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A Framework for the Capacity Evaluation of
Multihop Wireless Networks

Hervé Rivano
CNRS - INRIA Sophia Antipolis
UNSA, 2004 route des Lucioles
F-06902 Sophia Antipolis Cedex, France

Abstract—The specific challenges of multihop wireles networks
lead to a strong research effort on efficient protocols design
where the offered capacity is a key objective. More specifically,
routing strategy largely impacts the network capacity, i.e. the
throughput offered to each flow. In this work, we propose a
complete framework to compute the upper and the lower bounds
of the network capacity according to a physical topology and a
given routing protocol. The radio resource sharing principles of
CSMA-CA is modeled as a set of linear constraints with two
models of fairness. The first one assumes that nodes have a fair
access to the channel, while the second one assumes that on
the radio links. We then develop a pessimistic and an optimistic
scenarios for radio resource sharing, yielding a lower bound and
an upper bound on the network capacity for each fairness case.
Our approach is independent of the network topology and the
routing protocols, and provides therefore a relevant framework
for their comparison. We apply our models to a comparative
analysis of a well-known flat routing protocol OLSR against
two main self-organized structure approaches, VSR and localized
CDS.

Index Terms—network capacity, multihop wireless networks,
upper and lower bounds, linear programing

I. INTRODUCTION

Ad hoc networks are spontaneous multihop topologies of
wireless nodes. These networks are decentralized and should
function autonomously, without any human intervention. All
the nodes can be mobile, and create continuously topology
changes. An ad hoc network connected to the Internet con-
stitutes a so-called hybrid network. A dedicated device, the
wireless access point (AP), is a gateway between the wired
world and the ad hoc network.

By nature, ad hoc and hybrid networks forward traffic only
via wireless links. Moreover, radio bandwidth is much lower
than in wired networks, and interferences complicate the radio
resource sharing. Nevertheless, multihop wireless networks
with a low network capacity could become irrelevant: most
applications require a minimum bandwidth to function nor-
mally.

This kind of networks can be either considered in a flat
manner or self-organized. Self-organization ([15]) was intro-
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duced to tackle several key problems in multihop wireless
networks (e.g. scalability, robustness, overhead) and to simplify
the physical topologies. Flat approaches do not introduce any
hierarchy: all the nodes must contribute equally to the network,
all the radio links should be used to forward the traffic, no
organization is introduced in the network. Oppositely, self-
organizations construct a logical topology of the physical
topology of the network: e.g. some radio links are pruned from
the self-organization and some nodes are elected to contribute
more intensively in the network management.

Although self-organization seems a promising way to man-
age multihop wireless networks, the network capacity estima-
tion of these solutions remains an open-problem. Indeed, a
self-organization selects by nature some privileged links and
nodes, and exploits them more intensively: this unbalanced se-
lection impacts the network capacity. Besides, to select stable
links improves the route robustness, but increases the route
length which consumes more bandwidth resource. Moreover,
a not-well conceived or exploited self-organization may create
bottlenecks. We propose here to quantify the impact of self-
organization on the network capacity.

Several articles already analyzed the asymptotical capacity
of ad hoc networks [3], [4], [7], [21], [24]. However, we aim
here at comparing the network capacity associated to different
routing protocols for a given topology. Moreover, asymptotic
studies can only give an upper bound, with an optimal MAC
layer and with a fixed modeled forwarding strategy. Thus, we
describe here a whole model to formulate the network capacity
with a linear programming approach, interfaced with a network
simulator to use directly the results of a routing protocol.

The contributions of this article are twofold:

1) We describe a complete model to extract the network
capacity from any network topology. Since the paths
impact the network capacity, the model directly uses
the paths obtained from the routing protocol. Moreover,
we present a detailed linear programming model for
bandwidth sharing among interfering nodes. Our model
incorporates fairness: bandwidth is fairly distributed
among either interfering nodes or interfering radio links.

2) We use this model in order to compare the network
capacity associated to different routing protocols. We
compare in particular flat proactive and self-organized
approaches. We directly use the paths computed with



different routing protocols in a discrete-event simulator.
This comparison highlights the key points that must be
improved to optimize the network capacity.

The article is organized as follows. The next section intro-
duces hypothesis, notations and a generic model. We define
formally in section III the concept of network capacity with
two different objectives. Then, sections IV and V introduce
the resource sharing models, for two different types of fairness
(node-oriented, link-oriented), with lower and upper bounds.
Section VI is dedicated to generalizing the models to arbitrary
interference models and explaining the global methodology we
follow for evaluating protocols. Section VII details simulations
results and compare flat and self-organized routing protocols
from the network capacity viewpoint. Related work on net-
works capacity evaluation and routing protocol is presented
in section VIII. Last section concludes this article and gives
research perspectives.

II. NETWORK MODEL

We consider a wireless network modeled as a graph G(V, E)
and a given routing protocol. Each vertex (V') represents a
wireless node, and an edge (F) exists between two vertices
iif the corresponding nodes have a radio link with each other.
We also assume that a radio link is bidirectional. We use the
following notations:

e« BW is the available radio bandwidth. This gives the
maximum amount of data that can be sent by a node
if it is alone to transmit.

e p is a multi-hop path between a source node s and a
destination d

o f(p) is the throughput of the data sent on the path p

e d(u,v) is the euclidian distance between u and v

e T(u) is the total amount of traffic sent by a node w:
T(u) =3 pep) T'(u,v) + Te(u) with

— vi(u) is the k-neighborhood of w, i.e. the set of the
nodes at most k hops far from w. v1(u) is denoted
as v(u) (u € v(u), YEk).

— Ag(u) is the k-degree of u: Ag(u) = |v(u)|.

— T(u,v) is the unicast traffic on the physical radio
link (u,v).

— T.(u) is the control traffic broadcasted by u to its
neighborhood.

A. Interference models

The interferences impact the network capacity and can be

modeled [8] with:

o Transmitter model: a node u can communicate with
a node v if no node w exists closer than (1 + A) -
(range(u) + range(w)) from u

« Protocol model: the transmission (u,v) is successful if
no other node w closer than (1 + A)d(u,v) of v is also
transmitting a packet

« Transmitter/receiver model: two radio links can be acti-
vated simultaneously if they are more than 2 hops far

o SNR: a communication (u,v) is successful if the signal
to noise ratio is larger than a threshold. The signal

Linear Program 1 Generic Model

Maximize Objective function on P
Subject to
Resource sharing constraints V node u
around u
Traffic management for p V path p

corresponds to the signal strength of u measured by v,
and the noise corresponds to the ambient noise and the
interference signals of all other transmitters. This model
is the only one that does not assume any fixed radio range.

We will use in this paper the transmitter/receiver model for all
our explanations, for a sake of simplicity. However, we will
generalize in section VI-A our LP formulation. The reader will
be able to verify that our network capacity formulation works
with different interference models, and can use directly the
conflict graph.

B. Linear programming models

Our linear programing models fit the generic form described
as LP 1. The objective function formalizes our definition of
the capacity. Radio resource sharing constraints are defined for
each node and take into account fairness and interferences. The
data flow load constraints added for each path define global
constraints on the transport capacity of the network, i.e. a flow
is forwarded by each intermediate node of the path.

Note that it is straightforward to write the traffic manage-
ment constraints of LP 1 from the composition of T'(u, v).

C. Assumptions

In order to develop a linear model of the radio resource
sharing, we need to fix some classic hypothesis on the MAC
layer:

1) Perfect radio channel: we assume that the medium
delivers a constant bandwidth and does not corrupt data
transmissions.

2) Ideal MAC layer: no collision occurs, the bandwidth
can be optimally used, and all the nodes have the same
probability to reserve the radio medium

3) Bi-directional unicast communications: if a node u sends
a data traffic to one of its neighbor v, v answers with
an acknowledgment: any other node interfering with «
or v cannot access to the medium

4) Transmitter-receiver interference model: since we as-
sume communications have to be acknowledged, we
block nodes interfering with the transmitter or the re-
ceiver

5) Control and topology maintenance traffic is sent by u
through a local broadcast. Thus, the interference model
prevents all nodes interfering with the broadcaster from
sending or receiving any kind of traffic



III. DEFINING THE NETWORK CAPACITY

We will first introduce two formal definitions of the network
capacity: the first one deals with the classical definition of
capacity and the second function introduces fairness.

A. Max-Sum function

The capacity is often described as the maximal throughput
achievable in the network. Thus the objective function can be
defined as:

Maz | > f(p) )

peP

In this approach, the objective is network-wide, i.e. not
individual. Consequently, the network will surely privilege
the radio links and nodes which create low interferences. In
particular, the multihop flows will create many interferences
while their bandwidth will contribute less to the objective
than single hop flows. Only a few radio links will receive
all the bandwidth. According to us, this objective constitutes
a misinterpretation of the real capacity of a multihop wireless
network for many applications. Nevertheless, this formulation
gives an upper bound of the global achievable capacity.

B. Max-Min function

Fairness should be introduced. In such a case, the objective
function can be formulated as:

Mazx (Minyep f(p)) 2)

We consider that each flow should receive the same bandwidth:
multihop flows are not handicapped. The global achievable
throughput will surely be inferior to the max-sum function
case, since more interfering flows must cohabit. Nevertheless,
we model here a multihop wireless networks with quality of
service. Additionally, the fairness ratio introduced in [8] could
limit unfairness among the different flows: max-min could be
trivially modified to integrate this fairness ratio.

IV. NODE-ORIENTED FAIRNESS RESOURCE SHARING
A. A pessimistic scenario

To obtain a lower bound of the capacity, we model a
pessimistic MAC layer in the following way. We define the
interfering set of a node u as all the nodes which interfere
with » (including w). A pessimistic MAC layer considers for
each node its interfering set and distributes the same amount of
radio bandwidth to each node. By referencing all the possible
interfering sets in the network (i.e. one per node), we will
define the capacity of a multihop wireless networks in a
pessimistic scenario and translate it in linear constraints.

The reader can verify that this approach represents a lower
bound since two radio links can be non-interfering with each
other but can be referenced in the same interfering set. In
this case, these links share the radio bandwidth although they
can simultaneously transmit a frame without collision. For
example, the radio links (A, B)/(D, E) or (K, B)/(H,I) can
communicate simultaneously in the figure 1 although all these
nodes are in the interfering set of C.

§H, ©) certer

@ 1-neighbor

2-neighborhood

O of the center

™~ radio link

Fig. 1.

The 2-Neighborhood of one node

Thus, a pessimistic resource sharing is achieved if the
transmission of one node is blocking all its 2-neighborhood
since we adopt the transmitter-receiver interference model. If
the center or one of its 2-neighbors transmits a data packet,
no other node in the 2-neighborhood of the center is allowed
to send packets. To model a node-oriented fairness, the same
bandwidth is allocated to each 2-neighbors of the center. One
can notice that stopping any radio activity includes refusing
any incoming connexion request, since it requires to send an
acknowledgment for the received packet: it would potentially
create a collision.

Control traffic is transmitted in the 1-hop neighborhood
using a local broadcast: it blocks also all the 2-neighborhood.
Let a node c be the center node of its 2-neighborhood. We
obtain the following constraints:

e A transmission of ¢ can only interfere with its 2-
neighborhood. Thus, we assume that the bandwidth can
be distributed fairly among all these contending nodes,
i.e. the 2-neighborhood of ¢, Na(c):

BW
Ve, Yu € Na(c), T(u) < A0 3)
Note, that for each center node c, a set of As(c) equations
is given. In consequence, the bandwidth T'(u) allocated
to a node u is constrained by As(u) equations (one for
each possible center node).
¢ In the bandwidth allocated to one node, all the control
traffic and the unicast transmissions must be scheduled.
Additionally, a node allocates an equal bandwidth to each
of its neighbors:

T(u) = Te(w)
Au) —1

The equation (4) models a fair bandwidth sharing by a node
for its neighbors, while how the radio medium bandwidth is
shared among the nodes is modeled by the equation (3).
Finally, we can remark that two nodes can send data
simultaneously only if they are sufficiently distant, at least
3 hops. Moreover, two nodes with different forwarding load
receive the same bandwidth. This set of local constraints yields

Yu, Yv € N(u) — {u}, T(u,v) < 4)



Linear Program 2 Pessimistic model

Maximize Objective function on P
Subject to
Equation set (3) node ¢, the center
Equation set (4) V node u
Traffic management for p V path p

LP 2, whose solutions lower bound the total amount of traffic
supported by the network.

B. Illustration with the pessimistic scenario on a line

We propose in this section to illustrate the previous model
with the line network. This provides to the reader a step by step
illustration of our models. Moreover, the line network helps
to compare easily the major differences between the max-
sum and max-min objectives. To simplify the explanations,
the control traffic is considered null and the radio bandwidth
(BW) equal to one unit. In the max-min case, x represents the
throughput of each node. Let be the topology illustrated in
figure 2. The access point is placed in the middle of the line.
The line contains 2n nodes, plus the AP.

AP is constrained by 4 other nodes

oloToNcYoYoro

Fig. 2.

Capacity of the line (pessimistic model)

Let study the network capacity with the max-sum objective.
This evaluation function will privilege uniquely the single hop
flows, as described previously. Thus, it will maximize two
flows from the node 1 and 1’ to the AP. The reader can
remark that the access point will create the most restrictive
interference constraints. AP and each of its 2-neighbors receive
% of the medium bandwidth. For the node 1 (respectively
1’), the link (1,AP) (respectively (1’,AP)) receives the whole
bandwidth since only one of its radio links support traffic.
Finally, max-sum = %

Let now examine the max-min objective: AP keeps on
representing the bottleneck in the network. Let = be the traffic
sent by each node. Nodes 1 and 1’ must receive and forward
the traffic of the (n — 1)z other nodes, and send its own traffic
to the AP. Moreover, 1 and 1’ receive the same bandwidth as
in the max-sum case but here to forward the traffic of (n — 1)
nodes. We obtailn the constraint £ < (n— 1)+, which leads

to max-min = En
n

C. An optimistic resource sharing scenario

The pessimistic radio resource sharing model tends to over-
estimate the interferences. Some communications could be
possible in a realistic protocol (like IEEE 802.11), but are
forbidden in our model. For example, in fig.1, the simultaneous
transmissions (K — B) and (H — FE) should be authorized
since C' has not to decipher the packets.

In consequence, we propose here an optimistic resource
sharing model. For each node u, we isolate its 2-neighborhood:
only these nodes can interfere with u. Then, we reference the
radio links which can be activated simultaneously in this set:
the attributed bandwidth will consequently be larger than in the
pessimistic scenario. This approach constitutes an upper bound
since we isolate one node and its 2-neighborhood. We examine
node per node the resource sharing: the local constraints could
lead to unfeasible global constraints. Indeed, a scheduling can
be achievable locally but the combination of all the schedul-
ings (one for each node) could be practically impossible: time-
slots attributed to different nodes could overlap.

Let observe the behavior of the MAC layer in the two-
neighborhood of a node ¢ (the center). One neighbor, u, of
the center sends a packet to v. All neighbors of u will stop
any activity. When w« finished the transmission, v will send
a MAC acknowledgment. Thus, no neighbor of u or v is
authorized to send a packet, else a collision would occur. Let
now assume that another node u’ wants to send a packet. u’
cannot be a neighbor of u or of v. Additionally, it must choose
a destination v which is not a neighbor of u or v.

We will now translate this behavior in linear constraints.
The medium is modeled as a central entity which allocates
bandwidth to each radio links, and avoids interfering links
to transmit packets simultaneously. Naturally, we consider
here only the radio links which must forward traffic, else we
would under-estimate the available bandwidth. Thus, the radio
medium distributes bandwidth among links which own to at
least one path. The selection of valid transmissions is strongly
correlated to the combinatorial concept of independent sets.
Indeed, this contention-free communication set is an indepen-
dent set, maximal for inclusion, of the graph L o (£ (G.)),
defined as follows:

o G? is the graph of the 2-neighborhood of c.

e L(G?) is the linegraph of G?: it is the graph where a
vertex is associated to each edge of G,., and an edge
between any two vertices whose corresponding edges are
adjacent.

e L12(L(G?)) is the graph with the same vertices as
L(G?), and a link between any two neighboring or
2-neighboring vertices (its 2-closure). Consequently,
L1 2(L(G?)) represents the conflict graph of G2.

Independent vertices (i.e. pairwise of non adjacent vertices)
of L1 9 (L(G.)) correspond to contention-free communica-
tions. An inclusion-wise maximal independent set is therefore
an inclusion-wise maximal set of communications that can be
activated simultaneously.

The MAC layer should achieve a fair sharing of the band-
width among the maximal independent sets. Let BW (I) be
the bandwidth given to the independent set I € 7, where 7
is the set of all maximal independent sets of Ly o (£ (G.)).
BW(I) is proportional to P(I), the probability of I to be
selected. The radio bandwidth can be split into:

1) The control traffic of the center: control frames are
broadcasted, and broadcast frames block all the 2-



neighbors of the source

The unicast traffic of the 2-neighborhood of the cen-
ter: several unicast transmissions can be allowed, as
explained above

The control traffic of the 1-neighbors and 2-neighbors
is assumed to be contained in the unicast transmissions
allocation. Since we construct an upper bound, we
can consider safely that the broadcast transmissions are
contained in the whole bandwidth allocated to the node
for its unicast transmissions.

2)

3)

Consequently, the bandwidth in the neighborhood of c¢ is
finally shared as follows:

BW(I) = P(I)-(BW —T.(c)) o)
= BW > Y BW()+T.(c) (6)
IeT

The total bandwidth allocated to a communication link
(u,v) is the sum of the bandwidth allocated to each inde-
pendent set including (u,v), for which we deduct the control
traffic of the source u:

T(wv) < > BW()
(u,v)eT
Tw) < BW-T.) 3 P(D)
(u,v)erl

Moreover, 3, , c; (1) is exactly the probability for the
communication link (u, v) to be activated by the medium. This
quantity is hence denoted P(u,v) in the following:

V(u,v) € N3(c) Av € N(u),

T(u,v) < [BW —T.(c)]- P(u,v) (7)

Unfortunately, on arbitrary network topologies, P(I) and
P(u,v) cannot be computed unless the whole set Z is
known, and 7 has an exponential size. We therefore build a
stochastic estimation of P(u,v), denoted freg(u,v) in the
following. These frequencies freg(u,v) must absolutely take
into account the fairness among the nodes. We propose in
consequence an algorithm to construct an independent set of
radio links. Initially, all the nodes can be activated (none
is blocked). Let choose randomly one unblocked node wu,
and one of its unblocked neighbor v. This radio link (u,v)
is marked as activated, and all the neighbors of u and v
are marked blocked. Then, reiterate until no unblocked node
exists. Finally, we obtain a list of simultaneously active radio
links, i.e. an independent set in the conflict graph (algo. 1).
If this algorithm is repeated n times, freq(u,v) is equal to
the proportion of the cases where the link (u,v) was selected.
Note that each link is directed: the link (u,v) will not receive
the same amount of traffic as (v, u). Finally:

T(u,v) < (BW —T.(c)) freq(u,v) )

In order to complete the model, we must take into account
the control generated for routing. When the center broadcasts

Algorithm 1 Creation of independent sets with node fairness

while (3 at least one unblocked node)
do

//Chooses a random node

u < RANDOM (unblockedNodes)

//Chooses a random neighbor

W —0

foreach (w € unblockedNodes and w € N(u))
W — WU {w}

v «— RANDOM(W)

//Block neighboring transmissions

if (W =0)
MARKASBLOCKED(u);
else

MARKASACTIVATED(u , v);
foreach (w € N(u))
MARKASBLOCKED(w)
endif
done

Linear Program 3 Optimistic model

Maximize Objective function on P
Subject to
Equation set (8) Y link (u,v) € E
Equation set (9) VueV
Traffic management for p V path p

its control traffic, all the 2-neighbors are blocked (eq. 8).
Besides, a node broadcasts its traffic using the bandwidth
allocated for its unicast transmissions: this constitutes an
optimistic view of the control traffic distribution. We obtain
consequently:

> T(u,v) < freq(u,v)y_ [BW = Tu(c)] = Te(u)  (9)

vEN (u) vEN (u)

Besides, the bandwidth is allocated per link: a node cannot
redistribute locally the bandwidth between its links. If a node
chooses to redistribute the bandwidth of an unloaded link
to another of its links, the interference constraints could be
violated. The last optimistic aspect of this model is that the
combinations of the local constraints might not yield a feasible
share of the global capacity. As a matter of fact, the union of
the local independent sets might not be a global independent
set. In other words, the global constraints are stronger than
the union of the local ones since we assume that broadcast
frames do not interfere more than an unicast frame. The linear
program 3 neglects this fact, yielding an upper bound on the
global capacity of the network.



D. Application of the optimistic scenario on a line

Let keep on illustrating our models with the line-network
scenario (fig. 3). In a first, time, we will observe the network
capacity with the max-sum. If AP is the center, we obtain the
strongest constraints. The reader can verify that we obtain the
following stables and frequencies:

o freg[(2,1)] = freq[(2,1)] = %

. fre(J[(lv AP)] = f’re(I[(lla AP)] = %

To reach the max-sum objective, only the node 1 and 1’ will
generate traffic, for the same reasons as in the pessimistic case.
Finally, max-sum = % -2 = %

1st stable

-~~~

Fig. 3.

1st stable center

Capacity of the line (optimistic model)

If we study the max-min objective, the neighbors of the
access point will keep on constituting the bottleneck. Indeed,
1 and 1’ generate z traffic and must forward the traffic of
(n—1) nodes. The most-constrained set is the 2-neighborhood
of the access point. The following holds:

o Through the link (1,AP) and (1’, AP) must be sent the

traffic z(n)

o Through the link (¢ 4+ 1,¢) and (i + 1’,4’) must be sent

the traffic z(n — )

The frequencies computed for the max-sum objective do not
change. We have the following constraints:

o The traffic allocated to the radio link (1,AP) must be

inferior to the bandwidth multiplied by the frequency of
the link (1, AP): 1
) < g

o The traffic allocated to (2,1) must be inferior to the
bandwidth multiplied by the frequency of the link (2, 1):

1
< 3 Y

(10)

xz(n—2)

. |
Finally, max-min = n

V. LINK-ORIENTED FAIRNESS RESOURCE SHARING

Here are presented lower and upper bounds with a fairness
oriented on links. While the first approach distributed fairly
the bandwidth among the nodes, we chose here to distribute
much bandwidth to nodes with a large number of neighbors.
Consequently, we propose here to distribute fairly the band-
width among the radio links which share a common interfering
set. Since the previous models in section IV are very similar,
we chose to present only the major differences.

Let remind that £(G) denotes the linegraph of G, i.e. the
conflict graph. Let introduce the following notation:

o vi(e): the k-neighborhood in L£(G.) of one link e in
G. Each link e is directed. If we adopt the transmitter-
receiver interference model, v»(e) is the interfering set of
e.

Linear Program 4 Pessimistic model

Maximize Objective function on P
Subject to
Equation set (12) link e
Equation set (13) V link (u,v)
Traffic management for p V path p

o di(€): |vk(e)|. Similarly, d2(e) is the number of interfer-
ing radio links

A. A pessimistic scenario

We keep on proposing a pessimistic radio resource sharing.
However, instead of distributing the bandwidth to vertices, we
construct for each link in the graph the set of its neighborhood
in the conflict graph. If one link is active, it is potentially
in conflict with each link in this set. Moreover, the same
bandwidth is allocated to each link. In consequence, traffic
allocated to one link f supports the following constraint:

Ve € E\Vf € 1n(e), 5 L
_ L (u
T/(f) < (g;éliuz(e)

Additionally to data packets, a node must send control
traffic. Since a broadcast packet blocks all the 2-neighborhood
and we have to forbid interferences, the lower bound is
achieved in duplicating a broadcast packet and sending it
separately to each neighbor:

Vu, Vo € N(u) —{u}, T(u,v) < T'(u,v) — To(u)

12)

13)

Finally, we obtain the linear program LP 4. We can remark
that the lower bounds with link-oriented and node-oriented
fairness are not comparable. A different behavior of the MAC
layer is modeled. Thus the capacity of the network depends on
the protocol chosen to schedule concurrent medium accesses.

B. Application of the pessimistic scenario on a line

Let illustrate also the link-fairness with the line network
(fig. 2 p. 4). Let focus on the interfering constraints created
by (1, AP). Since this link interferes with 4 other active links,
the bandwidth % is allocated to each of these links.

o max-sum: The node 1 and 1’ sends all their traffic to the

AP and receive both a bandwidth of 1. Thus, max-sum =
2

e max-min: The nodes 1 and 1’ must send their own traffic
and forward the traffic of the line (n — 1 nodes). In
consequence, max-min = .

5n
C. An optimistic scenario

The upper bound with a link-oriented fairness knows less
modifications. To integrate the link fairness, we just have
to modify the algorithm which computes freq(u,v) (the
bandwidth allocated to each link in an interfering set). The
algorithm 1 (cf. page 5) must integrate the fairness when a
node is chosen randomly. Consequently, instead of choosing
independently one source and one destination (one of its



Algorithm 2 Creation of independent sets with link fairness

while (3 at least one unblocked link)
//Chooses a random unblocked radio link
F—1{
foreach (f € unblockedLinks)
W — FU{f)
e «— RANDOM(W)

//Mark activated/blocked links

MARKASACTIVATED(e);

foreach (f € 1»(e))
MARKASBLOCKED(f)

neighbors), we choose randomly one unblocked radio link.
We obtain the algorithm 2.

If this algorithm is repeated n times, freq(u,v) is equal to
the proportion of the cases where the link (u,v) was selected.
Note that each link is here directed. Besides, each link does
not receive the same amount of bandwidth: some links have
potentially more interfering links and will be chosen less
frequently. However, fairness among links is respected.

The remaining description of the upper bound remains
unchanged. The linear program LP 3 keeps on holding, with
the new values of freq(u,v).

D. Application of the optimistic scenario on a line

Let assume that the number of nodes (n) is sufficiently large.
We will focus on the links interfering with the link (1,AP)
(fig. 3). We obtain in particular the following stables:

o stables (2/,17),(2,1) and (2/,1),(3,2)

o stable (1, AP)

« stable (1, AP)

« stable (2,1),(2',1)

o stables (3,2),(1,AP) and (3,2),(2',1)

Let denote freqeqser the interfering constraints cre-
ated by (1,AP). The reader can verify in particular that
freqcasel[(laap)] = % and freCIcasel[(l/aap)] = % If
we take a look on the interfering constraints created by
the link (1°,AP)!, they are symmetric: fregeqsei(a,b) =
freqeasea(a’,b'). Finally, we obtain max — sum = %

Besides, freqease1[(2,1')] = . fregease[(2',17)] = 3.
The links (2,1) and (2',1’) must transmit z(n — 1) traffic
and the link (1, AP) zn traffic. Thus we obtain the following
constraints when we focus on the interfering constraints on
(1,AP):

z(n—1) < % for the links (2/,1")

zn—1) < % for the links (2,1)
xn < % for the link (1', AP)
an < 3 for the link (1, AP)

—
o

Ithe frequencies being denoted in this case by freqease2

Since we obtain symmetric constraints when we focus on the

interfering sets of (1,AP) and (1°,AP), maz — min = z-.

VI. GENERALIZED FRAMEWORK AND METHODOLOGY

For the sake of readability, the aforesaid resource sharing
equations have been described using the “transmitter-receiver”
representation of interferences [8]: two links can be activated
simultaneously if they are at least 2 hops apart. However, our
approach can be generalized to any binary interference model
as explained in the following.

Henceforth, these linear models define a framework for
evaluating the transport capacity provided by a given routing
strategy on a network topology. To complete the framework,
we describe the process articulating a discrete event simulation
with the linear models as well as the methodology we have
followed exploiting the framework.

A. Generalizing to arbitrary interference model

Even though the linear equations introduced in the pre-
ceding sections consider a 2 hop distance binary interference
model like the “transmitter-receiver” representation, the ap-
proach can be generalized to any other binary interference
model.

In particular, a binary interference model is given as a
conflict graph describing the pairwise incompatibilities among
the radio link: two links can be activated simultaneously if and
only if they are not adjacent in the conflict graph [12].

That gives a straightforward way to generalize all the
models for bandwidth sharing. For instance, we can extend
the link fairness equation (eq. 12). The 2-neighborhood of an
edge e, vo(e), is replaced by the neighborhood of e in the
conflict graph. Equivalently, the number of interfering links,
d2(e), is replaced by the degree of e in the conflict graph. The
node fairness equations are generalized similarly. Two nodes
are claimed as interfering if and only if they are either adjacent
in the network or incident to a pair of links that are adjacent
in the conflict graph. The computations and equations stay.

B. Network capacity evaluation methodology

The framework we are developing aims at evaluating the
capacity provided by a routing protocol. The linear models
need to be given the topology of the network, the paths built
by the routing protocol, and the control traffic generated by
the protocol. In order to generate these data in a realistic
manner, we run a discrete event simulation of a mobile
network running the protocol. We define the framework by
the following process:

1) A topology of x nodes is simulated (in our case,
x € [20..60], with a degree of 10. Nodes are randomly
located in a squared simulation area).

2) The routing protocol is simulated and gives the over-
heads and paths (the paths depends on the traffic pat-
tern).

3) The constraints modeling the radio resource sharing are
extracted from the radio topology.

4) The flow constraints are obtained from the paths.



5) The capacity is computed from the list of constraints
and the objective functions (cf. section III)

In our implementation, the simulations are done using
OPNET Modeler [13] while the linear programs are solved with
CPLEX [5]. For the sake of reproducibility of experiments,
the built of the linear programs is distributed as a part of the
MASCOPT library [11].

Our objective is to estimate the capacity inherent to different
routing protocols. To reach this goal, the behavior of some
routing protocols were simulated. We have also implemented
two traffic patterns: in an ad-hoc network, all the possible paths
are computed (Any-To-Any), in an hybrid network, only paths
toward one Access Point are computed (Any-To-One).

To have a representative view of the different routing ap-
proaches, we have simulated the three following major routing
protocols.

o OLSR is relevant to represent the behavior of flat routing
protocols computing (or approximating) shortest paths
routing.

o Localized-CDS: all the traffic is sent through a meshed
backbone provided by [22]

e VSR & soMoM: in the ad hoc approach (VSR version),
paths use a cluster topology. In the hybrid approach of
VSR (denoted as SOMoM version), paths use uniquely the
tree backbone topology, for which the AP represents the
root [18], [19].

Our framework allows to quantify the network capacity of
these different routing schemes with a neutral point of view
in the sense it relies only on the structure of the paths and
the volume of the control traffic. In the following section, we
present the results of our simulations. We assume that the radio
bandwidth is normalized to 1. First, we give general remarks
on the evolution of the capacity according to network size.
Then, we compare the capacities of different routing protocols
in an ad-hoc and hybrid network.

VII. RESULTS
A. General evolution of the capacity

First, we evaluate the general evolution of the capacity in
multihop wireless networks with the link-oriented fairness,
which maximizes the minimum capacity allocated to each flow
in a flat network (fig. 4). In a multihop wireless network,
a network with n nodes comprises n(n — 1) paths. With
a flat routing protocol, we can remark that the bandwidth
per flow decreases when the number of nodes increases: the
number of flows grows, and this creates more contention.
Consequently, the bandwidth allocated to each flow will surely
decrease, corroborating the results of [3]. Oppositely, the
total aggregated capacity (the sum of traffic of individual
flows) remains constant. Indeed, many flows will with high
probability pass through the center of the network since OLSR
uses shortest paths. Consequently, almost all the flows are
limited by the same interfering set, which leads to a constant
aggregated capacity. The center will represent a bottleneck,
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Fig. 4. Comparison of the objective functions in an ad-hoc network using

flat routing (link-oriented fairness)

and limit the spatial frequency re-utilization. Finally, we can
note that the optimistic and the pessimistic resource sharing
present a very close capacity.

B. Ad-hoc networks

We start by maximizing the global network throughput using
the max-sum objective (fig. 5). This evaluation doesn’t ensure
fairness among the flows: short paths will be privileged since
they create less radio interferences. Thus, the global capacity
does not decrease when the network cardinality increases.
We can even remark that with the optimistic bandwidth
sharing, the global capacity increases. Indeed, the network
size increases since the degree is maintained constant. Thus,
more flows can be activated simultaneously since they are
spatially distributed. Oppositely, the pessimistic resource shar-
ing tends to over-estimate interferences, and limit the spatial
re-utilization in small networks. Besides, we can remark that
OLSR and VSR present a very close capacity, whatever the
objective function is while the capacity of Localized-CDS
protocol remains much lower. In conclusion, in an ad hoc
network, a self-organization scheme does not impact severely
the capacity since OLSR and VSR offer similar throughputs.

Then, we investigate the capacity with a link-oriented fair-
ness but with the max-min objective (fig. 6). We can remark
for the same reason as described previously that the capacity
decreases when the number of nodes increases. We can also
verify that OLSR and VSR offer the same capacity when we
ensure fairness among the different flows. The backbone of
Localized-CDS routing keeps on constituting a bottleneck and
impact severely on the capacity.

We also evaluated the capacity with the node-oriented
fairness (fig. 7). While the capacity of OLSR and VSR
remain unchanged, Localized-CDS routing suffers from the
node-oriented fairness. Indeed, backbone clients and backbone
members receive the same amount of bandwidth although
backbone nodes must forward more packets. Thus, link-
oriented fairness would improve the capacity by privileging
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nodes that must forward traffic from a lot of neighbors

C. Hybrid networks

Finally, we study the capacity of an hybrid network with
the max-min objective and the link-oriented fairness (fig. 8).
In an hybrid network, the Access Point constitutes either the
destination or the source of each flow. Thus, in a network
with n nodes, exactly 2n flows exist. Consequently, the
capacity per flow is much higher than in a multihop wireless
network (fig. 8). OLSR offers an higher capacity than SOMoM
and Localized-CDS protocol: the access point represents the
bottleneck of the hybrid network, but the flat routing protocol
distributes efficiently the path. The backbone of Localized-
CDS protocol presents an higher throughput than SOMoM: the
first one seems more efficient in hybrid networks to distribute
the load among the backbone nodes.

In hybrid networks, a self-organization protocol seems to
offer a degraded capacity compared to a flat routing protocol.
Thus, an efficient backbone construction protocol optimizing
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Fig. 7. Capacity of an ad-hoc network with the max-min objective (node-

oriented fairness)

the load distribution among the neighbors of the AP must be
proposed.
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VIII. RELATED WORK

The authors of [3] presented a pioneering work to extract
the network capacity based on the protocol interference model
(see section II-A). They defined the network capacity as the
aggregated achievable throughput, as considered in this paper.
The authors defined spatial and scheduling constraints and
proved that even if nodes choose an optimal radio range, the
capacity per node does not exceed O ﬁ , with n being the
number of nodes.

Several articles extended this work to deal with hybrid
networks [7], [10], [24], broadcast [9] and multicast [21]. [4]
proposes to use simulations to extract the network capacity.
Finally, [16] proposes to optimize greedily the AP placement
but interference models are simplistic: the throughput is as-
sumed to be proportional to the path length.



Thus, none of these propositions was conceived to compare
the network capacity achieved with different routing protocols.

A. LP formulation of the network capacity

The authors of [6] used linear programing to model the
capacity of ad hoc networks. Interferences, radio topology and
resource sharing are translated in linear constraints. However,
the complexity resides in the capacity estimation of each
edge. The authors constructed the conflict graph with the
protocol interference model. They estimated that the maximum
throughput is achieved when a scheduling is contained in an
independent set of the radio links in the conflicts graph. Since
to reference exhaustively all the maximum independent sets
(MIS) is NP hard, the authors propose to find a sufficiently
large number of MIS. Then, they proposed a scheduling which
allocates a slot time ¢ to each MIS (¢ € [0..1], the radio
capacity is equal to one unit) and maximizes the capacity.
Consequently, the authors do not try to model fairness in the
radio resource sharing, contrary to our approach described
above.

[8] proposed a scheduling of radio links so that two links
activated simultaneously never interfere with each other. The
authors proposed a greedy allocation algorithm after an or-
dering of radio links by their euclidean distance. However,
they tend to under-estimate the capacity: bandwidth is shared
equally among one edge and each of its interfering edges,
even if some of these links do not interfere with each other
and could transmit a packet simultaneously. Our capacity
estimation proposes a finer evaluation of the local resource
sharing in studying more precisely the interference interactions
among the 2-neighborhood of a node.

B. Routing in multihop wireless networks

Routing protocols are very closely related to the capacity of
ad hoc networks. With different paths, a network will achieve
dissimilar throughputs. Bottlenecks should be avoided, and the
load harmoniously distributed to improve frequency spatial re-
utilization.

To construct paths in a multihop wireless networks, two
main strategies exist. In the first one, the network is considered
flat [14], [2]. In this paper, we cope with OLSR since we
consider it is representative of the flat approach to compute
paths in multihop wireless networks. OLSR limits the broad-
cast storm problem by using Multi-Point Relays to limit the
overhead due to topology packets. In the second approach,
the network is self-organized before routing takes place. For
instance, some approaches [23], [22] aim at constructing
a backbone (more precisely, a Connected Dominating Set)
to optimize the flooding of topology packets. Consequently,
packets are routed through the backbone, and a bottleneck
could appear. Besides, VSR[19] uses the cluster and backbone
topology of [20] for routing: each node executes a proactive
routing inside its cluster while a reactive protocol uses the
stable cluster topology to route packets between different
clusters.

Since a self-organization is a subset of the radio topology,
it should avoid the apparition of bottlenecks. In other words,
we have to verify that self-organization does not reduce
the network capacity compared to flat approaches. Thus, we
provided in this article models and the associated framework
to compare the network capacity for any routing protocol.

IX. CONCLUSION AND FUTURE WORK

This paper focuses on generic methods for evaluating the
capacity of multihop wireless networks. Our approach consists
in modeling radio resource sharing principles of CSMA-CA
protocols as a set of linear constraints. We propose two
MAC layer fairness models. One assumes a fair bandwidth
repartition among the interfering nodes, while the other one
distributes fairly the bandwidth among the radio links. For
each of these fairness models, we propose a pessimistic and
an optimistic scenario of the spatial-reutilization of the radio
resources. This framework is generic, not related to a particular
topology or routing algorithm: we can compare quantitatively
different routing strategies. We conclude that self-organization
protocols can have a negligible impact on the network capacity
with a traffic pattern any-to-any. However, efforts have to be
done for self-organizations based routing in a many-to-one
traffic pattern.

In the close future, we plan to pursue our comparison
campaign by including the other main flat routing proto-
cols (AODV, DSR, DSDV), even though we conjecture that
their performances should theoretically be similar to those of
OLSR. We are also interested in evaluating multi-path routing
protocols [1], since they have been proposed for improving
the throughput of the network. In this article, we obtained
the network capacity of a given routing algorithm and its
associated topology. We want now adopt the inverse approach:
how to conceive a routing algorithm which optimizes the
network capacity?
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