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Central limit theorems for eigenvalues of deformations of

Wigner matrices∗

M. Capitaine†, C. Donati-Martin‡ and D. Féral§

Abstract

In this paper, we explain the dependance of the fluctuations of the largest eigenvalues of a

Deformed Wigner model with respect to the eigenvectors of the perturbation matrix. We exhibit

quite general situations that will give rise to universality or non universality of the fluctuations.

1 Introduction

In a previous paper [C-D-F], we have studied the a.s. behaviour of extremal eigenvalues of finite rank
deformation of Wigner matrices and in the particular case of a rank one diagonal deformation whose
non-null eigenvalue is large enough, we established a central limit theorem for the largest eigenvalue.
We exhibit a striking non-universality phenomenon at the fluctuations level. Indeed, we prove that
the fluctuations of the largest eigenvalue vary with the particular distribution of the entries of the
Wigner matrix. Let us recall these results. The random matrices under study are complex Hermitian
(or real symmetric) matrices (MN )N defined on a probability space (Ω,F ,P) such that

MN =
WN√
N

+ AN (1.1)

where the matrices WN and AN are defined as follows:

(i) WN is a N×N Wigner Hermitian (resp. symmetric) matrix such that the N2 random variables

(WN )ii,
√

2ℜe((WN )ij)i<j ,
√

2ℑm((WN )ij)i<j (resp. the N(N+1)
2 random variables 1√

2
(WN )ii,

(WN )ij , i < j) are independent identically distributed with a symmetric distribution µ of vari-
ance σ2 and satisfying a Poincaré inequality;

(ii) AN is a deterministic Hermitian (resp. symmetric) matrix of fixed finite rank r and built from
a family of J fixed real numbers θ1 > · · · > θJ independent of N with some j0 such that
θj0 = 0. We assume that the non-null eigenvalues θj of AN are of fixed multiplicity kj (with∑

j 6=j0
kj = r) i.e. AN is similar to the diagonal matrix

diag(θ1Ik1 , . . . , θj0−1Ikj0−1 , 0N−r, θj0+1Ikj0+1 , . . . , θJIkJ ). (1.2)

The Poincaré inequality assumption was fundamental in the approach of [C-D-F]. In the present paper,
we only rely on the results of [C-D-F] without making use of the Poincaré inequality. Hence, we refer
the reader to [C-D-F] and the references therein for details on such an inequality. Nevertheless, note
that the Poincaré inequality assumption implies that µ has moments of any order (cf. Corollary 3.2
and Proposition 1.10 in [L]) and this last property will be used later on.
In the following, given an arbitrary Hermitian matrix M of size N , we will denote by λ1(M) ≥ · · · ≥
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λN (M) its N ordered eigenvalues.
As the rank of the AN ’s is assumed to be finite, the Wigner Theorem is still satisfied for the Deformed
Wigner model (MN )N (cf. Lemma 2.2 of [B]). Thus, as in the classical Wigner model (AN ≡ 0), the

spectral measure 1
N

∑N
i=1 δλi(MN ) of MN converges a.s. towards the semicircle law µsc whose density

is given by
dµsc

dx
(x) =

1

2πσ2

√
4σ2 − x2 11[−2σ,2σ](x). (1.3)

Nevertheless, the asymptotic behavior of the extremal eigenvalues may be affected by the perturbation
AN . When AN ≡ 0, it is well-known that the first largest (resp. last smallest) eigenvalues of the
rescaled Wigner matrix WN/

√
N tend almost surely to the right(resp. left)-endpoint 2σ (resp. −2σ)

of the semicircle support (cf. [B]). This result fails when some of the θj ’s are sufficiently far from
zero. Define

ρθj = θj +
σ2

θj
. (1.4)

Observe that ρθj > 2σ (resp. < −2σ) when θj > σ (resp. < −σ) (and ρθj = ±2σ if θj = ±σ).
For definiteness, we set k1 + · · · + kj−1 := 0 if j = 1. In [C-D-F], we have established the following
universal convergence result.

Theorem 1.1. (A.s. behaviour) Let J+σ (resp. J−σ) be the number of j’s such that θj > σ (resp.
θj < −σ).

(1) ∀1 ≤ j ≤ J+σ, ∀1 ≤ i ≤ kj , λk1+···+kj−1+i(MN ) −→ ρθj a.s.

(2) λk1+···+kJ+σ
+1(MN ) −→ 2σ a.s.

(3) λk1+···+kJ−J
−σ

(MN ) −→ −2σ a.s.

(4) ∀j ≥ J − J−σ + 1, ∀1 ≤ i ≤ kj , λk1+···+kj−1+i(MN ) −→ ρθj a.s.

In the particular case of the rank one diagonal deformation AN = diag(θ, 0, · · · , 0) such that θ > σ,
we investigated the fluctuations of the largest eigenvalue of MN (with WN satisfying (i)) around its
limit ρθ. We obtained the following non-universality result.

Theorem 1.2. (CLT) Let AN = diag(θ, 0, · · · , 0) and assume that θ > σ. Define

cθ =
θ2

θ2 − σ2
and vθ =

t

4

(m4 − 3σ4

θ2

)
+
t

2

σ4

θ2 − σ2
(1.5)

where t = 4 (resp. t = 2) when WN is real (resp. complex) and m4 :=
∫
x4dµ(x). Then

cθ
√
N
(
λ1(MN )− ρθ

)
L−→
{
µ ∗ N (0, vθ)

}
. (1.6)

Remark 1.1. The strong assumption on the distribution µ (Poincaré inequality) of the entries of
WN is a technical assumption we needed to prove the a.s. result, Theorem 1.1(we conjecture it is true
under more general assumptions, cf. [C-D-F]) but the proof of the fluctuations of Theorem 1.2 only
requires standard assumptions (existence of the fourth moment) once we know the a.s. convergence.

On the other hand, in collaboration with S. Péché, the third author of the present article has stated in
[Fe-Pe] the universality of the fluctuations of some Deformed Wigner models under a full deformation
AN defined by (AN )ij = θ/N for all 1 ≤ i, j ≤ N (see also [Fu-K]). Thus in the non-Gaussian setting,
the fluctuations of the largest eigenvalue depend, not only on the spectrum of the deformation AN ,
but also on the particular definition of the matrix AN .

In this paper, we try to explain this dependance of the fluctuations of the largest eigenvalues of
the Deformed Wigner model MN with respect to the eigenvectors of the matrix AN . We investigate
two quite general situations for which we exhibit a phenomenon of different nature.
First, when the eigenvectors associated to one of the largest eigenvalues of AN , say θj > σ, are
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not “spread” namely belong to a subspace generated by a fixed number Kj (independent of N) of
canonical vectors of C

N and are independent of N , we establish that the limiting distribution in the
fluctuations of λk1+···+kj−1+i(MN ), 1 ≤ i ≤ kj , around ρθj is not universal and we give it explicitely
in terms of these eigenvectors and of the distribution of the entries of the Wigner matrix.
Secondly, if Kj defined above depends on N , if there is no “leading” direction among the eigenvectors
associated to θj , we establish the universality of the fluctuations of λk1+···+kj−1+i(MN ), 1 ≤ i ≤ kj .
We detail these results in the following section. Actually, we assume that the eigenvectors associated
to the largest eigenvalues θ1, . . . , θJ+σ of AN belong to a subspace generated by k(= k(N)) canonical
vectors of CN . In our approach, we need to isolate a N − k×N − k Deformed Wigner matrix MN−k

where the eigenvalues of the perturbation are all smaller than σ; we use several well known limiting
results when N − k tends to infinity involving MN−k. Hence, our study does not include the full
deformation case of [Fe-Pe] where k = N . Moreover for technical reasons we have to assume that
k ≪

√
N but we conjecture that our result still holds if k≪ N .

The same kind of questions has been previously studied for the spiked population models by
[B-Ya2]. The Deformed Wigner matrix model may be seen as the additive analogue of the spiked
population models. These are random sample covariance matrices (SN )N defined by SN = 1

N Y
∗
NYN

where YN is a p×N complex (resp. real) matrix (with N and p = pN of the same order as N →∞)
whose entries satisfy first four moments conditions; the sample column vectors are assumed to be i.i.d,
centered and of covariance matrix a deterministic Hermitian (resp. symmetric) matrix Σp having
all but finitely many eigenvalues equal to one. The analogue of Theorem 1.1 was established by J.
Baik and J. Silverstein in [Bk-S1]: when some eigenvalues of Σp are far from one, the corresponding
largest eigenvalues of SN a.s. split from the limiting Marchenko-Pastur support. Fluctuations of
the eigenvalues that jump have been recently found by Z. Bai and J. F. Yao in [B-Ya2]: the setting
considered in [B-Ya2] is the multiplicative analogue of the particular case “k finite independent of N”
in our Theorem 2.1; note that they exhibit universal fluctuations (we refer the reader to [B-Ya2] for
the precise restrictions made on the definition of the covariance matrix Σp).
Note that the first steps of our approach as well as the approach of [B-Ya2] are in a spirit close to the
one of [P] and [B-B-P].

The paper is organized as follows. In Section 2, we present the main results of this paper and give
a summary of our approach. In Section 3, we introduce preliminary lemmas and fundamental results
which will be of basic use later on. Section 4 is devoted to the proof of Theorem 2.1 and Theorem
2.2. Finally, we prove some technical results in an Appendix. All along the paper, the parameter t is
such that t = 4 (resp. t = 2) in the real (resp. complex) setting and we let m4 :=

∫
x4dµ(x).

2 Main results

As in Theorem 1.1, we denote by J+σ (resp. J−σ) the number of j’s such that θj > σ (resp. θj < −σ).
Set k+σ := k1 + · · ·+ kJ+σ . We also denote by (ei; i = 1, . . . , N) the canonical basis of CN .

We introduce k ≥ k+σ as the minimal number of canonical vectors of C
N needed to express all the

eigenvectors associated to the largest eigenvalues θ1, . . . , θJ+σ of AN . Without loss of generality, we
can assume that these k+σ eigenvectors belong to Vect(e1, . . . , ek). This follows from the invariance
of the distribution of the Wigner matrix WN by conjugation by a permutation matrix.

All along the paper we assume that k ≪
√
N . Let us now fix j such that 1 ≤ j ≤ J+σ. We shall

study two cases:

Case a) the orthonormal eigenvectors vj
i , 1 ≤ i ≤ kj , of AN associated to θj depend on a finite

number Kj (independent of N) of canonical vectors among (e1, . . . , ek) and their coordinates are in-
dependent of N (“The eigenvectors don’t spread out”). Without loss of generality, we can assume
that the vj

i , 1 ≤ i ≤ kj , belong to Vect(e1, . . . , eKj);

Case b) the orthonormal eigenvectors vj
i , 1 ≤ i ≤ kj , belong to Vect(e1, . . . , eKj) where Kj =
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Kj(N)→∞ when N →∞ and the coordinates satisfy:

∀i ≤ kj , ∀l ≤ Kj, |(vj
i , el)| → 0 as N →∞.

(“There is no leading direction among the eigenvectors”).

Therefore, we assume that there exists a unitary matrix Uk of size k such that

diag(U∗k , IN−k)ANdiag(Uk, IN−k) = diag(θjIkj , (θlIkl
)l≤J+σ,l 6=j , ZN−k+σ) (2.1)

where ZN−k+σ is an Hermitian matrix with eigenvalues strictly smaller than θJ+σ .
In the Case b), Uk satisfies

kj

max
p=1

Kj

max
i=1
|(Uk)ip| −→ 0 as N →∞. (2.2)

Considering now the vectors vi
j as vectors in CKj , we define the Kj × kj matrix

UKj×kj :=
(
vj
1, . . . , v

j
kj

)
(2.3)

namely UKj×kj is the upper left corner of Uk of size Kj × kj . It satisfies

U∗Kj×kj
UKj×kj = Ikj . (2.4)

Example:
AN = diag(Ap(θ1), θ2Ik2 , 0N−p−k2)

where Ap(θ1) is a matrix of size p defined by Ap(θ1)ij = θ1/p, with θ1, θ2 > σ, p ≪
√
N . Then

k = p+ k2, k1 = 1, K1 = p, K2 = k2. For j = 1, we are in Case a) if p does not depend of N and in
Case b) if p = p(N)→ +∞. For j = 2, we are in Case a).

From Theorem 1.1, for all 1 ≤ i ≤ kj , λk1+···+kj−1+i(MN ) converges to ρθj a.s.. The main results
of our paper are the following two theorems. Let cθj be defined by

cθj =
θ2j

θ2j − σ2
. (2.5)

In Case a) (which includes the particular setting of Theorem 1.2), the fluctuations of the corre-
sponding correctly rescaled largest eigenvalues of MN are not universal.

Theorem 2.1. In Case a): the kj-dimensional vector

(
cθj

√
N(λk1+...+kj−1+i(MN)− ρθj ); i = 1, . . . , kj

)

converges in distribution to (λi(Vkj×kj ); i = 1, . . . kj) where λi(Vkj×kj ) are the ordered eigenvalues of
the matrix Vkj×kj of size kj defined in the following way. Let WKj be a Wigner matrix of size Kj

with distribution given by µ (cf (i)) and HKj be a centered Hermitian Gaussian matrix of size Kj

independent of WKj with independent entries Hpl, p ≤ l with variance






vpp = E(H2
pp) =

t

4

(m4 − 3σ4

θ2j

)
+
t

2

σ4

θ2j − σ2
, p = 1, . . . ,Kj ,

vpl = E(|Hpl|2) =
σ4

θ2j − σ2
, 1 ≤ p < l ≤ Kj .

(2.6)

Then, Vkj×kj is the kj × kj matrix defined by

Vkj×kj = U∗Kj×kj
(WKj +HKj )UKj×kj . (2.7)

Case b) exhibits universal fluctuations.
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Theorem 2.2. In Case b): the kj-dimensional vector

(
cθj

√
N(λk1+...+kj−1+i(MN)− ρθj ); i = 1, . . . , kj

)

converges in distribution to (λi(Vkj×kj ); i = 1, . . . kj) where the matrix Vkj×kj is distributed as the

GU(O)E(kj × kj ,
θ2

j σ2

θ2
j−σ2 ).

Remark 2.1. The condition 1 ≪ k ≪
√
N is just a technical condition and we conjecture that our

result still holds if 1≪ k ≪ N .

Remark 2.2. Note that since µ is symmetric, analogue results can be deduced from Theorem 2.1 and
Theorem 2.2 dealing with the lowest eigenvalues of MN and the θj such that θj < −σ.

Before we proceed to the proof of Theorems 2.1 and 2.2, let us give the sketch of our approach
which are similar in both cases. To this aim, we define for any random variable λ,

ξN (λ) = cθj

√
N(λ− ρθj ) (2.8)

with cθj given by (2.5). We also set k̂j−1 := k1 + . . .+ kj−1 with the convention that k̂0 = 0.
The reasoning made in the setting of Theorem 1.2 (for which k = k+σ = 1) relies (following ideas
previously developed in [P] and [B-B-P]) on the writing of the rescaled eigenvalue ξN (λ1(MN )) in
terms of the resolvent of an underlying non-Deformed Wigner matrix. The conclusion then essentially
follows from a CLT on random sesquilinear forms established by J. Baik and J. Silverstein in the
Appendix of [C-D-F] (which corresponds to the following Theorem 3.2 in the scalar case). In the
general case, to prove the convergence in distribution of the vector

(
ξN (λk̂j−1+i(MN)); i = 1, . . . , kj

)
,

we will extend, as [B-Ya2], the previous approach in the following sense. We will show that each of
these rescaled eigenvalues is an eigenvalue of a kj × kj random matrix which may be expressed in
terms of the resolvent of a N − k ×N − k Deformed Wigner matrix whose eigenvalues do not jump
asymptotically outside [−2σ; 2σ]; then, the matrix Vkj×kj will arise from a multidimensional CLT on
random sesquilinear forms. Nevertheless, due to the multidimensional situation to be considered now,
additional considerations are required. Let us give more details.
Consider an arbitrary random variable λ which converges in probability towards ρθj . Then, applying
factorizations of type (3.1), we prove that λ is an eigenvalue of MN iff ξN (λ) is (on some event having
probability going to 1 as N →∞) an eigenvalue of a kj × kj matrix X̌kj ,N (λ) of the form

X̌kj ,N (λ) = Vkj ,N +Rkj ,N (λ) (2.9)

where Vkj ,N converges in distribution towards Vkj×kj and the remaining term Rkj ,N (λ) turns out to

be negligible. Now, when kj > 1, since the matrix X̌kj ,N (λ) (in (2.9)) depends on λ, the previous
reasoning with λ = λk̂j−1+i(MN ) for any 1 ≤ i ≤ kj does not allow us to readily deduce that the kj

normalized eigenvalues ξN (λk̂j−1+i(MN )), 1 ≤ i ≤ kj are eigenvalues of a same matrix of the form

Vkj ,N + oP(1) and then that

(ξN (λk̂j−1+i(MN )); 1 ≤ i ≤ kj) = (λi(Vkj ,N); 1 ≤ i ≤ kj) + oP(1). (2.10)

Note that the authors do not develop this difficulty in [B-Ya2] (pp. 464-465). Hence, in the last step
of the proof (Step 4 in Section 4), we detail the additional arguments which are needed to get (2.10)
when kj > 1.

Our approach will cover Cases a) and b) and we will handle both cases once this will be possible.
In fact, the main difference appears in the proof of the convergence in distribution of the matrix Vkj ,N

which gives rise to the ”occurrence or non-occurrence” of the distribution µ in the limiting fluctuations
and then justifies the non-universality (resp. universality) in Case a) (resp. b)).

The proof is organized in four steps as follows. In Steps 1 and 2, we explain how to obtain
(2.9): we exhibit the matrix X̌kj ,N and bring its leading term Vkj ,N to light in Step 2. We establish
the convergence in distribution of the matrix Vkj ,N in Step 3. Step 4 is devoted to the concluding
arguments of the proof.
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3 Basic tools

In this section, we fix some notations and recall some basic facts on matrices and some results on
random sesquilinear forms needed for the proofs of Theorems 2.1 and 2.2.

3.1 Linear algebra

For any matrix M ∈ MN (C), we denote by Tr (resp. trN ) the classical (resp. normalized) trace.
||M || is the operator norm of M and ||M ||HS := (Tr(MM∗))1/2 the Hilbert-Schmidt norm. Spect(M)
denotes the spectrum of M .
For z ∈ C\Spect(M), we denote by GM (z) = (zIN −M)−1 the resolvent of M (we suppress the index
M when there is no confusion).

Lemma 3.1. Let M be an Hermitian matrix and x ∈ R such that x > λ1(M); we have

‖G(x)‖ ≤ 1

x− λ1(M)
.

For Hermitian matrices, denoting by λi the decreasing ordered eigenvalues, we have the Weyl’s
inequalities:

Lemma 3.2. (cf. Theorem 4.3.7 of [H-J]) Let B and C be two N ×N Hermitian matrices. For any
pair of integers j, k such that 1 ≤ j, k ≤ N and j + k ≤ N + 1, we have

λj+k−1(B + C) ≤ λj(B) + λk(C).

For any pair of integers j, k such that 1 ≤ j, k ≤ N and j + k ≥ N + 1, we have

λj(B) + λk(C) ≤ λj+k−N (B + C).

In the computation of determinants, we shall use the following formula.

Lemma 3.3. (cf. Theorem 11.3 page 330 in [B-S2]) Let A ∈ Mk(C) and D be a nonsingular matrix
of order N − k. Let also B and tC be two matrices of size k × (N − k). Then

det

(
A B
C D

)
= det(D) det(A−BD−1C). (3.1)

3.2 Results on random sesquilinear forms

In the following, a complex random variable x will be said standardized if E(x) = 0 and E(|x|2) = 1.

Theorem 3.1. (Lemma 2.7 [B-S1]) Let B = (bij) be a N×N Hermitian matrix and YN be a vector of
size N which contains i.i.d standardized entries with bounded fourth moment. Then there is a constant
K > 0 such that

E|Y ∗NBYN − TrB|2 ≤ KTr(BB∗).

This theorem is still valid if the i.i.d standardized coordinates Y (i) of YN have a distribution depending
on N such that supN E(|Y (i)|4) <∞.

Theorem 3.2. (cf. [B-Ya2] or Appendix by J. Baik and J. Silverstein in [C-D-F] in the scalar case)
Let A = (aij) be a N ×N Hermitian matrix and {(xi, yi), i ≤ N} a sequence of i.i.d centered vectors
in CK × CK with finite fourth moment. We write xi = (xli) ∈ CK and X(l) = (xl1, . . . , xlN )T for
1 ≤ l ≤ K and a similar definition for the vectors {Y (l), 1 ≤ l ≤ K}. Set ρ(l) = E[x̄l1yl1]. Assume
that the following limits exist:

(i) ω = limN→∞
1
N

∑N
i=1 a

2
ii,

(ii) θ = limN→∞
1
N TrA2 = limN→∞

1
N

∑N
i,j=1 |aij |2,

(iii) τ = limN→∞
1
N TrAAT = limN→∞

1
N

∑N
i,j=1 a

2
ij .
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Then the K-dimensional random vector 1√
N

(
X(l)∗AY (l) − ρ(l)TrA

)
converges in distribution to a

Gaussian complex-valued vector G with mean zero. The Laplace transform of G is given by

∀c ∈ C
K , E[exp(cTG)] = exp(

1

2
cTBc),

where the K ×K matrix B = (B(l, l′)) is given by B = B1 +B2 +B3 with:

B1(l, l
′) = ω(E[x̄l1yl1x̄l′1yl′1]− ρ(l)ρ(l′))

B2(l, l
′) = (θ − ω)E[x̄l1yl′1]E[x̄l′1yl1] (3.2)

B3(l, l
′) = (τ − ω)E[x̄l1x̄l′1]E[yl1yl′1].

4 Proofs of Theorem 2.1 and Theorem 2.2

As far as possible, we handle both the proofs of Theorem 2.1 and Theorem 2.2. We will proceed in
four steps. First, let us introduce a few notations.

For a m×q matrix B (or B) and some integers 1 ≤ p ≤ m and 1 ≤ l ≤ q, we denote respectively by

[B]տp×l, [B]րp×l, [B]ւp×l and [B]ցp×l the upper left, upper right, lower left and lower right corner of size
p× l of the matrix B. If p = l, we will often replace the indices p× l by p for convenience. Moreover
if p = m , we may replace ր or ց by → and ւ or տ by ←. Similarly if l = q, we may replace ր or
տ by ↑ and ւ or ց by ↓.
For simplicity in the writing we will define the k × k, resp. N − k ×N − k, resp. k ×N − k matrix
Wk, resp. WN−k, resp. Y , by setting

WN =

(
Wk Y
Y ∗ WN−k

)
. (4.1)

Given B ∈MN (C), we will denote by B̃ the N ×N matrix given by

B̃ := diag(U∗k , IN−k)B diag(Uk, IN−k) =

(
B̃k B̃k×N−k

B̃N−k×k B̃N−k

)
.

One obviously has that B̃N−k = BN−k.
In this way, we define the matrices M̃N , W̃N and ÃN . In particular, we notice from (2.1) that

ÃN = diag(θjIkj , (θlIkl
)l≤J+σ,l 6=j , ZN−k+σ) =

(
Ãk Ãk×N−k

ÃN−k×k AN−k

)
. (4.2)

Note also that since AN−k is a submatrix of ZN−k+σ , all its eigenvalues are strictly smaller than σ.
Let 0 < δ < (ρθj − 2σ)/2. For any random variable λ, define the events

Ω
(1)
N (λ) =

{
λ1

(
WN√
N

+ diag(Uk, IN−k) diag(0k+σ , ZN−k+σ) diag(U∗k , IN−k)

)
< 2σ + δ;λ > ρθj − δ

}
,

Ω
(2)
N =

{
λ1

(
WN−k√

N
+AN−k

)
≤ 2σ + δ

}
,

and
ΩN (λ) = Ω

(1)
N (λ)

⋂
Ω

(2)
N . (4.3)

On ΩN (λ), neither λ nor ρθj are eigenvalues of MN−k := WN−k√
N

+ AN−k and the resolvents Ĝ(λ) :=

(λIN−k −MN−k)−1 and Ĝ(ρθj ) := (ρθjIN−k −MN−k)−1 are well defined. Note that from Theorem
1.1, for any random sequence ΛN converging towards ρθj in probability, limN −→∞ P(ΩN (ΛN )) = 1.
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STEP 1: Let λ be a random variable. On ΩN (λ),

det(MN − λIN ) = det(M̃N − λIN )

= det

(
M̃k − λIk M̃k×N−k

MN−k×k MN−k − λIN−k

)

= det(MN−k − λIN−k) det
(
M̃k − λIk + M̃k×N−kĜ(λ)M̃N−k×k

)
.

The last equality in the above equation follows from (3.1). Since on ΩN (λ), λ is not an eigenvalue of
MN−k, we can deduce that λ is an eigenvalue of M̃N if and only if it is an eigenvalue of

Qk,N (λ) := M̃k + M̃k×N−kĜ(λ)M̃N−k×k. (4.4)

Now, note that we have also from (3.1) that

det




[
W̃N√
N

]ց

N−k+σ

+ ZN−k+σ − λIN−k+σ





= det

(
WN−k√

N
+
[
ZN−k+σ

]ց
N−k

− λIN−k

)
× det

(
[Qk,N (λ)]

ց
k−k+σ

− λIk−k+σ

)
.

The matrix
[
W̃N√

N

]ց
N−k+σ

+ZN−k+σ is a submatrix of W̃N√
N

+diag(0k+σ , ZN−k+σ) whose eigenvalues are

(on ΩN (λ)) smaller than 2σ+δ. So, since on ΩN (λ), λ is greater than ρθj−δ > 2σ+δ, we can conclude

that λ cannot be an eigenvalue of
[
W̃N√

N

]ց
N−k+σ

+ZN−k+σ , and then neither of [Qk,N (λ)]
ց
k−k+σ

. Thus,

we can define

Σk−k+σ (λ) :=
(
[Qk,N (λ)]

ց
k−k+σ

− λIk−k+σ

)−1

. (4.5)

Moreover on ΩN (λ), one can see using (3.1) that if λ0 is an eigenvalue of [Qk,N (λ)]
ց
k−k+σ

− λIk−k+σ

then λ is an eigenvalue of

[W̃N√
N

]ց
N−k+σ

+ ZN−k+σ − diag(λ0Ik−k+σ , 0N−k).

Hence,

λ ≤ λ1

([W̃N√
N

]ց
N−k+σ

+ ZN−k+σ

)
+ |λ0|

and then
|λ0| ≥ ρθj − δ − 2σ − δ,

so that finally

‖Σk−k+σ(λ)‖ ≤ 1

ρθj − 2σ − 2δ
. (4.6)

Using oncemore (3.1), we get that on ΩN (λ), λ is an eigenvalue of Qk,N (λ) if and only if it is

an eigenvalue of [Qk,N (λ)]տk+σ
− [Qk,N (λ)]րk+σ×k−k+σ

Σk−k+σ (λ) [Qk,N (λ)]ւk−k+σ×k+σ
or equivalently if

and only if ξN (λ) is an eigenvalue of

cθj

√
N
(
[Qk,N (λ)]

տ
k+σ
− ρθjIk+σ − [Qk,N (λ)]

ր
k+σ×k−k+σ

Σk−k+σ (λ) [Qk,N (λ)]
ւ
k−k+σ×k+σ

)
.

Now using
Ĝ(λ) − Ĝ(ρθj ) = −(λ− ρθj)Ĝ(ρθj )Ĝ(λ),

one can replace Ĝ(λ) by Ĝ(ρθj ) +
[
−(λ− ρθj )Ĝ(ρθj )

(
Ĝ(ρθj )− (λ− ρθj )Ĝ(ρθj )Ĝ(λ)

)]
and get the

following writing

1√
N
Y Ĝ(λ)Y ∗ =

1√
N
Y Ĝ(ρθj )Y

∗ + ξN (λ)Dk,N (λ) − ξN (λ)
N − k
N

σ2

cθj (θ
2
j − σ2)

Ik (4.7)
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where

cθjDk,N (λ) =
1

N
(λ− ρθj )Y Ĝ(λ)Ĝ(ρθj )

2Y ∗ − 1

N

(
Y Ĝ(ρθj )

2Y ∗ − σ2 Tr Ĝ(ρθj )
2Ik

)

−σ2N − k
N

(
trN−k Ĝ(ρθj )

2 − 1

θ2j − σ2

)
Ik.

Then

cθj

√
N
(
[Qk,N (λ)]

տ
k+σ
− ρθjIk+σ

)
= cθj

{[
U∗k

(
Wk +

1√
N

(
Y Ĝ(ρθj )Y

∗ − (N − k)σ
2

θj
Ik

))
Uk

]տ

k+σ

+
√
Ndiag

(
0kj , (θl − θj)Ikl

, l = 1, . . . , J+σ, l 6= j
)

+ξN (λ) [U∗kDk,N (λ)Uk]
տ
k+σ
− k√

N

σ2

θj
Ik+σ +

σ2

θ2j − σ2

ξN (λ)

cθj

k

N
Ik+σ

}

− σ2

θ2j − σ2
ξN (λ).

The following proposition (adding an extra matrix ∆k+σ for future computations) readily follows:

Proposition 4.1. For any random variable λ and any k+σ × k+σ random matrix ∆k+σ , on ΩN (λ),

λ is an eigenvalue of M̃N + diag(∆k+σ , 0) iff ξN (λ) is an eigenvalue of Xk+σ ,N (λ) +
√
N∆k+σ where

Xk+σ ,N(λ) := [U∗kBk,NUk]
տ
k+σ

+
√
Ndiag

(
0kj , (θl − θj)Ikl

, i = 1, . . . , J+σ, l 6= j
)

+ ξN (λ) [U∗kDk,N (λ)Uk]
տ
k+σ

+
(

σ2

θ2
j−σ2

ξN (λ)
cθj

k
N − k√

N
σ2

θj

)
Ik+σ − 1√

N
Γk+σ×k−k+σ (λ)Σk−k+σ (λ)Γk+σ×k−k+σ (λ)∗ (4.8)

where

Bk,N = Wk +
1√
N

(
Y Ĝ(ρθj )Y

∗ − (N − k)σ
2

θj
Ik

)
, (4.9)

cθjDk,N (λ) = τN (λ) + φN + ψN with (4.10)

τN (λ) =
1

N
(λ− ρθj )Y Ĝ(λ)Ĝ(ρθj )

2Y ∗

φN = − 1

N

(
Y Ĝ(ρθj )

2Y ∗ − σ2 Tr Ĝ(ρθj )
2Ik

)

ψN = −σ2N − k
N

(
trN−k Ĝ(ρθj )

2 − 1

θ2j − σ2

)
Ik,

and
Γk+σ×k−k+σ (λ) = TN(λ) + ∆k+σ (λ) with (4.11)

TN (λ) =

[
U∗k (Wk +

1√
N
Y Ĝ(λ)Y ∗)Uk

]ր

k+σ×(k−k+σ)

∆k+σ(λ) =
[
U∗kY Ĝ(λ)ÃN−k×k

]ր
k+σ×(k−k+σ)

.

Moreover, the k − k+σ × k − k+σ matrix Σk−k+σ (λ) defined by (4.5) is such that

‖Σk−k+σ (λ)‖ ≤ 1/(ρθj − 2σ − 2δ).

Let us make some comments on our approach in order to explain why we proceed in two steps
namely we apply twice a factorization of type (3.1) to deal with a k × k matrix and then with a
k+σ×k+σ matrix. This approach makes the accommodating resolvent of the Deformed Wigner matrix
WN−k

N +AN−k arise. A single application of a factorization of type (3.1) to go from aN×N to k+σ×k+σ

matrix would require to deal with the matrix [W̃N/
√
N ]ցN−k+σ

+ ZN−k+σ whose limiting spectral
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behaviour is a priori unknown. Moreover, the independance of the matrix [W̃N/
√
N ]րk×N−k and

WN−k

N +AN−k arising from our two steps approach will be of fundamental use in the following, whereas

their analogues in a single step approach are [W̃N/
√
N ]րk+σ×N−k+σ

and [W̃N/
√
N ]ցN−k+σ

+ ZN−k+σ

which are not independant.

Throughout Steps 2 and 3, ΛN denotes any random sequence converging in probability towards
ρθj . The aim of these two steps is to study the limiting behavior of the matrix Xk+σ ,N (ΛN ) as N
goes to infinity.

STEP 2: We first focus on the negligible terms in Xk+σ ,N(ΛN ) and establish the following.

Proposition 4.2. Assume that k ≪
√
N . For any random sequence ΛN converging in probability

towards ρθj , on ΩN (ΛN ),

Xk+σ,N (ΛN ) = Vk+σ ,N +
√
Ndiag

(
0kj , (θl − θj)Ikl

, l = 1, . . . , J+σ, l 6= j
)

+ (1 + |ξN (ΛN )|)2oP(1),
(4.12)

with Vk+σ ,N given by

Vk+σ ,N := [U∗kBk,NUk]
տ
k+σ

. (4.13)

The proof of this proposition is quite long and is divided in several lemmas. Although our final
result in the case k infinite holds only for k ≪

√
N , we will give some estimates for k ≪ N once this

is possible.

Lemma 4.1. Let k ≪ N . Then, on ΩN (ΛN ),

[U∗kDk,N (ΛN )Uk]
տ
k+σ

= oP(1). (4.14)

Proof of Lemma 4.1: We refer to Proposition 4.1 for the definition of Dk,N (ΛN ), τN , φN and ψN .
Let K = diag(Ik+σ , 0k−k+σ). On ΩN (ΛN ),

‖ [U∗kτNUk]տk+σ
‖HS =

1

N
|ΛN − ρθj |{Tr(KU∗kY Ĝ(ΛN )Ĝ(ρθj )

2Y ∗UkKU
∗
kY Ĝ(ρθj )

2Ĝ(ΛN )Y ∗UkK)} 1
2

≤ 1

N
|ΛN − ρθj |‖Ĝ(ρθj )‖2‖Ĝ(ΛN )‖‖Y ∗UkKU

∗
kY ‖

1
2 {Tr(KU∗kY Y

∗UkK)} 1
2

≤ 1

N
|ΛN − ρθj |‖Ĝ(ρθj )‖2‖Ĝ(ΛN )‖Tr(KU∗kY Y

∗UkK)

≤ 1

N
|ΛN − ρθj |

1

(ρθj − 2σ − 2δ)3
Tr(KU∗kY Y

∗UkK).

We have,

1

N
Tr(KU∗kY Y

∗UkK) =
1

N

N−k∑

p=1

k+σ∑

i=1

k∑

l,q=1

(Uk)l,iWl,k+pWq,k+p (Uk)q,i

=

k+σ∑

i=1

1

N

N−k∑

p=1

k∑

l,q=1,l 6=q

(Uk)l,iWl,k+pWq,k+p (Uk)q,i

+

k+σ∑

i=1

1

N

N−k∑

p=1

k∑

l=1

|(Uk)l,i|2|Wl,k+p|2.

Since {∑k
l,q=1,l 6=q (Uk)l,iWl,k+pWq,k+p (Uk)q,i; 1 ≤ p ≤ N − k} are i.i.d random variables with mean

zero and such that the second moments are bounded in N , we can deduce by the law of large numbers
that 1

N

∑N−k
p=1

∑k
l,q=1,l 6=q (Uk)l,iWl,k+pWq,k+p (Uk)q,i converges in L2 to zero and thus in probability.

Similarly, since {∑k
l=1 |(Uk)l,i|2|Wl,k+p|2; 1 ≤ p ≤ N − k} are i.i.d random variables with mean σ2

and bounded (in N) second moments, by the law of large numbers 1
N

∑N−k
p=1

∑k
l=1 |(Uk)l,i|2|Wl,k+p|2

converges in L2 towards σ2 and thus in probability. It follows that when N → +∞,

1

N
Tr(KU∗kY Y

∗UkK)
P→ k+σσ

2 (4.15)
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Hence [U∗k τNUk]
տ
k+σ

= oP(1).

It follows from Lemma 5.1 in the Appendix that

[U∗kψNUk]
տ
k+σ

:= −σ2N − k
N

[
trN−k Ĝ(ρθj )

2 − 1

θ2j − σ2

]
Ik+σ = oP(1).

Now, we have

E

(
‖ [U∗kφNUk]

տ
k+σ

1IΩN (ΛN )‖2HS

)
≤ E

(
‖ [U∗kφNUk]

տ
k+σ

1I
Ω

(2)
N

‖2HS

)

≤
k+σ∑

p,q=1

1

N2
E

(
|U(p)∗Ĝ(ρθj )

2U(q) − σ2 Tr Ĝ(ρθj )
2δp,q|21IΩ(2)

N

)
,

where for any p = 1, . . . , k+σ, we let U(p) = t[(Y ∗Uk)1,p, . . . , (Y
∗Uk)N−k,p]. We first state some

properties of the vectors U(p).

Lemma 4.2. Let U denote the N − k × k+σ matrix [Y ∗Uk]←k+σ
. Then, the rows (Ui.; i ≤ N − k)

are centered i.i.d vectors in C
k+σ , with a distribution depending on N . Moreover, we have for all

1 ≤ p, q ≤ k+σ:

E(U1pŪ1q) = δp,qσ
2 with E(U1pU1q) = 0 in the complex case,

E[|Uip|2|Uiq|2] = (1 +
t

2
δp,q)σ

4 + [E(|W12|4)− (1 +
t

2
)σ4]

k∑

l=1

|(Uk)l,p|2|(Uk)l,q|2. (4.16)

Since
∑k

l=1 |(Uk)l,p|4 ≤ 1, the fourth moment of U1p is uniformly bounded.

We skip the proof of this lemma which follows from straightforward computations using the indepen-
dence of the entries of Y and the fact that Uk is unitary.
Then, according to Theorem 3.1 and using Lemma 3.1,

1

N2
E

(
|U(p)∗Ĝ(ρθj )

2U(p)− σ2 Tr Ĝ(ρθj )
2|21IΩN (ΛN )

)
≤ K

N
E

(
trN Ĝ(ρθj )

41I
Ω

(2)
N

)

≤ K

N
E

(
‖Ĝ(ρθj )‖41IΩ(2)

N

)

≤ K

N

1

(ρθj − 2σ − δ)4 .

Besides for p 6= q, using the independence between (U(p),U(q)) and Ĝ(ρθj ), we have:

E

(
|U(p)∗Ĝ(ρθj )

2U(q)|21I
Ω

(2)
N

)
=

N−k∑

i,j,l,m

E[Ūip(G
2)ijUjqUlp(G2)lmŪmq1IΩ(2)

N

]

=

N−k∑

i,j,l,m

E[ŪipUjqUlpŪmq]E[(G2)ij(G2)lm1I
Ω

(2)
N

]

where we denote by G the matrix Ĝ(ρθj ) for simplicity. ¿From Lemma 4.2, for p 6= q, the only terms
giving a non null expectation in the above equation are those for which:

1) i = l, j = m and i 6= j. In this case,

E[ŪipUjqUipŪjq] = E[ŪipUip]E[UjqŪjq] = σ4

and
N−k∑

i,j,i6=j

E[(G2)ij(G2)ij1IΩ(2)
N

] ≤ E Tr(G41I
Ω

(2)
N

).
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2) i = j = k = l. In this case, using (4.16), there is a constant C > 0 such that

E[ŪipUiqUipŪiq ] = E[|Uip|2|Uiq|2] ≤ C.

Moreover
N−k∑

i=1

E[G2
iiḠ

2
ii1IΩ(2)

N

] ≤ E Tr(G41I
Ω

(2)
N

),

Therefore,

E

(
|U(p)∗Ĝ(ρθj )

2U(q)|21I
Ω

(2)
N

)
≤ (C + σ4) E Tr(Ĝ(ρθj )

41I
Ω

(2)
N

). (4.17)

Hence,

1

N2
E

(
|U(p)∗Ĝ(ρθj )

2U(q)|21I
Ω

(2)
N

)
≤ C + σ4

N
E

(
‖Ĝ(ρθj )‖41IΩ(2)

N

)
≤ C + σ4

N

1

(ρθj − 2σ − δ)4 .

Thus

E

(
‖ [U∗kφNUk]տk+σ

‖21IΩN (ΛN )

)
≤ (C + σ4)

k2
+σ

N

1

(ρθj − 2σ − δ)4 .

The convergence in probability of [U∗kφNUk]
տ
k+σ

towards zero readily follows by Tchebychev inequality.

Lemma 4.1 is established. 2

For simplicity, we now write
Σ(ΛN ) = Σk−k+σ (ΛN ).

Let us define

Rk,N (ΛN) := − k√
N

σ2

θj
Ik+σ+

σ2

θ2j − σ2

ξN (ΛN )

cθj

k

N
Ik+σ−

1√
N

Γk+σ×k−k+σ (ΛN )Σ(ΛN )Γk+σ×k−k+σ (ΛN)∗.

(4.18)
To get Proposition 4.2, it remains to prove that if k≪

√
N ,

Rk,N (ΛN ) = (1 + |ξN (ΛN )|)2oP(1). (4.19)

Once k ≪
√
N , we readily have that

− k√
N

σ2

θj
Ik+σ +

σ2

θ2j − σ2

ξN (ΛN )

cθj

k

N
Ik+σ = (1 + |ξN (ΛN )|)2oP(1).

Hence, (4.19) will follow if we prove

Lemma 4.3. Assume that k ≪
√
N . On ΩN (ΛN ),

1√
N

Γk+σ×k−k+σ (ΛN )Σ(ΛN )Γk+σ×k−k+σ (ΛN)∗ = (1 + |ξN (ΛN )|)2oP(1). (4.20)

For the proof, we use the following decomposition (recall the notations of Proposition 4.1):

Γk+σ×k−k+σ (ΛN )Σ(ΛN )Γk+σ×k−k+σ (ΛN )∗

= TNΣT ∗N + TNΣ∆k+σ (ΛN)∗ + ∆k+σ (ΛN )Σ∆k+σ (ΛN )∗ + ∆k+σ (ΛN )ΣT ∗N . (4.21)

where (using (4.7))

TN := TN(ΛN ) =

[
U∗k (Wk +

1√
N
Y Ĝ(ΛN )Y ∗)Uk

]ր

k+σ×(k−k+σ)

= [U∗kBk,NUk]րk+σ×k−k+σ
+ ξN (ΛN ) [U∗kDk,N (ΛN )Uk]

ր
k+σ×k−k+σ

and we replaced Σ(ΛN ) by Σ. We will prove the following lemma on TN .
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Lemma 4.4. If k ≪
√
N ,

‖ [U∗kDk,N (ΛN )Uk]
ր
k+σ×k−k+σ

‖HS = oP(N
1
4 ). (4.22)

‖ [U∗kBk,N (ΛN )Uk]
ր
k+σ×k−k+σ

‖HS = oP(N
1
4 ). (4.23)

and therefore, for k ≪
√
N ,

‖TN‖ = oP(N
1
4 )(1 + |ξN (ΛN )|).

Proof of Lemma 4.4: To prove (4.22), we use the decomposition

cθj [U∗kDk,N (ΛN)Uk]րk+σ×k−k+σ
= [U∗k τNUk]րk+σ×k−k+σ

+ [U∗kφNUk]րk+σ×k−k+σ
.

As in the proof of Lemma 4.1, we have

E

(
‖ [U∗kφNUk]րk+σ×k−k+σ

‖2HS1IΩN (ΛN )

)
≤ (C + σ4)

kk+σ

N

1

(ρθj − 2σ − δ)4 ,

so that, for k ≪ N and using Tchebychev inequality, we can deduce that

‖ [U∗kφNUk]րk+σ×k−k+σ
‖HS1IΩN (ΛN ) = oP(1).

Let K = diag(Ik+σ , 0) and L = diag(0, Ik−k+σ ). On ΩN (ΛN ),

‖ [U∗kτNUk]րk+σ×k−k+σ
‖HS =

1

N
|ΛN − ρθj |{Tr(KU∗kY Ĝ(ΛN )Ĝ(ρθj )

2Y ∗UkLU
∗
kY Ĝ(ρθj )

2Ĝ(ΛN )Y ∗UkK)} 1
2

≤ 1

N
|ΛN − ρθj |‖Ĝ(ρθj )‖2‖Ĝ(ΛN )‖‖Y ∗UkLU

∗
kY ‖

1
2 {Tr(KU∗kY Y

∗UkK)} 1
2

≤ 1

N
|ΛN − ρθj |‖Ĝ(ρθj )‖2‖Ĝ(ΛN )‖{Tr(LU∗kY Y

∗UkL)} 1
2 {Tr(KU∗kY Y

∗UkK)} 1
2

≤ 1

N
|ΛN − ρθj |

1

(ρθj − 2σ − 2δ)3
{Tr(LU∗kY Y

∗UkL)} 1
2 {Tr(KU∗kY Y

∗UkK)} 1
2 .

According to (4.15), 1√
N
{Tr(KU∗kY Y

∗UkK)} 1
2 converges in probability towards

√
k+σσ.

1

N
Tr(LU∗kY Y

∗UkL) =
1

N

k∑

i=k+σ+1

N−k∑

p=1

k∑

l,q=1,l 6=q

(Uk)l,iWl,k+p Wq,k+p (Uk)q,i

+
1

N

N−k∑

p=1

k∑

i=k+σ+1

k∑

l=1

|(Uk)l,i|2|Wl,k+p|2.

{∑k
i=k+σ+1

∑k
l,q=1,l 6=q (Uk)l,iWl,k+p Wq,k+p (Uk)q,i, 1 ≤ p ≤ N − k} are i.i.d variables with mean zero

such that

E





∣∣∣∣∣∣

k∑

i=k+σ+1

k∑

l,q=1,l 6=q

(Uk)l,iWl,k+p Wq,k+p (Uk)q,i

∣∣∣∣∣∣

2


 ≤ C(k − k+σ)2.

for some constant C. Hence

E





∣∣∣∣∣∣
1

N

N−k∑

p=1

k∑

i=k+σ+1

k∑

l,q=1,l 6=q

(Uk)l,iWl,k+p Wq,k+p (Uk)q,i

∣∣∣∣∣∣

2


 ≤ C (k − k+σ)2

N
,

so that the first term in the previous sum converges in L2 towards 0 and thus in probability.
Moreover, since

∑k
i=k+σ+1

1
k−k+σ

∑k
l=1 |(Uk)l,i|2|Wl,k+p|2 are i.i.d random variables with mean σ2 and

bounded second moments (in N), there exists some constant C such that

E





∣∣∣∣∣∣
1

N

N−k∑

p=1

k∑

i=k+σ+1

1

k − k+σ

k∑

l=1

|(Uk)l,i|2|Wl,k+p|2 − σ2

∣∣∣∣∣∣

2


 ≤ C

N
,
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so that 1
N

∑N−k
p=1

∑k
i=k+σ+1

1
k−k+σ

∑k
l=1 |(Uk)l,i|2|Wl,k+p|2 converges in L2 towards σ2 and thus in

probability. It follows that 1
N Tr(LU∗kY Y

∗UkL) = OP(k) and then that under the assumption k≪
√
N ,

‖ [U∗k τNUk]րk+σ×k−k+σ
‖HS = oP(

√
k) = oP(N

1
4 ).

Note that we also have for k ≪ N ,

‖ [U∗k τNUk]
ր
k+σ×k−k+σ

‖HS = |ξN (λ)|oP(1),

and therefore
‖ [U∗kDk,N (ΛN )Uk]

ր
k+σ×k−k+σ

‖HS = (1 + |ξN (ΛN )|)oP(1).

Thus, (4.22) is established.

For (4.23), recall that [U∗kBk,NUk]րk+σ×k−k+σ
= [U∗kWkUk]րk+σ×k−k+σ

+ 1√
N

[U∗kY Ĝ(ρθj )Y
∗Uk]րk+σ×k−k+σ

.

Since
E

(
‖[U∗kWkUk]րk+σ×k−k+σ

‖2HS

)
≤ k+σkσ

2

one has that

P

(
‖[U∗kWkUk]րk+σ×k−k+σ

‖HS > ǫN
1
4

)
≤ k+σkσ

2

ǫ2
√
N

.

Hence, as k ≪
√
N , we can deduce that ‖[U∗kWkUk]րk+σ×k−k+σ

‖HS = oP(N
1
4 ).

Now, let us prove the same estimate for the remaining term. Using the same proof as in 4.17, one can
get that for p 6= q, for some constant C > 0,

E

(
|U(p)∗Ĝ(ρθj )U(q)|21I

Ω
(2)
N

)
≤ CE Tr(Ĝ(ρθj )

21I
Ω

(2)
N

)

and then that for some constant C > 0,

E[‖ 1√
N

[U∗kY Ĝ(ρθj )Y
∗Uk]րk+σ×k−k+σ

‖2HS1I
Ω

(2)
N

] ≤ Ckk+σ
1

(ρθj − 2σ − δ)2 .

Then using that

P

(
‖ 1√

N
[U∗kY Ĝ(ρθj )Y

∗Uk]րk+σ×k−k+σ
‖HS1I

Ω
(2)
N

> ǫN
1
4

)
≤ 1

ǫ2
√
N

E[‖ 1√
N

[U∗kY Ĝ(ρθj )Y
∗Uk]րk+σ×k−k+σ

‖2HS ]

we deduce since k ≪
√
N that

‖ 1√
N

[U∗kY Ĝ(ρθj )Y
∗Uk]րk+σ×k−k+σ

‖HS1I
Ω

(2)
N

= oP(N
1
4 ).

Thus (4.23) and Lemma 4.4 are proved. 2

Using that

‖Σ‖ ≤ 1

ρθj − 2σ − 2δ
, (4.24)

one can readily notice that Lemma 4.4 leads to

1√
N
TNΣT ∗N = (1 + |ξN (ΛN )|)2oP(1). (4.25)

We now consider the remaining terms in the r.h.s of (4.21). We first show the following result where

we recall that ∆k+σ (ρθj ) = [U∗kY Ĝ(ρθj )ÃN−k×k]րk+σ×k−k+σ
.

Lemma 4.5. 1√
N
TNΣ∆k+σ (ρθj )

∗, 1√
N

∆k+σ(ρθj )Σ∆k+σ (ρθj )
∗ and 1√

N
∆k+σ (ρθj )ΣT

∗
N are all equal to

some (1 + |ξN (ΛN )|)oP(1).
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Proof of Lemma 4.5 : We will show that, on ΩN (ΛN ), for any u > 0,

∆k+σ(ρθj ) = oP(Nu). (4.26)

One can readily see that this leads to the announced result combining Lemma 4.4, (4.24) and (4.26).
First, using the fact that U∗kY is independent of 1I

Ω
(2)
N

Ĝ(ρθj ) and that for any p, the random vector

U(p) =t [(Y ∗Uk)1,p, . . . , (Y
∗Uk)N−k,p] has independent centered entries with variance σ2, one has that

E(1IΩN (ΛN ) Tr ∆k+σ(ρθj )∆k+σ (ρθj )
∗) ≤ E(1I

Ω
(2)
N

Tr∆k+σ (ρθj )∆k+σ (ρθj )
∗)

= k+σσ
2
E

{
1I
Ω

(2)
N

Tr[Ĝ2(ρθj )ÃN−k×k−k+σ Ã
∗
N−k×k−k+σ

]
}

≤ k+σσ
2
E

{
1I
Ω

(2)
N

‖Ĝ(ρθj )‖2 Tr ÃN−k×k−k+σ Ã
∗
N−k×k−k+σ

}

≤ k+σσ
2

(ρθj − 2σ − δ)2 TrA2
N

=
k+σσ

2

(ρθj − 2σ − δ)2
J∑

l=1

klθ
2
l .

Therefore, P(1IΩN (ΛN )‖∆k+σ (ρθj )‖HS ≥ ǫNu) ≤ ǫ−2N−2uE(1IΩN (ΛN )‖∆k+σ (ρθj )‖2HS) goes to zero as
N tends to infinity. Hence (4.26) holds true on ΩN (ΛN ) and the proof of Lemma 4.5 is complete. 2

Let us now prove that

Lemma 4.6. ∆k+σ(ΛN ) = ∆k+σ (ρθj ) +OP(|ξN (ΛN)|).
Proof of Lemma 4.6: We have

∆k+σ (ΛN )−∆k+σ (ρθj ) = −(ΛN − ρθj )[U
∗
kY Ĝ(ρθj )Ĝ(ΛN)ÃN−k×k]րk+σ×k−k+σ

.

Let us define ∇k+σ = [U∗kY Ĝ(ρθj )Ĝ(ΛN )ÃN−k×k]րk+σ×k−k+σ
. Then for some constant C > 0 depend-

ing on the matrix ÃN−k×k,

Tr(∇k+σ∇∗k+σ
) ≤ C‖Ĝ(ρθj )‖2‖Ĝ(ΛN )‖2 Tr(U∗U)

≤ C

(ρθj − 2σ − 2δ)4
Tr(U∗U)

where we denote as before U = [Y ∗Uk]←k+σ
. Thus letting C′ := C c−2

θj
,

‖∆k+σ (ΛN)−∆k+σ (ρθj )‖2HS ≤ C′(ξN (ΛN))2
1

(ρθj − 2σ − 2δ)4
1

N
Tr(U∗U).

It follows from (4.15) that
1

N
Tr(U∗U)

P→ k+σσ
2

implying that ‖∆k+σ(ΛN )−∆k+σ(ρθj )‖HS = OP(|ξN (ΛN )|). 2

We are now in position to conclude the proof of Lemma 4.3. Indeed, writing

∆k+σ (ΛN )ΣT ∗N =
(
∆k+σ (∆N )−∆k+σ (ρθj )

)
ΣT ∗N + ∆k+σ (ρθj )ΣT

∗
N

and

∆k+σ (ΛN )Σ∆k+σ (ΛN ) = ∆k+σ (ρθj )Σ∆k+σ (ρθj )
∗

+
(
∆k+σ (ΛN )−∆k+σ (ρθj )

)
Σ∆k+σ (ρθj )

∗

+
(
∆k+σ (ΛN )−∆k+σ (ρθj )

)
Σ
(
∆k+σ (ΛN )−∆k+σ(ρθj )

)∗

+∆k+σ (ρθj )Σ
(
∆k+σ (ΛN )−∆k+σ (ρθj )

)∗
,
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we deduce from Lemmas 4.4, 4.6 and (4.24), (4.26) that 1√
N

∆k+σ (ΛN)ΣT ∗N and 1√
N

∆k+σ (ΛN )Σ∆k+σ (ΛN )∗

are both equal to some (1 + |ξN (ΛN )|)oP(1). Using also (4.25), we can deduce that

1√
N

Γk+σ×k−k+σ (ΛN )ΣΓk+σ×k−k+σ (ΛN )∗ = (1 + |ξN (ΛN )|)2oP(1) (4.27)

which gives (4.20) and completes the proof of Lemma 4.3. 2

Combining all the preceding, we have established Proposition 4.2. We now prove that provided it
converges in distribution, with a probability going to one as N goes to infinity, ξN (ΛN ) is actually an
eigenvalue of a matrix of size kj .

Lemma 4.7. For all u > 0,
‖Vk+σ,N‖HS

Nu
= oP(1).

Proof: Straightforward computations lead to the existence of some constant C such that

E

(
‖ [U∗kWkUk]k+σ

‖HS

)
≤ C.

The convergence of ‖ [U∗kWkUk]k+σ
‖/Nu in probability towards zero readily follows by Tchebychev

inequality. Following the proof in Lemma 4.1 of the convergence in probability of [U∗kΦNUk]k+σ

towards zero, one can get that

E

(
‖
[
U∗k

1√
N

1I
Ω

(2)
N

(
Y Ĝ(ρθj )Y

∗ − σ2 Tr Ĝ(ρθj )Ik

)
Uk

]տ

k+σ

‖21IΩN (ΛN )

)
≤ (C + σ4)k2

+σ

(ρθj − 2σ − δ)2 ,

and the convergence in probability towards zero of the term inside the above expectation follows by
Tchebychev inequality. Since moreover according to Lemma 5.1,

1√
N

1I
Ω

(2)
N

(
Tr Ĝ(ρθj )− (N − k) 1

θj

)
= oP(1),

we can deduce that

N−u‖
[
U∗k

1√
N

1I
Ω

(2)
N

(
Y Ĝ(ρθj )Y

∗ − (N − k)σ
2

θ
Ik

)
Uk

]տ

k+σ

‖1I
Ω

(2)
N

= oP(1).

The proof of Lemma 4.7 is complete. 2

Proposition 4.3. Let ∆kj be an arbitrary kj×kj random matrix. If ξN (ΛN ) converges in distribution,
then, with a probability going to one as N goes to infinity, it is an eigenvalue of Xk+σ,N (ΛN ) +

diag(∆kj , 0) iff ξN (ΛN ) is an eigenvalue of a matrix X̌kj ,N (ΛN ) + ∆kj of size kj, satisfying

X̌kj ,N(ΛN ) = Vkj ,N + oP(1) (4.28)

where Vkj ,N is the kj × kj element in the block decomposition of Vk+σ ,N defined by (4.13); namely

Vkj ,N = U∗Kj×kj
[Bk,N ]տKj

UKj×kj

with UKj×kj and Bk,N defined respectively by (2.3) and (4.9).

Proof of Proposition 4.3: Since ξN (ΛN ) converges in distribution, we can write the matrix
Xk+σ ,N(ΛN ) given by (4.12) as

Xk+σ,N (ΛN ) =
√
Ndiag(0kj , ((θl − θj)Ikl

)l 6=j) + Řk+σ,N (ΛN )

where Řk+σ ,N(ΛN ) := Vk+σ ,N + oP(1). Let us decompose Xk+σ ,N (ΛN ) in blocks as

Xk+σ,N (ΛN ) =

(
Xkj ,N Xkj×k+σ−kj ,N

Xk+σ−kj×kj ,N Xk+σ−kj ,N

)
.

16



We first show that ξN (ΛN ) is not an eigenvalue of Xk+σ−kj ,N . Let α = inf l 6=j |θl − θj | > 0. Since,

Xk+σ−kj ,N =
√
Ndiag(((θl − θj)Ikl

)l 6=j) + Řk+σ−kj ,N ,

if µ is an eigenvalue of Xk+σ−kj , then

|µ|/
√
N ≥ α− ||Řk+σ−kj ,N ||/

√
N.

Now, using Lemma 4.7,
||Řk+σ−kj ,N ||/

√
N = oP(1).

Hence ξN (ΛN ) cannot be an eigenvalue of Xk+σ−kj ,N . Therefore, we can define

X̌kj ,N = Xkj ,N −Xkj×k+σ−kj ,N (Xk+σ−kj ,N − ξN (ΛN )Ik+σ−kj )
−1Xk+σ−kj×kj ,N

= Vkj ,N − Řkj×k+σ−kj ,N (Xk+σ−kj ,N − ξN (ΛN )Ik+σ−kj )
−1Řk+σ−kj×kj ,N + oP(1).

To get (4.28), it remains to show that

||Řkj×k+σ−kj ,N(Xk+σ−kj ,N − ξN (ΛN)Ik+σ−kj )
−1Řk+σ−kj×kj ,N || = oP(1).

This follows from the previous computations showing that (for some constant C > 0)

||(Xk+σ−kj ,N − ξN (ΛN )Ik+σ−kj )
−1|| ≤ (C + oP(1)) /

√
N,

combined with the definition of Řk+σ,N (ΛN ) and Lemma 4.7. The statement of the proposition then
follows from (3.1). 2

STEP 3: We now examine the convergence of the kj × kj matrix Vkj ,N = U∗Kj×kj
[Bk,N ]տKj

UKj×kj in
the two cases: Kj independent of N and Kj →∞.

a) Kj and the matrix UKj×kj are independent of N

Proposition 4.4. The Hermitian (resp. symmetric) matrix [Bk,N ]տKj
converges in distribution to-

wards the law of WKj +HKj where WKj is a Wigner matrix of size Kj with distribution given by µ
(cf (i)) and HKj is a centered Gaussian Hermitian (resp. symmetric) matrix of size Kj independent
of WKj , with independent entries Hpl, p ≤ l with variance






vpp = E(H2
pp) =

t

4

(m4 − 3σ4

θ2j

)
+
t

2

σ4

θ2j − σ2
, p = 1, . . . ,Kj ,

vpl = E(|Hpl|2) =
σ4

θ2j − σ2
, 1 ≤ p < l ≤ Kj .

(4.29)

The proof follows from Theorem 3.2 and is omitted. We shall detail the proof of a similar result in
the infinite case (cf. below the proof of Lemma 4.9).

b) Kj(= Kj(N))→∞ and UKj×kj (= UKj×kj (N)) satisfies (2.2)

Proposition 4.5. If max
kj

p=1 max
Kj

i=1 |(Uk)ip| converges to zero when N goes to infinity then the kj×kj

matrix U∗Kj×kj
[Bk,N ]տKj

UKj×kj converges in distribution to a GU(O)E(kj × kj ,
θ2

j σ2

θ2
j−σ2 ).

We decompose the proof into the two following lemmas.

Lemma 4.8. If max
kj

p=1 max
Kj

i=1 |(Uk)ip| converges to zero when N goes to infinity then the kj × kj

matrix U∗Kj×kj
[Wk]տKj

UKj×kj converges in distribution to a GU(O)E(kj × kj , σ
2).

Proof of Lemma 4.8: First we consider the complex case. Let αpq ∈ C, 1 ≤ p < q ≤ kj and
αpp ∈ R, 1 ≤ p ≤ kj , and define

LN(α) :=
∑

1≤p<q≤kj

(αpq(U
∗
kWkUk)pq + αpq(U∗kWkUk)pq) +

∑

1≤p≤kj

2αpp(U
∗
kWkUk)pp.

17



We have

LN(α) =

Kj∑

i=1

Di(WN )ii +
∑

1≤i<l≤Kj

Ril(
√

2ℜe((WN )il)) +
∑

1≤i<l≤Kj

Iil(
√

2ℑm((WN )il)),

where

Di = 2ℜe
( ∑

1≤p≤q≤kj

αpq(Uk)iq(Uk)ip

)
,

Ril =
√

2ℜe
( ∑

1≤p≤q≤kj

αpq((Uk)lq(Uk)ip + (Uk)iq(Uk)lp)

)
,

Iil =
√

2ℑm
( ∑

1≤p≤q≤kj

αpq((Uk)lq(Uk)ip − (Uk)iq(Uk)lp)

)
.

Hence LN (α) =
∑Kj

2

m=1 βm,Nφm where φm are i.i.d random variables with distribution µ and βm,N

are real constants (depending on the αpq) which satisfy max
Kj

2

m=1 |βm,N | → 0 when N goes to infinity.

Therefore the cumulants of LN(α) are given by C
(N)
n =

∑Kj
2

m=1 β
n
m,NCn(µ) for any n ∈ N∗ where

Cn(µ) denotes the n-th cumulant of µ (all are finite since µ has moments of any order). In particular

C
(N)
1 = 0. We are going to prove that the variance of LN(α) is actually constant, given by

C
(N)
2

σ2
=

Kj∑

i=1

D2
i +

∑

1≤i<j≤Kj

R2
ij +

∑

1≤i<j≤Kj

I2
ij = 2

∑

1≤p<q≤kj

|αpq|2 + 4
∑

1≤p≤kj

|αpp|2. (4.30)

Let us rewrite the l.h.s as

Kj∑

i=1

D2
i +

∑

1≤i<l≤Kj

R2
il +

∑

1≤i<l≤Kj

I2
il =

∑

1 ≤ p ≤ q ≤ kj

1 ≤ p′ ≤ q′ ≤ kj

Πp,q,p′ ,q′

where

Πp,q,p′ ,q′

2
= 2

Kj∑

i=1

ℜe
(
αpq(Uk)iq(Uk)ip

)
ℜe
(
αp′q′ (Uk)iq′ (Uk)ip′

)

+
∑

1≤i<l≤Kj

ℜe
(
αpq((Uk)lq(Uk)ip + (Uk)iq(Uk)lp)

)
ℜe
(
αp′q′ ((Uk)lq′ (Uk)ip′ + (Uk)iq′ (Uk)lp′ )

)

+
∑

1≤i<l≤Kj

ℑm
(
αpq((Uk)lq(Uk)ip − (Uk)iq(Uk)lp)

)
ℑm

(
αp′q′ ((Uk)lq′ (Uk)ip′ − (Uk)iq′ (Uk)lp′ )

)
.

So that

Πp,q,p′ ,q′ =
∑

1≤i,l≤Kj

{
ℜe
(
αpq((Uk)lq(Uk)ip + (Uk)iq(Uk)lp)

)
ℜe
(
αp′q′ ((Uk)lq′ (Uk)ip′ + (Uk)iq′ (Uk)lp′ )

)

+ℑm
(
αpq((Uk)lq(Uk)ip − (Uk)iq(Uk)lp)

)
ℑm

(
αp′q′ ((Uk)lq′ (Uk)ip′ − (Uk)iq′ (Uk)lp′ )

)}

= 2Π
(1)

p,q,p′ ,q′ + 2Π
(2)

p,q,p′ ,q′

where

Π
(1)

p,q,p′ ,q′ =
∑

1≤i,l≤Kj

{
ℜe
(
αpq(Uk)lq(Uk)ip

)
ℜe
(
αp′q′ (Uk)lq′ (Uk)ip′

)

+ℑm
(
αpq(Uk)lq(Uk)ip

)
ℑm

(
αp′q′ (Uk)lq′ (Uk)ip′

)}

= ℜe
{
αpqαp′q′

∑

1≤i,l≤Kj

(Uk)ip′ (Uk)ip(Uk)lq(Uk)lq′

}

= |αpq|2δ(p,q),(p′ ,q′ )
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and

Π
(2)

p,q,p′ ,q′ =
∑

1≤i,l≤Kj

{
ℜe
(
αpq(Uk)lq(Uk)ip

)
ℜe
(
αp′q′ (Uk)iq′ (Uk)lp′

)

−ℑm
(
αpq(Uk)lq(Uk)ip

)
ℑm

(
αp′q′ (Uk)iq′ (Uk)lp′

)}

= ℜe
{
αpqαp′q′

∑

1≤i,l≤Kj

(Uk)iq′ (Uk)ip(Uk)lq(Uk)lp′

}

= |αpp|2δ(p,q),(p′ ,q′)δp,q

Then (4.30) readily follows. In the following, we let const =
∑Kj

2

m=1 β
2
m,N .

Since |C(N)
n | ≤ constmax

K2
j

m=1 |βm,N |n−2|Cn(µ)|, C(N)
n converges to zero for each n ≥ 3. Thus we

can deduce from Janson’s theorem [J] that LN(α) converges to a centered gaussian distribution with
variance σ2(2

∑
1≤p<q≤kj

|αpq |2 + 4
∑

1≤p≤kj
|αpp|2) and the proof of Lemma 4.8 is complete in the

complex case.

Dealing with symmetric matrices, one needs to consider the random variable

LN(α) :=
∑

1≤p<q≤kj

αpq(U
t
kWkUk)pq +

∑

1≤p≤kj

αpp(U
t
kWkUk)pp

for any real numbers αpq, p ≤ q. One can similarly prove that LN(α) converges to a centered gaussian
distribution with variance σ2(2

∑
1≤p<q≤kj

α2
pq + 2

∑
1≤p≤kj

α2
pp). 2

Remark 4.1. Note that Lemma 4.8 is true under the assumption of the existence of a fourth moment.
This can be shown by using a Taylor development of the Fourier transform of LN (α).

Lemma 4.9. If max
kj

p=1 max
Kj

i=1 |(Uk)ip| converges to zero when N goes to infinity then the kj ×
kj matrix 1√

N
U∗Kj×kj

[(
Y Ĝ(ρθj )Y

∗ − (N − k)σ2

θj
Ik

)]տ
Kj

UKj×kj converges towards a GU(O)E(kj ×

kj ,
σ4

θ2
j−σ2 ).

Proof of Lemma 4.9: We shall apply a slightly modified version of Theorem 3.2 (see Theorem 7.1
in [B-Ya2]) but requiring the finiteness of sixth (instead of fourth) moments. Let K = kj(kj + 1)/2.
The set {1, . . .K} is indexed by l = (p, q) with 1 ≤ p ≤ q ≤ kj , taking the lexicographic order. We
define a sequence of i.i.d centered vectors (xi, yi)i≤N−k in CK × CK by xli = Uip and yli = Uiq for

l = (p, q) where U is defined in Lemma 4.2. The matrix A of size N − k is the matrix Ĝ(ρθj ) and is
independent of U . Note that we are not exactly in the context of Theorem 7.1 of [B-Ya2] since the i.i.d
vectors (xi, yi)i depend on N (and should be rather denoted by (xi,N , yi,N)i) but their distribution
satisfies:

1. ρ(l) = E[x̄l1yl1] = δp,qσ
2 for l = (p, q) is independent of N .

2. E[x̄l1yl′1] = δp,q′σ2 if l = (p, q), l′ = (p′, q′) (see B2 in (3.2)).

3. Complex case: E[x̄l1x̄l′1] = E[yl1yl′1] = 0 if l = (p, q), l′ = (p′, q′) (see B3 in (3.2)).

Real case: E[x̄l1x̄l′1] = σ2δp,p′ and E[yl1yl′1] = σ2δq,q′ if l = (p, q), l′ = (p′, q′).

4. (see B1 in (3.2))






E[x̄l1yl1x̄l′1yl′1] = σ4(δp,qδp′,q′ + δp,q′δp′,q)+

[E(|W12|4)− 2σ4]
∑Kj

i=1(Uk)i,q(Uk)i,p(Uk)i,q′ (Uk)i,p′ in the complex case,

E[x̄l1yl1x̄l′1yl′1] = σ4(δp,qδp′,q′ + δp,q′δp′,q + δp,p′δq,q′)+

[E(|W12|4)− 3σ4]
∑Kj

i=1(Uk)i,q(Uk)i,p(Uk)i,q′ (Uk)i,p′ in the real case.
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Under the assumption that max
kj

p=1 max
Kj

i=1 |(Uk)i,p| converges to zero when k goes to infinity, the last
term in the r.h.s of the two above equations tends to 0.
It can be seen that the proof of Theorem 7.1 still holds in this case once we verify that for ǫ > 0 and
for z = x or y, for any l,

E[|zl1|41I(|zl1|≥ǫN1/4)] −→ 0 as N →∞. (4.31)

We postpone the proof of (4.31) to the end of the proof. Assuming that (4.31) holds true, we obtain
the CLT theorem 7.1 ([B-Ya2]): the Hermitian matrix ZN = (ZN (p, q)) of size kj defined by

ZN (p, q) =
1√

N − k
[

∑

i,i′=1,...N−k

ŪipĜ(ρθj )ii′Ui′q − δp,qσ
2 Tr(Ĝ(ρθj ))]

converges to an Hermitian Gaussian matrix G. The Laplace transform of G (considered as a vector
of CK , that is of {Gpq, 1 ≤ p ≤ q ≤ kj}) is given for any c ∈ CK by

E[exp(cTG)] = exp[
1

2
cTBc]

where the K ×K matrix B = (B(l, l′)) is given by: B = limN B1(N) +B2 +B3 with

B1(N)(l, l′) = ω(E[x̄l1yl1x̄l′1yl′1]− ρ(l)ρ(l′)),
B2(l, l

′) = (θ − ω)E[x̄l1yl′1]E[x̄l′1yl1]

B3(l, l
′) = (τ − ω)E[x̄l1x̄l′1]E[yl1yl′1]

and the coefficients ω, θ, τ are defined in Theorem 3.2. Here A = Ĝ(ρθj ) so that ω = 1/θ2j and

θ = 1/(θ2j − σ2) (see the Appendix).
¿From Lemma 4.2,

B2(l, l
′) = (θ − ω)σ4δp,q′δp′,q = (θ − ω)σ41p=q=p′=q′ .

Moreover in the complex case, B3 ≡ 0 and in the real case,

B3(l, l
′) = (θ − ω)σ4δl,l′ .

¿From 4., in the real case,
lim

N→∞
B1(N)(l, l′) = δl,l′ωσ

4(1 + δp,q),

and in the complex case,
lim

N→∞
B1(N)(l, l′) = δl,l′ωσ

4δp,q.

It follows that B is a diagonal matrix given by:




B(l, l) = (1 + δp,q)θσ

4 = (1 + δp,q)
σ4

θ2
j−σ2 in the real case,

B(l, l) = δp,qθσ
4 = δp,q

σ4

θ2
j−σ2 in the complex case.

In the real case, the matrix B is exactly the covariance of the limiting Gaussian distribution G. It
follows that G is the distribution of the GOE(k+σ × k+σ, σ

4/(θ2j − σ2)).
In the complex case, from the form of B, we can conclude that the coordinates of G are independent (B
diagonal), Gpp has variance σ4/(θ2j − σ2) and for p 6= q, ℜe(Gpq) and ℑm(Gpq) are independent with
the same variance (since B(l, l) = 0 for p 6= q). It remains to compute the variance of ℜe(Gpq). Since
the Laplace transform of ℜe(ZN (p, q)) and ℑm(ZN (p, q)) can be expressed as a Laplace transform
of ZN(p, q) and ZN (p, q), we shall apply Theorem 7.1 to (ZN (p, q), ZN (p, q)) that is to the vectors
xi = (Uip,Uiq) and yi = (Uiq,Uip) in C2. We denote by B̃ the associated ”covariance” matrix of

size 2. The variance of ℜe(Gpq) is given by 1
2 limN→∞ B̃12 (since B̃11 = B̃22 = 0 from the previous

computations) with
B̃12 = B̃12(1) + B̃12(2) + B̃12(3)

where here B̃12(3) = 0,

B̃12(1) = ωE[|U1p|2|U1q|2]→ ωσ4 and B̃12(2) = (θ − ω)E[|U1p|2]E[|U1q|2] = (θ − ω)σ4.
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Thus, var(ℜe(Gpq)) = θσ4/2 = σ4/(2(θ2j − σ2)). We thus obtain Lemma 4.9 by using that Tr(Ĝ(ρθj )) =

(N − k) trN−k(Ĝ(ρθj )) and trN−k(Ĝ(ρθj ))→ 1/θj.
It remains to prove (4.31). The variable αN := |zl1|41I(|zl1|≥ǫN1/4) tends to 0 in probability. It is
thus enough to prove uniform integrability of the sequence αN , a sufficient condition is given by

supN E[α
6/4
N ] < ∞. It is easy to see that for any 1 ≤ p ≤ kj , supN E[|U1p|6] < ∞ since the Wigner

matrix WN has finite sixth moment and Uk is unitary. This proves (4.31) and finishes the proof of
Lemma 4.9. 2

STEP 4: We are now in position to prove that

(
ξN (λk̂j−1+1(MN )), . . . , ξN (λk̂j−1+kj

(MN ))
)
L−→
(
λ1(Vkj×kj ), . . . , λkj (Vkj×kj )

)
. (4.32)

To prove (4.32), our strategy will be indirect: we start from the matrix Vkj ,N and its eigenvalues
(λi(Vkj ,N ); 1 ≤ i ≤ kj) and we will reverse the previous reasoning to raise to the normalized eigen-
values ξN (λk̂j−1+i(MN )), 1 ≤ i ≤ kj . This approach works in both Cases a) and b) as we now explain.

First, for any 1 ≤ i ≤ kj , we define Λ
(i)
N such that

ξN (Λ
(i)
N ) = λi(Vkj ,N ),

that is Λ
(i)
N = ρθj + λi(Vkj ,N)/cθj

√
N .

Since Vkj ,N converges in distribution towards Vkj×kj , λi(Vkj ,N) also converges in distribution towards

λi(Vkj×kj ). Hence ξN (Λ
(i)
N ) converges in distribution and Λ

(i)
N converges in probability towards ρθj .

Let X̌
(i)
kj
≡ X̌kj ,N (Λ

(i)
N ) = Vkj ,N + oP(1) as defined in Proposition 4.3. This fit choice of Λ

(i)
N gives that

λi(X̌
(i)
kj

) = ξN (Λ
(i)
N ) + ǫi, with ǫi = oP(1).

Hence, ξN (Λ
(i)
N ) is an eigenvalue of X̃

(i)
kj
− ǫiIkj .

According to Propositions 4.1 and 4.3, on an event Ω̌N whose probability goes to one as N goes to
infinity, there exists some li such that

Λ
(i)
N = λli

(
MN −

ǫi√
N

diag(Ikj , 0N−kj )
)
.

The following lines hold on Ω̌N . By using Weyl’s inequalities (Lemma 3.2), one has for all i ∈
{1, . . . , kj} that ∣∣∣∣λli

(
MN −

ǫi√
N

diag(Ikj , 0N−kj )
)
− λli(MN )

∣∣∣∣ ≤
|ǫi|√
N
.

We then deduce that
(
ξN (λl1 (MN )), . . . , ξN (λlkj

(MN ))
)

=
(
λ1(Vkj ,N ), . . . , λkj (Vkj ,N )

)
+ oP(1) (4.33)

and thus (
ξN (λl1 (MN )), . . . , ξN (λlkj

(MN ))
)
L−→
(
λ1(Vkj×kj ), . . . , λkj (Vkj×kj )

)
. (4.34)

Now, to get (4.32), it is sufficient to prove that

P

(
li = k̂j−1 + i; i = 1, . . . , kj

)
→ 1, as N →∞. (4.35)

Indeed, one can notice that on the event {li = k̂j−1 + i; i = 1, . . . , kj} the following equality holds
true

(
ξN (λk̂j−1+1(MN)), . . . , ξN (λk̂j−1+kj

(MN ))
)

=
(
ξN (λl1(MN )), . . . , ξN (λlkj

(MN ))
)
. (4.36)

Hence, if (4.35) is satisfied then (4.36) combined with (4.34) imply (4.32).
We turn now to the proof of (4.35). The key point is to notice that the kj eigenvalues of Vkj×kj
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have a joint density. This fact is well-known if Vkj×kj is a matrix from the GU(O)E and so when
Kj is infinite (Case b)). When Kj is finite (Case a)) and independent of N , we call on the following
arguments. One can decompose the matrix U∗Kj×kj

HKjUKj×kj appearing in the definition (2.7) of
Vk+σ in the following way

U∗Kj×kj
HKjUKj×kj = Qkj + Ȟkj

with Ȟkj distributed as GU(O)E (using the fact that U∗Kj×kj
UKj×kj = Ikj ) and Qkj independent from

Ȟkj . Hence, the law of Vkj×kj is that of the sum of two random independent matrices: the first one

being the matrix Ȟkj distributed as GU(O)E associated to a Gaussian measure with some variance τ
and the second one being a matrix Zkj of the form U∗Kj×kj

WKjUKj×kj + Qkj . Using the density of

the GU(O)E matrix Ȟkj with respect to the Lebesgue measure dM on Hermitian (resp. symmetric)
matrices, decomposing dM on UN × (RN )≤ (denoting by UN the unitary (resp. orthogonal) group),
one can easily see that the distribution of the eigenvalues of Ȟkj + Zkj is absolutely continuous with
respect to the Lebesgue measure dλ on R

n with a density given by:

f(λ1, . . . , λN ) = exp(−N
τt

N∑

i=1

λ2
i )
∏

i<j

(λi − λj)
4
t E

(
exp

{
−N
τt

TrZ2
kj

}
I((λ1, . . . , λN ), Zkj )

)
dλ

where I((λ1, . . . , λN ), Zkj ) =
∫

exp
(

2
τtN Tr(Udiag(λ1, . . . , λN )U∗Zkj )

)
m(dU) denoting by m the

Haar measure on the unitary (resp. orthogonal) group.
Thus, we deduce that the kj eigenvalues of Vkj×kj are distinct (with probability one). Using Port-
manteau’s Lemma with (4.34) then implies that the event

Ω̌
′

N :=
{
ξN (λl1(MN )) > · · · > ξN (λlkj

(MN))
}⋂

Ω̌N

is such that limN P(Ω̌
′

N ) = 1. By Theorem 1.1, we notice that the event

Ω̃′N :=
{
λk̂j−1

(MN ) > ρθj + δ > λl1(MN )
}⋂

Ω̌
′

N

⋂{
λlkj

(MN ) > ρθj − δ > λk̂j−1+kj+1(MN)
}

also satisfies limN P(Ω̃′N) = 1, for δ small enough. This leads to (4.35) since Ω̃′N ⊂ {li = i+ k̂j−1, i =
1, . . . , kj}.
The proof of Theorems 2.1 and 2.2 is complete.

5 Appendix

We recall the CLT for the empirical distribution of a Wigner matrix.

Theorem 5.1. (Theorem 1.1 in [B-Ya1]) Let f be an analytic function on an open set of the complex
plane including [−2σ, 2σ]. If the entries ((WN )il)1≤i≤l≤N of a general Wigner matrix WN of variance
σ2 satisfy the conditions

(i) for i 6= l, E(|(WN )il|4) = const,

(ii) for any η > 0, limN→+∞
1

η4n2

∑
i,l E

[
|(WN )il|4 1I{|(WN )il|≥η

√
N}

]
= 0,

then N
(

trN (f( 1√
N

WN))−
∫
fdµsc

)
converges in distribution towards a Gaussian variable, where µsc

is the semicircle distribution of variance σ2.

We now prove some convergence results of the resolvent Ĝ used in the previous proofs.
Let 1 ≤ j ≤ J+σ and k such that N − k →∞.

Lemma 5.1. Each of the following convergence holds in probability as N →∞:

i)
√
N
(
trN−k Ĝ(ρθj )− 1/θj

)
−→ 0,
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ii) trN−k Ĝ
2(ρθj ) −→

∫
1

(ρθj
−x)2 dµsc(x) = 1/(θ2j − σ2),

iii) 1
N−k

∑N−k
i=1 (Ĝ(ρθj )ii)

2 −→
(∫ dµsc(x)

ρθj
−x

)2

= 1/θ2j .

Proof of Lemma 5.1: We denote by G the resolvent of the non-Deformed Wigner matrix
WN−k/

√
N .

i) By Theorem 5.1, one knows that
√
N
(
trN−k G(ρθj )−

∫ dµsc(x)
ρθj
−x

)
converges in probability towards

0. Now, we have
∫ dµsc(x)

ρθj
−x = 1

θj
(see [H-P] p. 94). It is thus enough to show that

trN−k Ĝ(ρθj )− trN−k G(ρθj ) = oP(1/
√
N).

Let then UN−k := U (resp. DN−k) be a unitary (resp. diagonal) matrix such that AN−k = U∗DN−kU .
Then, one has

| trN−k Ĝ(ρθj )− trN−k G(ρθj )| = | trN−k

(
Ĝ(ρθj )AN−kG(ρθj )

)
|

= | trN−k

(
DN−kU

∗G(ρθj )Ĝ(ρθj )U
)
|

:= | trN−k

(
DN−kΛ(ρθj )

)
| ≤ (r/(N − k))‖DN−k‖‖Λ(ρθj)‖

where r is the finite rank of the perturbed matrix AN−k.
One has ‖DN−k‖ ≤ ‖AN‖ := c (with c = max(θ1, |θJ |) independent from N). Moreover on the event

Ω̃N := Ω
(2)
N ∩ {‖WN−k/

√
N‖ < 2σ + δ}, ‖Λ(ρθj)‖ ≤ (ρθj − 2σ − δ)−2 (use Lemma 3.1) so that we

deduce that

| trN−k(Ĝ(ρθj ))− trN−k(G(ρθj ))|1IΩ̃N
≤ rc

N − k (ρθj − 2σ − δ)−2 → 0.

Using Theorem 5.1 and the fact that P(Ω̃N )→ 1, we obtain the announced result.

ii) It is sufficient to show that trN−k Ĝ
2(ρθj ) − trN−k G

2(ρθj ) → 0 in probability since, by Theorem
5.1, one knows that trN−k G

2(ρθ) converges in probability towards
∫

1
(ρθj
−x)2 dµsc(x).

Using the fact that Tr(BC) = Tr(CB), it is not hard to see that

trN−k Ĝ
2(ρθj )− trN−k G

2(ρθj ) = trN−k

(
(Ĝ(ρθj ) +G(ρθj ))(Ĝ(ρθj )−G(ρθj ))

)

= trN−k

(
G(ρθj )AN−k(G(ρθj ) + Ĝ(ρθj ))Ĝ(ρθj )

)

= trN−k

(
DN−kUG(ρθj )(G(ρθj ) + Ĝ(ρθj ))Ĝ(ρθj )U

∗
)

:= trN−k

(
DN−kΛ′(ρθj )

)

where the matrices DN−k and U have been defined in i). We then conclude in a similar way as before
since on the event Ω̃N , ‖Λ′(ρθj )‖ ≤ 2(ρθj − 2σ − δ)−3.

For point iii), we refer the reader [C-D-F]. Indeed, it was shown in Section 5.2 of [C-D-F] that the
announced convergence holds in the case k = 1 and for G instead of Ĝ. It is easy to adapt the
arguments of [C-D-F] which mainly follow from the fact that, for any z ∈ C such that ℑm(z) > 0,

1
N−k

∑N−k
i=1 (Ĝ(z)ii)

2 converges towards g2
σ(z). But this latter convergence was proved in Section 4.1.4

of [C-D-F]. 2
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