
HAL Id: hal-00371216
https://hal.science/hal-00371216

Submitted on 27 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance evaluation of Fractal component based
systems

N. Salmi, P. Moreaux, M. Ioualalen

To cite this version:
N. Salmi, P. Moreaux, M. Ioualalen. Performance evaluation of Fractal component based sys-
tems. Annals of Telecommunications - annales des télécommunications, 2009, 64 (1-2), pp.81-100.
�10.1007/s12243-008-0070-1�. �hal-00371216�

https://hal.science/hal-00371216
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Performance evaluation of Fractal component based systems

Nabila Salmi · Patrice Moreaux · Malika Ioualalen

the date of receipt and acceptance should be inserted later

Abstract Component based system development is now a
well accepted design approach in software engineering. Nu-
merous component models have been proposed and for most
of them, specific software tools allow building Component
Based System (CBS). Although these tools perform several
checks on the built system, few of them provide formal ver-
ification of behavioural properties nor performance evalu-
ation of the resulting system. In this context, we have de-
veloped a general method associating to a CBS, a formal
model, based on Stochastic Well formed Nets, a class of
high level Petri Nets, allowing qualitative behavioural anal-
ysis together with performance evaluation of this CBS. The
definition of the model heavily depends on the (run time)
component model used to describe the CBS. In this paper,
we instantiate our method to Fractal CBS and its reference
Java implementation Julia. The method starts from the Frac-
tal architectural description of a system, and defines rules
to systematically generate elements models of the CBS and
their interactions. We then apply a structured method both
for qualitative and performance analysis taking into account
the given implementation of the Fractal model. The main
interest of our method is to take advantage of the compo-
sitional definition of such systems to carry out an efficient
analysis. The paper concentrates on performance evaluation
and presents our method step by step with an illustrative ex-
ample.

Keywords Modelling · performances · component ·
interaction · CBS · SWN · synchronous composition ·
asynchronous composition

N. Salmi · P. Moreaux
LISTIC, Université de Savoie, France. E-mail: {nabila.salmi,
patrice.moreaux}@univ-savoie.fr

N. Salmi · M. Ioualalen
LSI, Université des Sciences et Technologie, Alger, Algérie. E-mail:
{salmi,ioualalen}@lsi-usthb.dz

1 Introduction

Component based technology [28] is an attractive paradigm,
widely used for the development of software and hardware
systems. In this paradigm, components are developed in iso-
lation or reused from previous works, and are then assem-
bled to build a Component Based System (CBS). The main
goals of such approaches are to produce high quality ap-
plications, reduce cost and time developments, and achieve
more reliability, higher maintainability and easier upgrade.
Since the mid’70, a lot of component models have been pro-
posed in the literature, among them EJB, CCM and CORBA,
COM+/.NET, Fractal [23,17,18,22], and are used in effec-
tive applications. Building CBS is supported by sets of tools
associated to each component model. These tools allow de-
scription of the CBS through Architecture Description Lan-
guages (ADL) [21] and provide the architect with several
checking tools mainly based on syntactic analysis of the de-
scription and the source code of the elementary units of the
component model (such as components, connectors, inter-
faces, configuration descriptions). They ensure for instance
that interfaces required by one component are provided by
another component and that the interconnection between the-
se interfaces is provided either directly or through a compat-
ible connector. Beyond this “static” analysis, the complexity
of many CBSs requires verification of behavioural proper-
ties such as deadlock-freeness, reachability of some states
and so on. This is achieved by defining a formal semantics
to the component model and by (model) checking required
properties against the semantic model of the CBS. We em-
phasize that such an analysis should be based on a runtime
component model and not only on an architectural compo-
nent model. Formal semantics of the component model is
most often given by a Labelled Transition Systems (LTS)
either directly or derived from a higher formal model such
as process algebras or state based models (for instance Stat-

2

echarts, Petri Nets) generating a LTS. To cope with the clas-
sical problem of the state space explosion (huge size of the
LTS of the system), model checking should be based on the
formal models of the components and their composition, al-
lowing several levels of component behaviour models (ab-
straction) [11] and merging of several component models
into a single one (hierarchy) [20].

For what concerns performance analysis of CBSs, it is
usually carried out through measures on existing systems,
whereas predictive performance evaluation remains an im-
portant field of application in the perspective of software
performance engineering [27]. This is the context of our
work and we develop stochastic models of CBSs to provide
performance indices about them during the design phase.
Here also we should try to take into account the specific,
component based, architecture, as for instance [25] in the
context of dependability modelling using the description lan-
guage AADL, and [29,16] which start from a UML design
model and build a performance analysis model based on
Layered Queuing Networks [14].

Among component models that gained attention these
last years, the Fractal model [9] offers a hierarchical and re-
flective component model with dynamic configuration, com-
ponent composition, management and sharing capabilities.
A Fractal component is a runtime entity exposing provided
and required services through a set of functional interfaces.
It is also endowed with a set of control capabilities, defined
through control interfaces. Fractal components are assem-
bled to form a software application, either “by hand”, that is
directly in the Java code, but most often with the help of soft-
ware development tools, like the Fractal ADL, etc. Fractal
CBSs may be developed using several target programming
languages (Java, C, C#, SmallTalk). For each language, a
reference implementation is defined (Julia for Java, Think
for C). Note that a completely specified runtime Fractal CBS
cannot be modelled without taking into account specific im-
plementation details, which implies knowing the target lan-
guage of the application.

In the present paper, we focus on performance analysis
of Julia Fractal CBSs based on formal models of the compo-
nents and systematic building of the formal model of these
CBSs. The main advantage of our approach is to exploit as
much as possible, the compositional architecture of the sys-
tem in order to reduce complexity of performance indices
computation.

Components and the global system are modelled with
the Stochastic Well formed (SWN) formalism [10], a spe-
cial class of high level Petri nets, useful to express symmetri-
cal behaviours and allowing performance analysis. Although
we can take into account both functional and non-functional
aspects of a Fractal CBS within our approach, we concen-
trate in this work on “stable” configurations, that is to say
on Fractal architectures after initialization phase or between

Fig. 1: The Fractal component model

reconfiguration phases since we compute steady-state per-
formance indices.

We first translate systematically interfaces and interac-
tions between Fractal components in the SWN context. Then
for a given Fractal CBS, we suppose given SWN models of
the primitive components. Next, from the architecture de-
scription of a Fractal system (provided by Fractal ADL), we
show how to build the global SWN of the CBS. We have now
a global SWN and a set of sub-SWNs modelling the compo-
nents. Finally, we apply, when possible, a structured method
allowing to compute performance indices. In order to apply
this structured compositional method, we derive from the ar-
chitecture of the CBS, a compositional view of the system at
the SWN level, and we apply a modified version of our pre-
vious works [12,13] which proposed a structured analysis
method for either a synchronous or asynchronous decompo-
sition of SWNs. This method is based on a combined ag-
gregation/tensorial representation of the underlying Markov
chain of the global SWN.

The paper is organized as follows. Section 2 reminds
main features of the Fractal component model and intro-
duces an illustrative example. Section 3 presents the gen-
eral method we have developed for behavioural qualitative
analysis and performance evaluation of CBSs. Then, we de-
scribe in section 4 application of our method in the Fractal
CBS case, providing a SWN based formal model of any such
CBS. Section 5 shows how to manage a structured perfor-
mance analysis of the model built previously and presents
some results for the illustrative example. We conclude and
describe future work in section 6.

2 The Fractal Component model

Fractal [8,9] is a general component model developed within
the consortium ObjectWeb by France Telecom R&D and the
INRIA. It is intended to implement, deploy, monitor and
dynamically configure complex software systems, including
operating systems and middleware.

3

2.1 Main features

A Fractal component is a runtime entity that interacts with
its environment (i.e. other components) through well-defined
interfaces (figure 11). An interface is an access point to a
component, that specifies provided services or required ser-
vices exposed by other components. There are two kinds of
interfaces: server interfaces correspond to points accepting
incoming operation invocations, and client interfaces sup-
port outgoing operation invocations.

A Fractal component possesses two parts: a content part
and a controller part. The content part consists of a finite
number of other components, called sub-components, mak-
ing the model recursive and allowing components to be nested
at an arbitrary level. At the lowest level, a Fractal compo-
nent is a black box, called base or primitive component, that
doesn’t provide introspection or intercession capabilities. A
Fractal component whose content is not empty is said com-
posite.

The controller part, termed the membrane, provides a
set of control interfaces, supporting introspection (monitor-
ing) and reconfiguration of internal features of the compo-
nent, such as suspending and resuming activities of a sub-
component. Several control interfaces have been defined in
the Fractal model specification, namely:

– The Life cycle Controller (LC) manages the component
life cycle, in support for dynamic reconfiguration. Basic
methods supported are starting and stopping the execu-
tion of the component.

– The Binding Controller (BC) manages connections or
bindings to other components. It allows to bind and un-
bind interfaces of communicating components (see be-
low).

– The Content Controller (CC) provides content operations
such as listing, adding and removing sub-components.

– The Attribute Controller (AC) exposes getter and set-
ter operations for attributes (configurable properties, ser-
vice attribute in the figure) of a component.

The membrane of a component can have external and in-
ternal interfaces. External interfaces are reachable from out-
side the component, while internal interfaces are only reach-
able from its sub-components, and are not visible from the
outside. External interfaces of a sub-component are exported
by interceptors as an external interface of the composite par-
ent component. Interceptors may introduce specific opera-
tions between incoming and outgoing operation invocations
of an exported interface.

A component may be shared by several enclosing com-
ponents. In this case, it is subject to the control of their

1 Figures related to the Fractal model or Fractal CBS are repro-
duced from documentation on the Fractal project Web site: http:

//fractal.objectweb.org

Fig. 2: Bindings between Fractal components

respective controllers. The exact semantics of the resulting
configuration is determined by an encompassing component
which encloses all relevant components in the configuration.

In order to define the architecture of an application, Frac-
tal components are connected by bindings (see figure 2) i.e.
connections between two or more components. The Fractal
model specification defines primitive and composite bind-
ings. A primitive binding is a direct connection between
a client interface and a server interface. It can be a nor-
mal binding when the client and server interfaces are ex-
ternal, and the corresponding communicating components
have a direct common enclosing component. It can also be
an export binding, respectively an import binding, when the
client interface is internal, and the server interface is exter-
nal, and the component exposing the service (server) is a
sub-component of the other (respectively, the client interface
is external, and the server interface is internal, the compo-
nent requiring the service (client) is a sub-component of the
other). Whereas, a composite binding is a communication
path between an arbitrary number of component interfaces.
It is itself a Fractal component, built out of a combination of
primitive bindings and ordinary components. Hence, bind-
ing generalizes the notion of connector in other component
models.

The Fractal model specification defines a set of con-
straints on the interplay between functional and non func-
tional operations, namely:

– Content and binding control operations are possible only
when the component is stopped.

– A component can emit or accept invocations when started.
– A component does not emit invocations when stopped,

and must accept invocations through control interfaces.

In order to define component architectures for the Frac-
tal model, an open and extensible language has been devel-
oped: the Fractal Architecture Description Language (ADL) [6].

4

Fig. 3: A Fractal application: the Comanche Server

2.2 Fractal Architecture Description

As its name implies, an ADL definition describes a compo-
nent architecture, and only that, i.e. its does not describe the
resulting runtime system. It is made of an open and exten-
sible set of ADL modules, where each module defines an
abstract syntax for a given architectural “aspect”, such as
interfaces, bindings, attributes or containment relationships.

Fractal ADL is an XML based ADL that can be used to
describe Fractal component configurations. In this paper, we
only consider the ADL aspects of Fractal ADL. In fact, it is
also the name of a toolchain framework allowing introduc-
tion of new tools in the generation process of a Fractal based
application.

Fractal ADL is strongly typed. The first step to define a
component architecture is therefore to define the types of the
components. Each component type must specify what com-
ponents of this type provide to, and require from other com-
ponents. The definition of a primitive component is done
by specifying the interfaces it provides, the interfaces it re-
quires, and the class that implements this component.

A composite component is similarly defined by specify-
ing its interfaces, the sub components it contains, and bind-
ings between these sub components and with the composite
component itself. Component definitions are then defined by
extending existing definitions. The extension mechanism is
similar to class inheritance, i.e. a sub definition can add and
override elements in its super definition. This mechanism
can be used to define concrete components as sub definitions
of abstract component definitions.

Once the application’s architecture has been defined, it
can either be compiled, which gives a Java class (for the
Julia implementation), in source code, or it can be directly
interpreted. In both case, the Fractal ADL parser performs
preliminary verifications to check the architecture and, in

particular, to check that there is no missing or invalid bind-
ing.

2.3 Example: the Comanche application

Along the paper, we use an effective example to illustrate
our method. This example consists of a minimal HTTP Server,
Comanche, used in [7] to illustrate how to implement and
deploy Fractal component based applications. This server
accepts connections on a server socket and, for each con-
nection, starts a new thread to handle it. Each connection is
handled in two steps: the request is analyzed and logged to
the standard output, and then the requested file is sent back
to the client (or an error is returned if the requested file is
not found).

Two main services are identified at a high level of the
Comanche architecture, namely a request receiver service
and a request processor service. At a lower level, the re-
quest receiver service uses a scheduler service, responsible
of creating a new thread for each request. The scheduler ser-
vice can be implemented in several ways: sequential, multi
thread, multi thread with a thread pool, and so on. We sup-
pose in our case that it is multithread.

In order to process the request, a request analyzer service
and a logger service are used before effectively responding
to a request. This response is itself constructed by a request
dispatcher service, that uses a file server service, or an error
manager service. The request dispatcher service dispatches
requests to several request handlers sequentially, until one
handler can handle the request (we can then imagine file
handlers, servlet handlers, and so on).

In terms of components, the application defines a com-
ponent for each service, leading thus to seven primitive com-
ponents: (request) Receiver, (request) Analyzer, (request) Dis-
patcher, File (request handler), Error (request handler), Sched-
uler and Logger (see figure 3).

5

Some of these components are encapsulated in compos-
ite components: The Receiver and Scheduler components
are included in the Frontend component, the Dispatcher, File
and Error components make up the (request) Handler com-
ponent, and this latter together with the Analyzer and the
Logger make up the Backend component.

The Frontend and Backend composite components are
themselves contained in the Comanche server application,
which is the highest level component.

3 A general method for analysis of CBSs

As mentioned in the introduction, we have developed a gen-
eral method for behavioural qualitative and performance anal-
ysis of CBSs. Before explaining the application of the method
to Julia Fractal CBS, we present the main lines of the method.
The method is based on the Stochastic Well-Formed Petri
Net model (SWN), a high level (coloured) model of Petri
net with probabilistic extensions for performance analysis.
Our choice of the SWN formalism is first motivated by the
fact that we need a state based model to be able to evaluate
performance indices related to configurations of the systems
(number of requests pending in some part of the system,
mean usage time of some resource, etc.). Petri Nets are state
based models which are well known for being able to model
complex systems with concurrency and conflicts, even in
the stochastic context, in contrast with Queuing networks or
process algebras models for instance. Moreover, although
Petri Nets are not by themselves a compositional model,
interaction between Petri nets representing sub-components
may be easily defined as transition or place “fusion” (merg-
ing). If complex primitive components are involved, high
level Petri Nets are almost inevitably required so that the
SWN model is nicely adequate. The SWN model can also
take advantage of behaviourial symmetries of system’s enti-
ties if there are such symmetries. Finally, SWNs are a well
studied class of high level stochastic Petri nets and benefit
from a large set of analysis algorithms and tools. Among for-
mal models of Fractal CBSs, [3] also proposes an approach
for specification and verification, but based on LTS derived
from communicating automata networks [1,2]. However, this
work is devoted to the Fractive [4] implementation of the
Fractal component model and does not allow us to compute
performance indices of Fractal CBSs.

3.1 The Well formed and the Stochastic Well formed Petri
nets models

A Well-formed (WN) net [10] is a high level Petri net model.
It is a coloured Petri net, where places and transitions are
provided with a structured type of tokens.

In this model, tokens are grouped into basic classes called
colour classes. These classes are bringed together to form a
colour domain, which is associated to places and transitions.
Colours of a place label its tokens, whereas colours of a tran-
sition define possible firings of the transition. Thus, an initial
marking of a place is defined as a multiset (bag) of coloured
tokens. A colour function is attached to each arc: its role
is to define for, a given colour of the associated transition,
the number of coloured tokens to add or to remove from the
attached place.

A colour domain is a Cartesian product of colour classes.
A total order, expressed by a successor function, can be de-
fined on a colour class. The Cartesian product defining a
colour domain can be empty (for example, in the case of a
place containing neutral tokens). It can also contain repe-
tition of a class (modelling internal synchronization of this
class). A colour class, grouping colours of same nature (eg.
processes, resources), can be divided into static sub-classes,
where a sub-class contains colours with identical behaviours,
even in terms of performance.

A colour function is built from standard operations (lin-
ear combination, composition, etc) of basic functions. The
projection (denoted by X or X j

i in figures) selects an ele-
ment of a tuple; it is represented by a typed variable or by
X if no confusion is possible. The synchronization/diffusion
(denoted by Si or Si,k) returns the set of all colours of a class
(Si) or a sub-class (Si,k). The successor function is defined
for ordered classes only and returns the colour following a
given colour.

A transition or an arc function can be guarded by an ex-
pression which is a linear combination of atomic predicates.
An atomic predicate expresses the equality of two variables,
or restricts the colour domain of a variable to a static sub-
class [10]. A predicate is evaluated on colours of a transition
firing.

The structured definition of a WN allows us to exploit
automatically system symmetries, by compacting its reacha-
bility graph, leading to a Symbolic Reachability Graph (SRG).
An SRG is composed of symbolic markings, where each
symbolic marking represents a set of ordinary (coloured)
markings having equivalent behaviours (see [10] for more
details). Several qualitative properties can be checked on the
SRG (reachability of a marking, deadlock freeness, etc.)

From WNs was derived the Stochastic Well-formed (SWN)
model, which associates to each transition an exponentially
distributed delay. This delay can depend on static sub-classes
of the colours considered at firing. The SRG of an SWN,
augmented with stochastic firings information, results in an
aggregated Markov chain of the chain derived from the colou-
red net. Thus, we can study performances of a system di-
rectly on this aggregated chain. Formal definitions of WN
and SWN are given in appendix A.

6

Fig. 4: Analysis method of a CBS

3.2 Overview of the method

The method starts by building a global SWN for a CBS,
viewed as a composition of SWN models of components
and interconnections. Then, a structured analysis method is
applied for deriving performance indices.

Before giving details on the approach, we introduce some
terms related to component models used in the sequel.

3.2.1 Terminology

Component SWNs An element of a CBS (component or con-
nector) is modelled with an SWN model. This model is built
from the component content behaviour or implementation
and predefined sub-models modelling interfaces. The com-
ponent content can be a simple component in case of a prim-
itive component, or connected sub-components in compos-
ites. The primitive component behaviour is modelled by a
SWN by an expert, where places correspond to data storage
resources, state of active entities, etc. and transitions to ac-
tivities consuming data and producing other data. The com-
posite component behaviour consists of an interconnection
of its sub-components behaviours with adapted interaction
(or connector) components. We term Component SWN (C-
SWN) models of primitive or composite components. Obvi-
ously, obtained C-SWNs can be gathered into libraries, and
reused possibly later.

The translation of an interface of a component in the cor-
responding C-SWN is heavily dependent on the semantics of
the runtime component model. In general, it is a subnet of
the C-SWN which may consist of just a set of places, a set of
transitions, or can be more complex with a combination of

places and transitions. We provide translation of interfaces
for Julia Fractal CBS in the next section.

Interaction SWNs Components are related by interaction re-
lationships described in the architecture description, and so
are the C-SWNs. This interaction relationships between C-
SWNs are translated into Interaction SWNs (I-SWN). An I-
SWN connects two interfaces of distinct C-SWNs. I-SWNs
could be more or less complex SWNs; in the Julia Fractal
case, we will show that functional interfaces could be di-
rectly interconnected, so that I-SWNs are useless.

Global SWN model of the CBS The global SWN (G-SWN)
of a CBS is built from the set of C-SWNs and their cor-
responding I-SWNs. The C-SWNs are composed together
with I-SWNs, through fusion of interfaces elements, obtain-
ing thus a global model.

3.2.2 Steps of the method

We can describe our method into five main steps. The first
three of them are devoted to the construction of the global
SWN of a CBS and its compositional structure, and the two
other steps aim to perform the analysis of the system:

1. Translation of the ADL description of the CBS, together
with the description of components behaviours (i.e. source
code), into the SWN framework, leading to a set of C-
SWNs and a set of I-SWNs.

2. Modification of the C-SWNs and I-SWNs so that to be
composable with others, in the sense of Petri net com-
position (fusion of places or transitions). This modifica-
tion should not impact the semantics of the modelling.
The set of obtained models are called Composable Com-
ponent SWNs (CC-SWNs) and Composable Interaction
SWNs (CI-SWNs).

3. The CC-SWNs and the CI-SWNs are then composed to-
gether through fusion of element interfaces, providing
the global G-SWN model corresponding to the whole
system. CC-SWNs and CI-SWNs are now seen as a unique
set of subnets SWN1, . . . , SWNK′ (see figure 4, step 3).

4. We then start from the set of SWNk k∈{1,...,K′}. We search
the set of SWNs (Nk)1≤k≤K” representing a possible de-
composition of the G-SWN, that fulfill conditions for a
structured representation of the SRG and its aggregated
generator (see section 5.1). These SWNs can be one of
(SWNk)1≤k≤K′ or a groupment of a subset of them.

5. When conditions are satisfied, the structured analysis me-
thod is applied to compute performance indices (see sec-
tion 5).

7

4 Mapping Julia Fractal CBS to SWN models

In this section, we address the SWN modelling of Julia im-
plementation of a Fractal CBS, following the method pre-
sented above. We assume that the CBS is defined through an
ADL description and a set of Java classes corresponding to
the primitive components.

4.1 General considerations

4.1.1 Modelling stable configurations and dynamics of
Fractal CBS

The architecture of a Fractal CBS is defined first by an ini-
tial configuration and then may evolve through runtime re-
configurations. Although the capability of runtime evolution
of the architecture is a leading property of Fractal CBSs,
we claim that behavioural analysis of Fractal CBSs can-
not be efficiently carried out with a single formal model of
the system. In fact, any modification of the structure (bind-
ing changes, addition or deletion of sub-components, etc.)
requires a specific modelling, primarily devoted to check
that, starting from a configuration A, the application will
eventually reach a given configuration B. In contrast, anal-
ysis of a configuration (say A or B) addresses both qualita-
tive (reachability, deadlock freeness, etc.), and quantitative
(computation of performance indices) aspects of this config-
uration. Moreover, in the performance evaluation context,
switching from A to B probably corresponds to a “short”
time period (transient phase), whereas performance indices
of software systems are mainly computed over long periods
(steady-state analysis).

In the present work, we do not address the verification of
the reconfiguration behaviours of Fractal CBSs and we con-
centrate on “stable” (i.e. fixed) architectures. Hence, since
control interfaces of Fractal components are used to manage
the initialization and reconfiguration phases of the architec-
ture, we do not model control interfaces.

Note however that we can compare performances of two
configurations A and B, studying each one with our method.
We have then two G-SWNs and two sets of SWN subnets.

4.1.2 Implementation dependencies

Since we wish to derive performance indices of a Fractal
CBS, we emphasize that the architecture description of the
CBS does not allow alone performance modelling: it must
be complemented with information from the implementation
of the component model. We can find in the literature several
Fractal implementations developed in Java and C: Julia (the
Java reference implementation), Fractive [4] and AOKell [26]
in Java, and Think [15] the C implementation. Studying these
implementations, we noted that they differ significantly. For

instance, Fractive uses an asynchronous (late) operation in-
vocation which allows the client to continue processing until
it needs results returned by the service. In contrast, Julia and
Think use a classical synchronous (blocking) method call.
In this paper, we model the Julia implementation of Fractal.

4.1.3 Colours

Basic colour classes can model either data entities or ac-
tive entities of components. Data entities consist of data flow
such as requests, parameters of requests, results or even re-
sources. Active entities are execution flows (processes and
threads).

We can illustrate colour semantics by basic colours used
in the Comanche example. We consider sockets, HTTP re-
quests, files, streams, and even threads as our basic colour
classes. In our model, as we abstract some component de-
tails, we use the following basic colour classes: UC models
HTTP User requests, IDS models scheduled threads, IDL is
the basic class of Log requests, IDF that’s of File requests,
and IDE models Error identifications.

4.2 Translation to SWN models

Building the G-SWN of a Fractal CBS starts from the low
level of architecture, and goes up into the higher levels of
architecture until reaching the highest level.

First, primitive components are modelled, leading to a
set of C-SWNs. Obviously, abstraction may be used at this
stage by selecting an appropriate level of details of primitive
components. At the highest abstraction level, the content of
a primitive component can be modelled by a very simple
SWN (see figure 13). Modelling a component requires mod-
elling its interfaces. Functional interfaces are modelled by
transitions of the SWNs (see details below). The obtained
C-SWN of a component is transformed into a CC-SWN,
with the translation of functional interfaces to the adequate
form as it is explained later. Next, based on bindings be-
tween components, composite components of higher levels
are translated by assembling CC-SWNs of enclosed sub-
components. From this translation, we obtain also a CC-
SWN for each composite component. This CC-SWN may
also be simplified to abstract some detailed behaviours as
for primitive components (see below and figure 13).

4.2.1 Functional interfaces

Functional interfaces of a component consists of a required
(client) interface which needs a service from other compo-
nents, or an offered (server) interface exposing a service to
others. For a composite component, these interfaces, said
external, allow to do export and import bindings, connect-
ing thus sub-components interfaces to functional interfaces

8

ServTH
SThM0

ResServ
RM0

Request
STh,MP,R

Result
STh,MP,R

SoMP
MPM0

PBegReq
CThM0

PEndReq
CTh

TERS

TBRS

TEPS

TBPS

<t,mp,r>

<t>

<mp>

<r>

<t,mp,r>

<c>

<c>

Fig. 5: SWNs models of interfaces: Client(left), server(right)

of the enclosing composite component. In each case (exter-
nal or not), a functional interface is modelled with a set of
coloured places and transitions as given by the following
mapping rules.

Mapping rule 1 A server interface of a component, identi-
fied by a set of colours STh modeling possible server threads,
offering a set MP of operations or methods with their pa-
rameters, is modeled by representing the beginning of ser-
vice provided and its ending with two transitions, respec-
tively tBPS and tEPS (figure 5 (right)). tBPS is controlled by
two places ServTH and SoMP modeling respectively server
threads and methods with their parameters. Possibly, a third
place ResServ coloured with a basic class R is used model-
ing specific resources needed during execution of a service.
Whereas, tEPS is controlled with a place Result coloured
with tuples belonging to ST h×MP×R modeling the result
of request processing.

Mapping rule 2 A client interface of a component, iden-
tified by a set of colours CTh modeling possible request
threads of the client component is modeled with two tran-
sitions tBRS and tERS representing the beginning of service
request and its ending (figure 5, left). tBRS (resp.tERS) is con-
trolled by a place PBegReq (resp. PEndReq) coloured with
CTh and modeling respectively requesting and released client
threads.

The model of a server depends a priori on the invoked
method and its parameters. In our mapping rule, we do not
separate them: if such a level of detail is required for per-

ServTH
SThM0

ResServ
RM0

Request
STh,MP,R,IDC

Result
STh,MP,R,IDC

SoMP
MPM0

PBegReq1
CTh1M0

PEndReq1
CTh1

PBegReq2
CTh2M0

PEndReq
CTh2

P10
CTh1,STh

P11
CTh2,STh

P12
IDCM0

TERS2

TBRS2

TERS1

TBRS1

TEPS2

TBPS2

TEPS1

TBPS1

<id>

<t,mp,r,id>

<r>

<mp>

<t>

<id>

<t,mp,r,id>

<r>

<mp>

<t>

<id>

<t,mp,r,id>

<id>

<t,mp,r,id>

<r>

<mp>

<t>

<c1,t>

<c1>

<c1>

<c1,t>

<c2,t>

<c2>

<c2>

<c2,t>

Fig. 6: CC-SWNs interfaces with multiple client interfaces
for one server interface

formance analysis, a colour class is defined with static sub-
classes sorting the possible pairs (method, its parameters)
into disjoint subsets. For instance, when the modeller inter-
est is to know whether the size of data sent between com-
ponents impacts the overall performance of the architecture,
he should model the data parameter. Note that if the pair
is irrelevant for a given level of detail, we simply omit this
colour class.

Mapping rule 3 defines the CC-SWN, extending the client
interface part of a C-SWN to allow composition of SWN
and subsequent structured analysis, without modifying the
semantics of the component.

Mapping rule 3: CC-SWN for clients The client interface
of a C-SWN is modified, leading to a CC-SWN, by adding
a place (and associated arcs) as a postcondition of the be-
ginning transition tBRS and as a precondition of the transi-
tion tERS. (see the left side of figure 5, right). The colour
domain of this place is either CT h × ST h or else CT h ×
ST h× IDC when several client components, identified with
the IDC colour class, require the same service (see below).

9

P28
IDA,MA,PA

P9
IDA,MA,PA

dispatchRequests
IDA,MA,PA

P27
IDA,MA,PA

P16
IDA,MA,PA

P4
IDA,MA,PA

LogRequests
IDA,MA,PA

P15
IDA,MA,PA

T22

T11

T10

T28

T17

<ida,ma,pa> <ida,ma,pa>

<ida,ma,pa>

<ida,ma,pa>

<ida,ma,pa> <ida,ma,pa>

<ida,ma,pa><ida,ma,pa>

<ida,ma,pa> <ida,ma,pa>

Fig. 7: SWN model of the core of the analyzer component

Dealing with multiple clients When a server interface of
a component is bound to several client interfaces of other
components, the C-SWN of the server must be modified in
order to be composable at the same time with several models
of client components, in the sense of Petri nets composition
(fusion of places or transitions). This modification gives rise
to a CC-SWN and is achieved by applying mapping rule 4.
The resulting CC-SWN keep the same semantics as the cor-
responding C-SWN.

Mapping rule 4: Multiple clients for one server The server
interface of a CC-SWN having multiple connected clients is
modified as follows with respect to the single client case: (i)
The transitions tBPS and tEPS of beginning and ending ser-
vice are duplicated as many times as the number of clients;
(ii) An IDC colour class is used to distinguish between sev-
eral components exposing a client interface. The resulting
interface is given by figure 6, right.

4.2.2 Primitive components

The C-SWN of a primitive component is built through sev-
eral steps:

– Initially, model the “core” of the Fractal component be-
haviour by an SWN. This is done by analyzing the Java
code of the component and fixing a level of details of the
model.

– For each set of methods related to a server interface,
model the server interface using mapping rule.

– Model internal activities to the server interface, if mod-
elling details are required.

– For each service invocation, model the client interface
using mapping rule 2.
Let us illustrate building of the CC-SWN of a primitive

component with the analyzer component of the Comanche
application. The implementation code of this component is
given below.
public class RequestAnalyzer implements RequestHandler

{

private Logger l;

private RequestHandler rh;

// functional concern

public void handleRequest(Request r) throws IOException

{ r.in = new InputStreamReader(r.s.getInputStream());

r.out = new PrintStream(r.s.getOutputStream());

String rq = new LineNumberReader(r.in).readLine();

l.log(rq);

if (rq.startsWith("GET "))

{ r.url = rq.substring(5, rq.indexOf(’ ’, 4));

rh.handleRequest(r);

}

r.out.close();

r.s.close();

}

}

The analyzer receives requests on its server interface us-
ing two basic colours classes IDA and MA, modelling re-
spectively identified analysis requests and related invoked
methods with their parameters. It invokes two operations
through two client interfaces: a log operation, and a han-
dle operation. First, we model the core of the component,
getting the SWN of figure 7. Then, we add explicit server
and clients interfaces introducing request and result transi-
tions for each interface. This gives us the C-SWN of figure 8.
Next, this one is completed with places and arcs to get the
CC-SWN of figure 9 (bottom).

Considering the Comanche example, figures 9, 10, 11
and 12 show the CC-SWNs of the seven components:

– The receiver exposes a server interface which uses two
basic colours classes IDC and M, modelling respectively
identified clients and method with their parameters. This
component creates for each received request a task, and
sends it to the scheduler to schedule it by creating an as-
sociated thread. Once the thread is started, it invokes an
analysis request. Thus, the receiver has two client inter-
faces: one for invoking a schedule request and another
for asking for a request analysis.

– The scheduler has only one interface which is of server
type. It uses two basic colours classes IDS and MS, mod-
elling respectively scheduled threads associated to re-
quests and related invoked methods with their parame-
ters.

– The analyzer: see above.
– The dispatcher processes handle operations received on

its server interface, by dispatching them to either the file

10

P28
IDA,MA

P9
IDA,MA

dispatchRequests
IDA,MA

P27
IDA,MA

P16
IDA,MA

P4
IDA,MA

LogRequests
IDA,MA

P15
IDA,MA

Methods_Analyze
MAM0

ID_C_Analyze
IDAM0

AnalyzeResponse DispatchResponse

DispatchRequest

T22

T11

LogRequestT10

T28

T17

LogResponse

AnalyzerAccept

<ida,ma>

<ma>

<ida>

<ida,ma> <ida,ma> <ida,ma>

<ida,ma><ida,ma><ida,ma>

<ida,ma>

<ida,ma>

<ida,ma> <ida,ma> <ida,ma>

<ida,ma><ida,ma><ida,ma><ida,ma>

<ida>

<ma>

Fig. 8: C-SWN model of the analyzer component

handler or the error handler. Two basic colours classes
IDD and MD are used when an operation is received,
modelling respectively identified dispatching requests and
related invoked methods with parameters. Dispatching is
done through invocation of handle operations given in-
side two client interfaces.

– The logger, file handler and error handler expose one
server interface each of them. The basic colour classes
implied in theses interfaces are IDL and ML for respec-
tively log requests and log methods with their parame-
ters; IDF and MF for File requests and file methods with
their parameters; and IDE and ME for Error identifica-
tions and error methods with their parameters.

We note that there is no server interface with multiple
clients in this application, so that identities of the client com-
ponent are not modelled in the CC-SWNs.

4.2.3 Composite components

A composite component is made up of a set of intercon-
nected sub-components being primitive or composite them-
selves. We assume that CC-SWNs of its sub-components are
built. Building of the SWN model of the composite requires
connecting sub-components’ CC-SWNs and modelling ex-
ternal interfaces.

In the Julia context, primitive binding of interfaces are
directly translated by transition fusion of the CC-SWNs of
the corresponding sub-components: associated transition (for
instance Invoke service-Receive request and Receive result-
Send result in figure 5) are pairwise merged; Fusion of two
transitions consists in defining a unique transition and keep-
ing associated arcs of fused transitions. Colour classes of the
two transition are mapped in one to one correspondence for
common parameters of the interface (name of a method for
instance) and specific colour classes of each transition are
kept. Hence, the colour domain of the fused transition is the
Cartesian product of colour classes of the fused transition,
without repetition, together with the specific colour classes
of each transition. This fusion definition is different from
the proposed approach of [5] where several transitions can
be fused but some arcs may be duplicated on several fused
transitions. We have then a CC-SWN partially modelling the
composite component It is completed by modelling exter-
nal interfaces as specified in mapping rule 3. As mentioned
above, we can also build an abstract model of a compos-
ite component from this CC-SWN. At the highest abstrac-
tion level, we get a very elementary CC-SWN shown in fig-
ure 13.

When assembling CC-SWN models of sub-components,
name conflicts (of place, transition or colour class) may oc-
cur. They are eliminated by renaming. Such a renaming re-

11

P20
IDC,M,IDA,MA

P56
IDC,M,IDS,MS

P48
IDC,M

P21
IDC,M

Methods
MM0

ID_clients
IDCM0

P54
IDC,M

P60
IDC,M

AnalyzeResponse

AnalyzerAccept

Create_Task

SendResponse

ScheduleResponse

ScheduleRequestReceiveRequest

<id,m> <id,m>

<id,m,ida,ma>

<id,m,ida,ma>

<id,m>

<m>
<id>

<id,m>

<m>
<id>

<id,m>

<id,m> <id,m>

<id,m,ids,ms>

<id,m,ids,ms>

<id,m>

P28
IDA,MA

P9
IDA,MA

P10
IDA,MA,IDD,MD

dispatchRequests
IDA,MA

P27
IDA,MA

P16
IDA,MA

P4
IDA,MA

P3
IDA,MA,IDL,ML

LogRequests
IDA,MA

P15
IDA,MA

Methods_Analyze
MAM0

ID_C_Analyze
IDAM0

AnalyzeResponse DispatchResponse

DispatchRequest

T22

T11

LogRequestT10

T28

T17

LogResponse

AnalyzerAccept

<ida,ma>

<ma>

<ida>

<ida,ma> <ida,ma> <ida,ma>

<ida,ma,idd,md>

<ida,ma,idd,md>

<ida,ma><ida,ma><ida,ma>

<ida,ma>

<ida,ma>

<ida,ma> <ida,ma> <ida,ma>

<ida,ma,idl,ml>

<ida,ma,idl,ml>

<ida,ma><ida,ma><ida,ma><ida,ma>

<ida>

<ma>

Fig. 9: CC-SWNs of the receiver (up) and analyzer (bottom) components

12

P59
IDD,MD

P43
IDD,MD

P41
IDD,MD,IDE,ME

P42
IDD,MD

P30
IDD,MD

P29
IDD,MD,IDF,MF

P26
IDD,MD

P58
IDD,MD

Methods_Dispatch
MDM0

ID_C_Dispatch
IDDM0

DispatchResponse T32 ErrorHResponse

T30 ErrorHRequest

T31

FileHRequestT29DispatchRequest

FileHResponse

<idd,md> <idd,md>

<idd,md>

<idd,md>
<idd,md>

<idd,md>

<idd,md> <idd,md>

<idd,md>

<idd,md>

<idd,md>

<idd,md>

<idd,md,ide,me>

<idd,md,ide,me>

<idd,md,idf,mf>

<idd,md,idf,mf>

<idd>

<idd>

<md>

<md>

<idd,md>

<idd,md>

Fig. 10: CC-SWN of the dispatcher component

quires to translate analysis results (obtained properties and
computed performance indices on the constructed global SWN)
in the initial context of the CBS.

Note that, together with the CC-SWN of the composite,
we keep track of the CC-SWNs of its sub-components; They
will be used during the analysis phase.

4.2.4 Modelling the highest composite component

Starting from the first level of composite components, we
successively build the CC-SWNs of the composite compo-
nents up to the highest level. The resulting CC-SWN is then
completed to provide the G-SWN of the application: Since
we model applications with finite state space models, we
need to “close” interfaces of the composite corresponding to
the application as a whole. This is a classical method, allow-
ing to limit the number of entities in the model. In the Petri
net context, we add a Petri net to each external interface of
the application with an adapted initial marking, generally an
upper bound of the number of entities. An example of such
a closing SWN is given in figure 14.

We summarize this modelling in the following algorithm
allowing the building of the CC-SWN of a composite of N
hierarchichal levels, and so the building of the G-SWN.

G-SWN (composite CC-SWN) building algorithm

BEGIN

Let N be the number of levels of the composite (CBS).

1. Model primitive components of level 0.

2. For (i=1; i<N; i++)

a. For each composite C of a level i :

(i) Assemble CC-SWNs of components of level i-1:

For each couple of sub-components related

with a service invocation, merge corresponding

transitions (TBRS,TBPS) and (TERS,TEPS).

(ii) Each import/export binding defined in the

Fractal ADL and related to the composite C

corresponds to an external interface of C.

b. Model primitive components of level i.

3. Close external interfaces of the highest level

component with a closing Petri net.

END

4.3 G-SWN of the Comanche application

Going back to our Comanche example, we can build the
CC-SWN of the request handler composite component, then

13

P28
ID

A
,M

A
P59
ID

D
,M

D
P40
ID

E
,M

E

P41
ID

D
,M

D
,ID

E
,M

E

P10
ID

A
,M

A
,ID

D
,M

D

P39
ID

E
,M

E

ID
_C

_E
rrorH

ID
E

M
0

M
ethods_E

rrorH
M

E
M

0

P30
ID

D
,M

D
P35
ID

F,M
F

P29
ID

D
,M

D
,ID

F,M
F

P34
ID

F,M
F

M
ethods_FileH

M
F

M
0

ID
_C

_FileH
ID

F
M

0

P26
ID

D
,M

D
P58
ID

D
,M

D
dispatchR

equests
ID

A
,M

A

P27
ID

A
,M

A

P20
ID

C
,M

,ID
A

,M
A

M
ethods_D

ispatch
M

D
M

0

ID
_C

_D
ispatch

ID
D

M
0

P14
ID

L
,M

L
P4ID

A
,M

A
P16
ID

A
,M

A

P3ID
A

,M
A

,ID
L

,M
L

P12
ID

L
,M

L
L

ogR
equests

ID
A

,M
A

P15
ID

A
,M

A

M
ethods_L

og
M

L
M

0
M

ethods_A
nalyze

M
A

M
0

ID
_C

_L
og

ID
L

M
0

ID
_C

_A
nalyze

ID
A

M
0

P53
ID

S,M
S

P56
ID

C
,M

,ID
S,M

S

P49
ID

S,M
S

P48
ID

C
,M

M
ethods_Schedule

M
S

M
0

ID
_C

_Schedule
ID

S
M

0

P9ID
A

,M
A

P43
ID

D
,M

D

P42
ID

D
,M

D

P21
ID

C
,M

M
ethods

M
M

0

ID
_clients

ID
C

M
0

R
equest

U
C

M
0

P54
ID

C
,M

P55
U

C

P57
U

C
,ID

C
,M

P60
ID

C
,M

FileH
R

equest
T

29

E
rrorH

R
equest

T
30

D
ispatchR

equest

L
ogR

equest
A

nalyzerA
ccept

T
10

ScheduleR
equest

R
eceiveR

equest

A
nalyzeR

esponse
D

ispatchR
esponse

T
32

E
rrorH

R
esponse

T
21

T
31

FileH
R

esponse

T
18

T
28

T
22

L
ogR

esponse

R
eceive_request

C
reate_T

ask

T
11

T
17

SendR
esponse

ScheduleR
esponse

T
27

T
33

<
ida,m

a>
<

ida,m
a>

<
idd,m

d>

<
m

d>

<
idd>

<
ida,m

a,idd,m
d>

<
ida,m

a>
<

ida,m
a>

<
ida,m

a,idd,m
d>

<
ida,m

a>

<
idd>

<
m

d>

<
idd,m

d>

<
ida,m

a>

<
ida,m

a>

<
ida,m

a>

<
ida,m

a>

<
idd,m

d>
<

idd,m
d>

<
idd,m

d>
<

idd,m
d>

<
idd,m

d>
<

idd,m
d>

<
idd,m

d>

<
idd,m

d>

<
idd,m

d,idf,m
f>

<
idd,m

d,idf,m
f>

<
ide>

<
ide><

m
e>

<
m

e>

<
idf>

<
idf> <

m
f>

<
m

f>

<
id,m

>

<
ida>

<
m

a>

<
id,m

,ida,m
a>

<
id,m

,ida,m
a>

<
id,m

>

<
ida,m

a>
<

ida,m
a>

<
ida,m

a>

<
ida,m

a,pa,idl,m
l,pl>

<
ida,m

a,pa,idl,m
l,pl>

<
idl,m

l>

<
idl><

m
l>

<
ida,m

a>
<

ida,m
a>

<
ida,m

a>
<

ida,m
a>

<
m

l>

<
idl>

<
idl,m

l>

<
idl,m

l>

<
idl,m

l>

<
m

a>

<
ida>

<
id,m

>

<
id>

<
id>

<
ids>

<
ids> <

m
s>

<
m

s>

<
m

>

<
m

>

<
ids,m

s>

<
ids,m

s>

<
u>

<
u>

<
id,m

>
<

ids,m
s>

<
id,m

,ids,m
s>

<
u> <

u,id,m
>

<
id,m

>
<

id,m
>

<
idf,m

f>

<
idf,m

f>

<
idf,m

f>

<
idd,m

d>

<
ide,m

e>

<
ide,m

e>

<
ide,m

e>

<
idd,m

d,ide,m
e>

<
idd,m

d>

<
u,id,m

>

<
id,m

>
<

u>

<
id,m

,ids,m
s> <

ids,m
s>

<
id,m

>

<
idd,m

d>

<
ide,m

e>

<
idd,m

d,ide,m
e>

<
idd,m

d>
<

idf,m
f>

Fig. 15: The G-SWN of the Comanche application

14

P53
IDS,MS

P49
IDS,MS

Methods_Schedule
MSM0

ID_C_Schedule
IDSM0

P20
IDS,MS,IDA,MA

AnalyzeResponseScheduleResponse

ScheduleRequest AnalyzerAccept

<ids,ms> <ids,ms>

<ids,ms> <ids,ms>

<ids,ms,ida,ma>

<ids,ms,ida,ma>

<ids>

<ids>

<ms>

<ms>

P14
IDL,ML

P12
IDL,ML

Methods_Log
MLM0

ID_C_Log
IDLM0

LogResponse

LogRequest

Receive_request

<idl>

<idl>

<ml>

<ml>

<idl,ml>

<idl,ml>

<idl,ml>

<idl,ml>

Fig. 11: CC-SWNs of the scheduler (up) and logger (bot-
tom) components

that of the Frontend and Backend composites, and finally we
build the G-SWN given in figure 15.

5 Performance Analysis of Fractal CBSs

Analysis of a Fractal CBS can be performed through the
analysis of the G-SWN obtained from the assembly of com-
ponents. This approach has been followed in [5] for analy-
sis of a different composition process of SWNs, and imple-
mented in the Algebra tool of the GreatSPN package [24].
In our approach, we rather try to benefit from the composi-
tionality features of the CBS, in order to provide an efficient
steady-state performance analysis with regard to computa-
tion time and memory costs. For this purpose, we rely on
previous work [12,13] which defines an analysis method al-
lowing to avoid the explicit construction of the aggregated
Markov chain corresponding to the global SWN. This method
uses a tensorial representation of the Symbolic Reachability
Graph(SRG), hence enabling important memory and com-

Methods_FileH
MFM0

ID_C_FileH
IDFM0

P34
IDF,MF

P35
IDF,MF

FileHResponse

FileHRequest

T18

<idf>

<idf>

<mf>

<mf>

<idf,mf>

<idf,mf>

<idf,mf>

<idf,mf>

IDEM0

MEM0

IDE,ME

IDE,ME

<ide,me>

<ide,me>

<ide,me>

<ide>

<me>

<ide>

<me>

<ide,me>

Fig. 12: CC-SWNs of the File handler (up) and Error handler
(bottom) components

putation time savings, reducing analysis complexity. We adapt
this approach to Fractal CBS.

5.1 Principle of structured analysis method

The structured analysis method was defined to apply on a
global SWN N. The main idea in this method is to start
from a global SWN, decompose it into several subnets, and
study each subnet augmented with “parts” aggregating inter-
actions with other subnets. These separated studies are then
used to derive a tensorial representation of the generator of
the underlying aggregated Markov chain of the global net,
and so to compute performance indices. For this purpose,
two kinds of decompositions into SWNs were defined:

– A “synchronous” decomposition (figure 16) modelling
a complex synchronization of type “Rendez-vous” be-
tween two SWNs.

– An “asynchronous” decomposition (figure 17) which cor-
responds to an asynchronous method call or a message
sending and receiving between two or more SWNs.

15

Fig. 13: A very abstract CC-SWN of a component

Fig. 14: Application closing subnet

Fig. 16: Synchronous decomposition of SWNs

Fig. 17: Asynchronous decomposition of SWNs

Each kind of decomposition requires a set of conditions which
can be checked at the SWN definition level. We refer the
reader to [19] for a detailed presentation of these conditions.

We have extended and adapted this initial decomposition
method to CBS. Adaptation was faced to three problems:

1. The first problem is to compose SWN models of com-
ponents, as we start from the definition of components
in the case of a CBS. This is in contrast to the previous
method where a global SWN is decomposed into several
subnets. Composition of SWNs in the Fractal framework
has been explained above.

2. The second problem is to try bringing an interconnec-
tion of components into a synchronous or asynchronous
composition of SWNs. This problem depends on the com-
ponent model of the CBS. In the context of the Julia im-
plementation of Fractal CBSs, we noted that service in-
vocations of a component are in fact synchronous method
calls. Thus, we model interactions between Fractal com-
ponents with synchronous compositions of their corre-
sponding SWN models as shown in the previous section.

3. The third problem consists of studying the impact of the
simultanous presence of synchronous and asynchronous
compositions in the same global model, as the structured
method was defined for either a synchronous composi-
tion or else asynchronous composition of SWNs. In this
paper, this problem does not appear, as we model Fractal
components interactions with only synchronous compo-
sitions.

5.2 Structured CBS analysis algorithm

Our adapted method proceeds in several steps for analyzing
a CBS. We assume that the G-SWN model of the application
and the CC-SWNs of the components have been defined.
These CC-SWNs make up the initial set of SWNs subnets
denoted by Nk (1 ≤ k ≤ K′):

1. Checking applicability conditions on the G-SWN for a
structured representation of the SRG and its aggregated
generator.
if they are fulfilled, goto 2
else

merge some of the CC-SWNs which do not satisfy
applicability conditions

to new SWNs trying to fulfill conditions.
Each new SWN replaces the SWNs it stands for.
Goto to 1.

2. Extension of the SWNs Nk to autonomous SWNs ¯Nk,
in order to take into consideration interaction with other
subnets. These autonomous SWNs are called extended
nets (see [19] for details).

3. Generation of the SRGs of these extended SWNs.

16

4. Computation of the synchronized product of these SRGs
and of the tensorial representation of the generator of the
underlying aggregated Markov chain.

5. Computation of the steady state distribution of the ag-
gregated model and computation of the required perfor-
mance indices.

6. Expression of the results in the initial context of the com-
ponents.

We apply this method to SWNs models of Julia Fractal CBSs
presented in section 4. For what concerns conditions for syn-
chronous composition of SWNs (point 1 above), one impor-
tant property must be verified: an entity of a subnet which
could be synchronized (i.e. linked to an entity of another
subnet during common actions) must be, at any time, either
not synchronized, or else synchronized with only one entity
of another subnet. This means, at the programmatic level,
that such entities should not be duplicated, for instance with
concurrent threads or processes, in a given component.

Structured analysis of a composition of SWNs is inter-
esting as long as it allows for savings w.r.t. computations
based on the wole G-SWN. The granularity of composed
SWNs is indeed a very important parameter w.r.t. the com-
putation time of the performance indices. Roughly and in a
very imprecise way, a “large” number of “small” SWNs im-
plies a bigger computation time than a model where “some”
SWNs are merged. This is particularly due to the time taken
to study each extended SWN, which exhibits more behaviours
than the corresponding part of the whole system. We deduce
that component oriented design could be quite different from
component oriented analysis. Unfortunately, we think that
there are no general rules on the structure of the model al-
lowing estimation of the granularity level for best compu-
tation time. However we are working on definition of some
heuristic guidelines to help the modeller in the merging pro-
cess for what concerns this computation time.

5.3 Application to the Comanche example

The obtained G-SWN of the Comanche application satis-
fies conditions of structured analysis. So, we did not need to
merge some CC-SWNs. We used our tool compSWN to ap-
ply our method and compute steady-state probabilities. We
also used the GreatSPN environment on the G-SWN to com-
pare results of both analysis methods. We ran the two tools
on a Suse linux 9.2 workstation with 512 MO.

5.3.1 Savings with the structured method

Before giving some performance indices of the Comanche
example, we first show time and memory savings due to the
use of the structured analysis. To this end, we vary the car-
dinalities of our basic colour classes, and we study the be-

|Colour| Cf1 Cf2 Cf3 Cf4 Cf5 Cf6 Cf7 Cf8
|UC| 3 5 10 2 3 5 10 20
|IDC| 1 1 1 2 2 2 2 2
|M| 2 2 2 2 2 3 3 3
|IDS| 3 5 10 2 3 5 10 20
|MS| 2 2 2 2 2 2 2 2
|IDA| 1 1 1 2 2 3 3 3
|MA| 2 2 2 2 2 2 2 2
|IDL| 2 2 2 2 2 5 5 5
|ML| 2 2 2 2 2 3 3 3
|IDD| 1 1 1 2 2 3 3 3
|MD| 2 2 2 2 2 3 3 3
|IDF | 2 2 2 2 3 5 5 5
|MF | 2 2 2 2 2 5 5 5
|IDE| 2 2 2 2 2 5 5 5
|ME| 2 2 2 2 2 4 4 4

Table 1: Various configurations for the Comanche example

haviour of the solvers for several configurations (Cfi) sum-
marized in table 1.

We report in table 2 behaviours of the two solvers (Great-
SPN and compSWN) for what concerns memory usage (in
bytes) and computation times for the SRG generation phase
only of the resolution, i.e. without computing steady-state
probabilities nor performance indices (probabilities were
found identical with the two tools, within numerical errors).
We also indicate the state space sizes of the global net. No-
tations for tables 1 and 2 are the following: |Colour| is the
cardinality of the static colour subclass, NbS is the number
of symbolic markings, NbO is the number of ordinary mark-
ings, TGreat is the computation time of GreatSPN, TComp
is the computation time of compSWN, MGreat is the mem-
ory used by GreatSPN and MComp is the memory used
by compSWN. Note that with our method and tool, we are
able to compute the SRG of the G-SWN and its steady-state
probabilities for all given configurations, while the compu-
tation was not possible with the GreatSPN tool for certain
configurations (Cf6, Cf7, Cf8) because of the huge size of
state space.

5.3.2 Performance results for the Comanche example

In this paper, we only present some of the results we have
gathered and refer the reader to a forthcoming research re-
port for a fully detailed performance analysis of the exam-
ple.

Parameters of the system First, we present results for only
one configuration (Cf4) of the system. Note that a colour
may model a group of elementary entities, for instance a
request colour can stand for 10, 100 or 1000 requests; obvi-
ously, firing rates of transitions involving this colour should
be adapted to the semantics of a colour (100 requests pro-
vide a possibly 100 times (or more) slower method request

17

Config NbS NbO TGreat(s) TComp(s) MGreat (B) MComp (B)
Cf1 82 35144 4 0 402 1484
Cf2 136 239392 5 0 510 1652
Cf3 271 16139264 12 0 780 2072
Cf4 406 2392068 485 1 6305 5336
Cf5 784 24279944 4919 1 7095 6008
Cf6 1540 3656635680 - 2 - 7368
Cf7 3430 3113239552 - 3 - 10728
Cf8 7210 999926785 - 22 - 17448

Table 2: State space sizes and computation times for SRG generation of the Comanche example for various configurations

Component Transition Rate value
Receiver ReceiveRequest 0.6
Scheduler ScheduleRequest 0.9
Analyzer AnalysisRequest 0.6
Analyzer T10 0.75
Logger LogRequest 0.9
Dispatcher DispatchRequest 0.9
Dispatcher T29 0.9
Dispatcher T30 0.1
File Handler FileHRequest 0.9
Error Handler ErrorHRequest 0.1

Table 3: Transition rates of the studied configuration

rate for instance). We also take fixed rate values of a critical
set of transitions, then, we vary some transition rates, and
study the evolution of response time from obtained steady-
state probabilities. Main transitions rate values are given in
table 3 and transitions not appearing in this table have rate 1
(i.e. faster than all other transitions, rates being given in the
same unit).

Response time variations We are mainly interested in com-
puting variations of the response time with respect to several
parameters: the load induced by client’s requests, the rate of
the analysis request, the rate of file or data retrieval and the
error rate. Figure 18 shows response time variations with re-
spect to the first two parameters. From the left diagram, we
see that the CBS presents a slightly better response time as
far as the client requests arrival duration increases. This a
priori contradictory behaviour indicates that the system is
not saturated until request arrival rate of 2. Indeed, the curve
becomes flatter when the request arrival rate increases. The
right diagram shows a reduced response time with the in-
creasing of request analysis rate. This was expected since the
system becomes more powerful with higher request analysis
rate. However, we observe that the response time first shuts
down significantly and then (0.4 and more) becomes almost
stable. This phenomenon proves that the analysis is no more
the bottleneck of the system for rates higher than 0.4.

Response time analysis could be completed by steady-
state probabilities of markings in several components of the
system.

6 Conclusion

In this paper, we have presented a method allowing to study,
in an efficient way, performance indices of Fractal Compo-
nent Based Systems (CBS), restricted to stable configura-
tions (i.e. without reconfiguration) of the CBSs. We quote
that implementation semantics heavily impact modelling Frac-
tal CBSs and must be taken into account by any modelling
method. In this work, we model Fractal CBS using Julia,
the Java reference implementation of the Fractal component
model.

The presented method is an instance of a general method
for analysis of CBSs. It starts from the description of a Frac-
tal application, given by its description expressed in the Frac-
tal Architecture Description Language and the Java source
code of the primitive components. For each component, we
build a SWN model (the CC-SWN) describing its functional
behaviour and its interfaces. The CC-SWNs are then inter-
connected following the architecture of the system, begin-
ning from primitive components up to the highest level com-
posite component for which we provide a global SWN (the
G-SWN). We then apply, whenever possible, to the G-SWN
and the CC-SWNs, a structured analysis method to compute
performance indices of the system. This analysis is based
on synchronous composition of SWNs we have previously
developed. We show that our model of Julia Fractal CBS
can indeed be analyzed with this approach which provides
important savings in computation time and memory usage
during the analysis. We illustrate our method with the HTTP
server Comanche application. Results are computed with the
help of our compSWN tool. Detailed performance analysis
of this example will be available in a forthcoming research
report.

Work in progress will first partially automate extraction
of information from the description of the CBS for direct
definition of the interfaces of the CC-SWNs. Moreover, gains
of the structured analysis being dependent on the number

18

Fig. 18: Response time versus request arrival rate (left) and request analysis rate (right)

and the size of SWNs making up the global SWN, we are
studying some heuristic rules to merge subnets of the model
for better analysis times. Finally, we are working on mod-
elling reconfiguration features of Fractal CBSs and verifica-
tion of their behaviours.

References

1. A. Arnold. Nivats processes and their synchronization. Theor.
Comput. Sci., (281(1-2)):31–36, 2002.

2. A. Arnold. Finite transition systems: semantics of communicating
systems. In UK Hertfordshire, editor, Pren-tice Hall International
(UK) Ltd., 94.

3. T. Barros, A. Cansado, E. Madelaine, and M. Rivera. Model
checking distributed components : The vercors platform. In
3rd workshop on Formal Aspects of Component Systems, Prague,
Tcheque Republic, September 2006. ENTCS.

4. F. Baude, D. Caromel, and M. Morel. From distributed objects
to hierarchical grid components. In D.C. Schmidt, R. Meers-
manand Z. Tari, and al., editors, On The Move to Meaningful In-
ternet Systems 2003: Coopis, DOA and ODBASE, volume 2888 of
LNCS, pages 1226–1242. Springer Verlag, 2003.

5. S Bernardi, S. Donatelli, and A. Horváth. Implementing composi-
tionality for stochastic Petri nets. Int. J. STTT, (3):417–430, 2001.

6. E. Bruneton. Fractal ADL tutorial. file://home/nasal/doc/

Fractal/fractal_adl_tutorial_index_print.html (jan.
2007).

7. E. Bruneton. Tutorial: Developping with fractal. http://

fractal.objectweb.org/tutorial/index.html (dec. 2006).
8. E. Bruneton, T. Coupaye, and J.B. Stefani. The fractal component

model, version 2.0-3. Technical report, Fractal team, Online doc-
umentation http://fractal.objectweb.org/specification/

(oct. 2006), February 2004.
9. É. Bruneton, Th. Coupaye, M. Leclercq, V. Quéma, and J.-B. Ste-

fani. The fractal component model and its support in java: Expe-
riences with auto-adaptive and reconfigurable systems. Software
Practice Experience, 36(11-12):1257–1284, 2006.

10. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad.
Stochastic well-formed colored nets and symmetric modeling ap-

plications. IEEE Transactions on Computers, 42(11):1343–1360,
November 1993.

11. L. Dias da Silva and A. Perkusich. Composition of software ar-
tifacts modelled using colored Petri nets. Science of Computer
Programming, 56(1-2):171–189, April 2005.

12. C. Delamare, Y. Gardan, and P. Moreaux. Efficient implemen-
tation for performance evaluation of synchronous decomposition
of high level stochastic Petri nets. In On-site proceedings of the
ICALP2003 Workshop on Stochastic Petri Nets and Related For-
malisms, pages 164–183, Eindhoven, Holland, June 21-22 2003.
University of Dortmund, Germany.

13. C. Delamare, Y. Gardan, and P. Moreaux. Performance evalu-
ation with asynchronously decomposable SWN: implementation
and case study. In Proc. of the 10th Int. Workshop on Petri
nets and performance models (PNPM03), pages 20–29, Urbana-
Champaign, IL, USA, September 2–5 2003. IEEE Comp. Soc.
Press.

14. D.Petriu, C.Shousha, and A.Jalnapurkar. Architecture-based per-
formance analysis applied to a telecommunication system. IEEE
Transactions on Software Engineering, 26(11):1049–1065, 2000.

15. J. Fassino, J. Stefani, J. Lawall, and G. Muller. Think: A software
framework for component-based operating system kernels. In In
Usenix Annual Technical Conference.

16. V. Grassi, R. Mirandola, and A. Sabetta. Filling the gap between
design and performance/reliability models of component-based
systems: A model-driven approach. J. Syst. Softw., 80(4):528–558,
2007.

17. Object Management Group. Common object request bro-
ker architecture (CORBA) - specification, version 3.1, part 1:
CORBA interoperability. http://www.omg.org/cgi-bin/doc?

pas/04-08-01.pdf (July 2007), 2004.
18. Object Management Group. Common object request broker archi-

tecture (CORBA) - specification, version 3.1, part 2: CORBA in-
terfaces. http://www.omg.org/cgi-bin/doc?pas/04-08-02.

pdf (July 2007), 2004.
19. S. Haddad and P. Moreaux. Aggregation and decomposition for

performance evaluation of synchronous product of high level Petri
nets. Document du Lamsade 96, LAMSADE, Université Paris
Dauphine, Paris, France, September 1996. .

20. Orna Kupferman and Moshe Y. Vardi. Modular model checking.
In Compositionality: The Significant Difference, volume 1536 of
LNCS, pages 381–401, 1998.

19

21. N. Medvidović and R. N. Taylor. A classification and comparison
framework for software architecture description languages. In In
IEEE Trans. On Software Engeneering, volume 26, pages 70–93.
IEEE Trans., 2000.

22. Microsoft. .Net 3.0 framework. http://msdn.microsoft.com/

netframework (July 2007), 2007.
23. Sun Microsystems. EJB 3.0 specification, July 2007.
24. P.E. Group. GreatSPN home page: http://www.di.unito.it/

~greatspn, 2002.
25. A.-E. Rugina, K. Kanoun, and M. Kaâniche. Aadl-based depend-

ability modelling. Report 06209, LAAS, Toulouse, France, April
2006.

26. L. Seinturier, N. Pessemier, L. Duchien, and T. Coupaye. A com-
ponent model engineered with components and aspects. In Proc.
of Component-Based Software Engineering (CBSE’06, volume
4063 of LNCS, pages 139–153, Mälardalen University, Västerås,
Sweden, June 2006. Springer.

27. C.U. Smith. Performance Engineering of Software Systems.
Addison-Wesley, Reading, Mass., 1990.

28. C. Szyperski, D. Gruntz, and S. Murer. Component Software Be-
yond Object-Oriented Programming (2nd ed.). Addison Wesley -
ACM Press, 2002.

29. X. Wu and M. Woodside. Performance modeling from software
components. SIGSOFT Softw. Eng. Notes, 29(1):290–301, 2004.

A WN and SWN formal definitions

We remind the reader with the definitions of WN and SWN. A detailed
presentation of these models can be found in [10].

Definition 1 (Well-formed Petri Net (WN)) A well-formed Petri Net
S is a tuple
(P,T,C,cd,Pre,Post, Inh,Guard,Pri,M0) with:

– P,T : the finite sets of places and transitions,
– C = {Ci/i ∈ I = {1, · · · ,n}}: the set of basic colour classes; Ci is

possibly partitioned into into ni static sub-classes: Ci =
∪ni

j=1 Ci, j ,
– cd: P

∪
T → Bag(I). cd(r) = Ce1

1 ×Ce2
2 × . . .×Cen

n is the colour
domain of a node r; e i ∈ IN is the number of occurrences of C i in
the colour domain of r, where Bag(I) is the set of multisets (bags)
on I.

– Pre,Post, Inh: the input, output and inhibition standard colour func-
tions from C(t) to Bag(C(p)).

– Guard(t) : C(t) →{true, false} is a standard predicate associated
with the transition t. By default, Guard(t) is the constant function
of value True.

– Pri : T → IN the priority function. By default, we assume ∀t ∈
T,Pri(t) = 0;

– M0 : M0(p) ∈ Bag(C(p)) is the initial marking of p.

Definition 2 (Stochastic Well-formed Net (SWN)) A Stochastic Well-
formed Net is a pair (S,θ) such that:

– S is a Well-Formed Net.
– θ a function defined on T such that: θ(t) : c̃d(t)×∏p∈P Bag(C̃(p))−→

R+.
θ(t)(c̃,M̃) represents:

– The weight of t for the colour c in the marking M, if π(t) >
0 (t is immediate). the firing probability of t(c) in M is then:

θ(t)(c̃,M̃)
∑(t′ ,c′),M[t′(c′)> θ(t ′)(c̃′,M̃)

.

– The firing rate of t for the colour c in M, if π(t) = 0 (t is timed):
the enabling duration before the firing of t(c,M) follows an expo-
nential probability distribution with mean θ(t)(c̃,M̃).

In this definition, c̃ is the representation of the colour c in terms
of static sub-classes, and M̃(p) is the representation of the symbolic
marking of p in terms of tuples of static sub-classes. θ(t) depends only
on static sub-classes of concerned colours.

