric.

Theorem 5.3. For all odd numbers n, there is no regular Steinhaus graph on n vertices
whose Steinhaus matrix is multi-symmetric, except the zero-edge graph on n vertices.

Proof. Let n be an odd number. Let G be a regular Steinhaus graph on n vertices and
M = (ai,j) its Steinhaus matrix. Then Proposition 4.3 implies that

deg(Vi) ≡ 0 (mod 4),

for all 1 6 i 6 n and
a2,2i+2 = 0,
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for all 1 6 i 6 n−3
2
. If we denote by ⊕ the addition in F2 and + the addition in the integers,

then we obtain

deg(V3) = a1,3 + a2,3 +
n

∑

j=4

a3,j = (a1,2 ⊕ a2,3 + a2,3) +

n−3

2
∑

j=2

(a3,2j+1 + a3,2j+2) + 2a3,n

= 2a2,3 +

n−3

2
∑

j=2

(a2,2j ⊕ a2,2j+1 + a2,2j+1 ⊕ a2,2j+2) + 2(a2,n−1 ⊕ a2,n)

= 2

n−1

2
∑

j=1

a2,2j+1 = 2(a1,2 +
n

∑

j=3

a2,j) = 2× deg(V2).

This leads to deg(Vi) = 0 for all 1 6 i 6 n and thus G is the zero-edge graph on n vertices.

Finally, the above computational result permits us to extend the verification of Conjec-
ture 2 up to n 6 1500 vertices. Indeed, as proved in the remark following Theorem 3.4,
for a Steinhaus graph G on 2n vertices, if G \ {V1, V2n} is the zero-edge graph on 2n − 2
vertices, then G is the star graph on 2n vertices which is not a regular graph. Therefore, by
Theorem 3.4, we obtain

Theorem 5.4. There is no regular Steinhaus graph of odd degree on 2 < n 6 1500 vertices.

Acknowledgments

The author would like to thank Shalom Eliahou for introducing him to the subject and for
his help in preparing this paper.

References

[1] Maxime Augier and Shalom Eliahou. Parity-regular Steinhaus graphs. Mathematics of
Computation, 77:1831–1839, 2008.

[2] Craig Bailey and Wayne M. Dymacek. Regular Steinhaus graphs. In Proc. 19th south-
east. Conf. Combinatorics, Graph Theory and Computing, Baton Rouge 1988, Congr.
Numerantium 66, pages 45–47, 1988.

[3] Gerard J. Chang, Bhaskar DasGupta, Wayne M. Dymacek, Martin Fürer, Matthew
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