
HAL Id: hal-00371144
https://hal.science/hal-00371144

Submitted on 26 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bottleneck Analysis for Routing and Call Scheduling in
Multi-hop Wireless Networks

Cristiana Gomes, Stéphane Pérennes, Hervé Rivano

To cite this version:
Cristiana Gomes, Stéphane Pérennes, Hervé Rivano. Bottleneck Analysis for Routing and Call
Scheduling in Multi-hop Wireless Networks. 4th IEEE Workshop on Broadband Wireless Access
(BWA), Dec 2008, New-Orleans, US, France. �hal-00371144�

https://hal.science/hal-00371144
https://hal.archives-ouvertes.fr


Bottleneck Analysis for Routing and Call
Scheduling in Multi-hop Wireless Networks

Cristiana Gomes, Stéphane Pérennes, Hervé Rivano
INRIA/I3S(CNRS-UNIVERSITÉ DE NICE SOPHIA ANTIPOLIS)

2004 route des lucioles - BP 93 FR-06902 Sophia Antipolis, France
{cristiana.gomes,stephane.perennes,herve.rivano}@sophia.inria.fr

Abstract— In this paper, we address the routing and call
scheduling problem in which one has to find a minimum-length
schedule of selected links in a TDMA (Time Division Multiple
Access) based wireless network. As we deal with multi-hop
networks, these selected links represent a routing solution (paths)
providing enough capacity to achieve the routers requirements of
bandwidth. We present a cross-layer formulation of the problem
that computes joint routing and scheduling.

We use a branch-and-price algorithm to solve optimally the
problem. A column generation algorithm is used to cope with
the exponential set of rounds. The branch-and-bound algorithm
provides mono-routing. We run experiments on networks from
the literature, with different number of gateways. Experimental
results as well as theoretical insights let us conjecture that the
bottleneck region analysis is enough to find the optimal solution.
The Integer Round-Up Property (IRUP) seems to hold for our
problem.

I. INTRODUCTION

In wireless networks, the communication channels are
shared among the terminals. Thus, one of the major problems
faced is the reduction of capacity due to interferences caused
by simultaneous transmissions [1]. In this work, we call a
round a collection of links that can be simultaneously activated
in the network. We address the problem called Round Weight-

ing Problem (RWP) [2] that consider joint routing and schedul-
ing. We present a cross-layer formulation of the problem.
We have to find a minimum-length schedule of selected links
in a TDMA (Time Division Multiple Access) based wireless
network. As we deal with multi-hop networks, these selected
links represent a routing solution (paths) providing enough
capacity to achieve the routers requirements of bandwidth.
Scheduling methods such TDMA can guarantee achieving
higher capacities by allowing time slots to be shared by
simultaneous transmissions.

A communication graph G = (V, E) represents the network
topology, where the nodes are the routers and the edges are
the links. Interferences between links are given as a conflict

graph Gc. We consider the RWP as a flow routing problem.
Therefore, the flows in the edges of the problem solution
represent the allocated bandwidth.

We work with a special case of RWP where data are
exchanged only between the routers in Vr and the gateways
in Vg such as in Wireless Mesh networks (WMNs) or sensor
networks. The input of the RWP corresponds to the com-
munication graph G(Vr ∪Vg, E), the conflict graph Gc repre-
senting the edge interferences, and the network bandwidth bv

required by each router v ∈ Vr. In the output, each edge e ∈ E

receives a positive value be that represents the edge bandwidth
from the routing problem solution. Simultaneously, we have
to find a set of rounds R with their weights w(Ri) achieving
the routers bandwidth (

∑

Ri∋e w(Ri) ≥ be), such that the total
time slots W =

∑

i w(Ri) is minimized.
We use a branch-and-price (BnP) [3] algorithm to solve

optimally the problem with integer flows. A column generation
algorithm is used to cope with the exponential set of rounds.
The branch-and-bound algorithm provides mono-routing by
turning integer the flow variables. The mono-routing is inter-
esting to avoid dealing with the packet-reordering problem.

We run experiments on networks from the literature, with
different number of gateways. Experimental results as well
as theoretical insights let us conjecture that the bottleneck
region analysis is enough to find the optimal solution. The
bottleneck is usually the gateway considering almost uniform
traffic. In particular, the Integer Round-Up Property (IRUP)
seems to hold for our problem. As defined in [4], an integer
programming problem has the IRUP if its optimal value is
given by the smallest integer greater than or equal to the
optimal value of its LP relaxation.

In this work we study the problem of Routing and Call
scheduling in multi-hop wireless networks. It can be consid-
ered as an upperbound for networks with distributed links
scheduling, like in IEEE 802.11. It can also be useful in a
context where centralized links scheduling is possible (e.g.
IEEE 802.16) that can directly take advantage of our analysis.

This paper is organized as follows. In the next section,
we discuss the related works. In section III we define the
problem. In section IV, we give a description of the Branch
and Price algorithm adopted. Experimental results and analysis
of the bottleneck importance, mono-routing and and IRUP are
presented in section V. We conclude the paper and give the
future directions in section VI.

II. RELATED WORKS

A key issue in wireless networks is the interferences pro-
duced between neighboring routers. It is important to know
what are the sets of transmission links that can be active at
the same time, the rounds. The Round Weighting Problem
RWP was introduced in [2]. The authors make a primal/dual
analysis and propose approximation algorithms for some spe-
cific network topologies. They show the NP-hardness of this
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Fig. 1. Network modeling

problem by proving that the well-known NP-hard problem
of finding the Fractional Coloring on unit graphs reduces
to it. In a previous work [5], we gave exact bounds for the
problem on grids graphs. We mainly prove that the throughput
is determined by the bottleneck around the base station.

In [6], a similar problem, the Round Scheduling Problem

was treated. The relation with the round weighting problem
is the following: if one must repeat rounds scheduling many
times then the problem is equivalent to the RWP. The authors
prove lower bounds on the number of rounds required for any
two-dimensional grids and describe protocols for n x n grids
with n odd that are optimal. Notice that, in [6] the interference
model is not symmetric because they deal with the exact case
of gathering (directed interference).

An algorithm enumerating a tractably large subset of simul-
taneous transmission rounds has been developed in order to
compute an approximated solution for maximum throughput
using linear programming (LP) in [7]. Solving the full LP
problem means generating an exponential set of scenarios
which is intractable even for small networks as seen in [8].
To cope with this issue, column generation methods have been
introduced, e.g. [9], [10], [11] and [12]. The work in [10]
presents a round generation taking into account the SINR
(Signal to Interference plus Noise Ratio) constraints. In [9],
a multi-objective study about the Round Weighting Problem
was presented that can be used to find bottlenecks position.
To solve integer programs with a huge number of variables,
the present work use a Branch-and-Price (BnP) [3] algorithm
that combines Branch-and-bound with Column Generation. It
is an extention of the work in [13].

III. HYPOTHESES AND PROBLEM DEFINITION

In this section we give some definitions that will help to
understand the problem. The RWP can be modeled as a graph
problem. A wireless topology is represented as a digraph G =
(V, E), the communication graph as illustrated in Figure 1(a).

The set of routers is represented by the set of nodes V .
The set of edges E ⊆ V × V corresponds to the commu-
nication links from the real network. If a router j is located
within the transmission range of a router i, considering range
distance, obstacles, directional antennas, etc, then there is an
edge (i, j) ∈ E.

The definition of round is flexible and permit the utilization
of either binary models or physical models. The work in [10]

presents a round generation taking into consideration the
SINR constraints. As our analysis is based on flow contention
(bottleneck) similar results should be obtained independently
of the adopted model.

In the present work, a round is simply defined by any
set of edges pairwise at distance at least d. It defines a
symmetric interference model that permits the calls happen
in both directions (download or upload). The most basic case
is d = 1, where the set of rounds R is simply the set of the
matchings of G. In other words, an active link (i, j) interferes
with another links located within the interference range defined
by d of the router i. The set Iu,v is composed by all links
interfering with the link (u, v) that defines the contention area.
In Figure 1(b), we can see an example in a grid graph.

We consider a symmetrical interference model (a link in-
terferes all other links at distance d). It implies a symmetrical
contention area in a way to permit communication in both
directions. That is all edges in bold in Figure 1(b) will be
interfered in both directions. This distance d is the same to
all links. The conflict graph Gc is the line graph power d,
Ld(G). For example, if d = 2 a round is an independent set

of Gc or an induced matching in G. In this case, the RWP

is a strong edge-coloring (or a L(1,1) edge labeling) of the
G with edge weights defined by the flow going through them
given by a routing. These weights are simultaneously defined
representing the best routing possible to reach the minimum
number of colors W .

The bandwidth should be allocated between the set of nodes
Vr and the set of gateways Vg (Vr∪Vg = V and Vr∩Vg = ∅).
The input of the RWP corresponds to the communication
graph G(Vr ∪ Vg, E), the conflict graph Gc representing the
edge interferences, and the network bandwidth bv to each
router v ∈ Vr. Let B =

∑

v bv . In the output, each edge
e ∈ E receives a positive value be that represents the edge
bandwidth from the routing problem solution. Simultaneously
to the routing problem, we have to find a set of rounds R

with their weights w(Ri) achieving the routers bandwidth
(
∑

Ri∋e w(Ri) ≥ be), such that the total time slots W =
∑

i w(Ri) is minimized. From this set of rounds can be
deduced the paths followed by the data.

IV. BRANCH AND PRICE ALGORITHM

The BnP combines Branch-and-bound (BnB) with Column
Generation to solve integer program with a large number of
variables. We use a Branch-and-Price (BnP) algorithm to turn
integer the flow variables x of the model presented in IV-A.1.

As the BnP algorithm is well known, we give only a
brief description. Each node of the BnB tree corresponds a
linear program to be solved, a constraint stack that should
be considered in this linear program, a list of variables that
should be integer and a position in the execution stack. Each
time, the execution stack saves only a part of the BnB tree.
As we use a Depth-First approach, these parts correspond to
exactly paths that we follow deep into the tree. We stop when
we find the best objective, otherwise, a backtracking is needed.



Fig. 2. The Branch and Price algorithm

At each node of the tree, we solve a linear relaxation of
the problem with column generation. Therefore, each node is
repeated until no further variables price out favorably. With
the optimal solution of the column generation we have a list

of variables and we can choose among them how to bound
the children nodes. We choose a non-integer variable to branch
from the list of variables. We respect a priority order, the first
variables corresponds to the flow variables around the gateway
and the next ones are chosen randomly. We explain in the
section V why this priority order was adopted.

We start with a relaxed model at the root node with an
empty constraint stack. For the execution of each node of the
Branch-and-Bound tree we create two children with a copy
of the father constraints stack and a new constraint each one.
We push a child node of the BnB tree on the execution stack.
This node is then on top of the execution stack and it will be
executed next. If at any point the relaxed model of a BnB node
becomes infeasible, this node is pruned. That is, it is popped
out from the execution stack.

The best node is a BnB node with all its variables integer
and the objective is better than the current best solution. So,
this node will be used as current best solution. Otherwise, we
continue splitting the problem in one or two new problems
branching on a variable of the list of variables that is not
integer yet. The figure 2 shows an example of a part of the
BnB tree of the BnP algorithm.

Actually, we use the classical BnP algorithm with some
adaptations to our problem, e.g. the branch process (priorities),
which is sufficient since we observed this problem has particu-
lar characteristics that can be explored. It permits the algorithm
to cut very early the BnB tree (as explained in section V), and
the optimal solution is found efficiently.

A. Column Generation Method

The problem considered takes into account the complete
set of rounds. Since the number of rounds is exponential, the
number of columns of the constraint matrix of our model is
also exponential. A column generation (CG) algorithm is used
to avoid dealing with the complete set of rounds. Our CG algo-

rithm has an exponential complexity (in the number of links)
as well. The difference is that the brute force enumerating
algorithms have the average case exponential complexity while
the CG algorithm has only worst case exponential complexity.

The linear programming model to this problem is decom-
posed into a master problem and a sub-problem models as
presented in [9]. We show this model in this section for the
sake of completeness. Notice that in [9] the flow variables
x are not integer that allows splitting the packet generating
multiples paths. The present work makes analysis considering
also these variables as integer.

We solve the master problem with a small subset of
columns, which serves as an initial basis. The sub-problem
is then solved to check the optimality of the solution under
the current master basis and to generate new columns for
the master problem. This procedure repeats until the master
problem contains all columns necessary to find the optimal
solution of the original problem. Considering the RWP, each
column corresponds to one round.

In each iteration, if the sub-problem can find a new column
that may improve the master solution, this column is inserted
in the master basis and a new master solution is computed. If
the sub-problem can not find, linear programming and duality
theory ensure that the solution of the problem is optimal.

If we does not consider the flow variables x as integer,
the master problem is a linear programming problem and
therefore can be solved in polynomial time using the simplex

algorithm. The complexity is solving the sub-problem which
is combinatorial, and finding the optimal is NP-hard. We will
see in section V that this complexity is limited to only a small
part of the graph, the bottleneck region.

1) Master problem formulation: We define the following
variables: Let the variable xv

i,j be the flow from the router
v over link i, j. The variable xv

i,j is turned integer with
the BnB algorithm or it remains relaxed when only column
generation is employed. The integer demand from each router
v is represented by the parameter bv . Let the binary parameter
ar

i,j be 1 if link (i, j) is active in the round r, and 0 otherwise.
Recall that set Iu,v is composed by all links interfering with

(u, v). We define F
(i,j)
(u,v) = 0 if (i, j) ∈ Iu,v and 1, otherwise.

We define wr as the fraction of time that round r ∈ R is
scheduled. Consequently, there is an induced edges capacity
ci,j =

∑

r∈R ar
i,jwr,∀ (i, j) ∈ E.

The master problem can be defined as follow: Given a graph
G(Vr ∪ Vg, E), a set of routers demand bv with v ∈ Vr and
a set of rounds R, the problem is to assign a weight wr to
each round r ∈ R. The weights represent the amount of time
a round will be activated. The total amount of time needed to
satisfy all demand will be wR =

∑

r∈R w(r). From the edges
of the rounds can be deduced the paths followed by the data.
The constraints of the master problem expressed as a linear
programming model are the following:

∑

i∈V/(v,i)∈E

xv
v,i = bv,∀v ∈ Vr (1)



∑

j∈Vg

∑

i∈Vr/(i,j)∈E

xv
i,j = bv,∀v ∈ Vr (2)

∑

i∈Vr/(i,j)∈E

xv
i,j −

∑

k∈V/(j,k)∈E

xv
j,k = 0, ∀j, v ∈ Vr (3)

∑

r∈R

ar
i,j .wr −

∑

v∈Vr

xv
i,j > 0,∀i, j ∈ E (4)

Constraints (1-3) correspond to the flow constraints. Con-
straints (1) define the flow leaving its source router and
constraints (2) define the flow arriving in a gateway. Con-
straints (3) represent the flow conservation, that is, the flow
entering an intermediate router equals the flow leaving that
router. Constraints (4) assign weights to the rounds to satisfy
the flow in the edges.

2) Sub-problem formulation: The sub-problem
generates a round r with the minimal reduced cost
(

1 −
∑

(i,j)∈E p(i,j).a
r
i,j

)

to enter the master basis. To
express the sub-problem as a linear programming model, we
have to define some additional notations. Let the parameter
p(i,j) be given by the dual variable associated with the
constraints (4) of the master problem. Consider the binary
variable u(i,j) = 1 indicating if the edge (i, j) enters the
round to be added to R, u(i,j) = 0 otherwise. The sub-
problem can be seen as the Maximum Weighted Independent

Set Problem which is NP-hard [14]. The parameter p(i,j)

corresponds to the weight of the edges. The objective function
is to maximize the sum of the weights of all active edges
respecting interferences. The formulation of the sub-problem
is the following:

max
∑

(i,j)∈E

p(i,j)u(i,j) (5)

u(i,j) + u(k,l) 6 1 + F
(k,l)
(i,j) ,∀ (i, j) ∈ E, ∀ (k, l) ∈ E (6)

The objective function (5) searches the maximum weight,
which is equivalent to the minimum reduced cost. The pa-
rameter p(i,j) guides the column generation to select the best
round. Constraints (6) avoid interferences according to the
interference model in F .

If the value of the objective function in the sub-problem
is strictly greater than 1 (e.g. the reduced cost is negative), a
new column u(i,j) is found and the master basis is expanded.
Otherwise, the master problem already gives the optimal
solution to the original problem.

V. RESULT ANALYSIS

The model1 is implemented using the AMPL modeling
language and the Branch-and-Price algorithm is implemented
using ILOG Concert Technology. The instances are solved
using the commercial software Cplex version 10, on a desktop
PC with one gigabyte of RAM. We use the public graph
representations of some mesh networks topologies from [15] in

1The source code can be found at http://www-sop.inria.fr/mascotte/
personnel/Cristiana.Gomes/implementations.html

a way to permit the reproduction of our tests. As our results
are based on flow contention, they should be adequate for
simplest graphs as these ones that represent an idealized view
of wireless networks (e.g. unit disk graphs).

In our tests, we consider a simple interference model where
each edge interferes with another one if the distance between
them in graph G is lower than 2, but the model accepts other
interference models. We consider equal bandwidth require-
ments bv = 1 for all routers, which can be interesting to
provide fairness (uniform bandwidth).

We consider the RWP as a flow problem. Therefore, the
flows in the edges represent the bandwidth. Table I gives
the network topologies characteristics. The solutions Wi (W
with integer flow) to RWP obtained by the BnP algorithm are
shown. Table I also shows the solutions Wf (W with frac-
tional flow) to RWP obtained using only Column Generation
algorithm. The computation time to solve any instance was
low, of the order of tenths of seconds.

The IRUP [4] seems to hold for the RWP in our tests results.
Table I shows that Wi = ⌈Wf⌉. It does not mean that we
can obtain an integer routing rounding the edges flow of a
fractional solution. The IRUP is due to the fact that there is
a huge concentration of traffic around the gateway (critical
region) because all the flow goes toward it. Therefore, we
give priority to these variables in the BnB algorithm. The
work in [16] presents an algorithm that solve polynomially
an integer program respecting the IRUP.

A. A Lower Bound

If n routers send the same bv units of flow during W slots
of time, there is nbv units of flow on the edges around the
gateway. If we transform these flows (weights) in new nodes
of the conflict graph Gc, we can see large cliques composed
of the gateway and its neighborhood. The number of colors to
cover the largest one is a lower bound to our problem solution.
It is known that ω(G) 6 χf (G) 6 χ(G) for any graph G,
where ω(G) is the clique number of G, χf (G) is the fractional
chromatic number and χ(G) is the chromatic number of G.

We observe that the clique number represents already the
optimal solution in our tests, as shown in Figure 3 (the letters
represent the rounds). This fact is not usual. It happens only in
special classes of graphs as the perfect graphs that is not the
case of our graphs. Usually the clique number is derived from
the bottleneck in the gateway. Otherwise, it will be derived
from bottlenecks in other parts of the network. In [9] was
presented an algorithm that can be used to find bottlenecks
position. We can see in Table I that if there are 2 or more
gateways, W is not exactly divided by the number of gateways
because they have different absorption rates or because they
are close and their critical regions make interference one with
the other.

The RWP can be easily solved once we have covered the
critical region. The links out of this region have slacks of
activation. An edge have a slack when it has several possible
options to get activated forming a round with edges on the
critical region. It is easy to assign time slots (colors) to



TABLE I

NETWORKS TOPOLOGIES AND RESULTS

Network Gateways Nodes Edges Wf Wi

A 1 11 34 16 16
A 2 11 34 9.5 10
B 1 12 18 15 15
C 1 15 22 17.666 18
C 3 15 22 7.71428 8
D 1 16 49 18.5 19
D 3 16 49 6.6666 7
E 1 25 45 54 54
E 3 25 45 14.5 15
F 1 28 41 38 38

Fig. 3. Network D (B = 15) with solution Wf = 18.5 and Wi = 19

the edges out of this region because once we have covered
the critical region they will have several possibilities to get
activated whitout change the total routing time W .

The traffic around the gateway is well distributed between
the cliques because the model try to minimize the maximum
clique, it results in cliques of the same size for the fractional
result and almost the same size for the integer result. This
explains why the integer coloring solution is simply the round
up of the fractional coloring (Wi = ⌈Wf⌉). It allows to cut
efficiently the BnB tree in the BnB algorithm IV putting the
current best solution objective value equal to ⌈Wf⌉ + 1.

We notice that the colors (time slots) used in the weighted
min-max cliques around the gateways is enough to color all the
paths. The weighted min-max cliques can be determined by a
distribution of the total flow B over the links of the critical
region. The cliques are generated in a way to minimize the
maximal one, consequently it will minimize the total number
of colors needed (total routing time W ).

We make some experiments in grid graphs with the gateway
in the center. Figure 4.a.1 shows an example of a bad traffic
distribution (the clique have not minimum weight) giving a
worse result and Figure 4.a.2 gives the best configuration.
The best configuration shows that the 4 white nodes close
to the gateway have to go far from it and then come back
through the central axes. In fact, this strange routing minimizes

Clique size = 5B/4 −1
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Fig. 5. MST backbone of the network C

the maximal cliques that have weight Wf = 5.B
4 − 1 instead

Wf = 5.B
4 − 1

2 (with the non-minmax cliques). So, we gain 1
2

of time, and it corresponds to the optimal solution as proved
by [5]. Another results can be seen in Figure 4, we test a larger
network computing only Wf . The result is already integer and
if we are right it is also the result using integer flow.

B. Mono-routing

As bv = 1, the BnP algorithm give us a mono-routing that
can be interesting to avoid dealing with the packet-reordering
problem. With bv = 1 the BnP give only one path from each
v to the gateway because the flow is turned integer. Recall
that the result Wf being integer does not necessarily mean
the flow x is integer. In other words, the demand bv = 1 does
not implie mono-routing if we permit x being fractional.

In our tests analysis, the path followed by the routers is
close to a balanced spanning tree with the gateway being the
root. The flows arriving at the gateway respect the min-max
weighted cliques capacity. It means that distributed algorithms
could solve optimally this problem considering a given optimal
configuration of the critical region. Algorithms based in [17]
may be an interesting option. There is an example in Figure 5
that shows the balanced spanning tree. We can also see, the
complete routing with integer flows forming three cliques
around of the gateway with the weights 18, 18 and 17.

VI. CONCLUSION AND PERSPECTIVES

In this article, we solve the Round Weighting Problem in
order to satisfy a given demand subjected to the multiaccess
interferences. We define a branch-and-price algorithm to solve
optimally the non-relaxed version of this problem.

A column generation algorithm is used to avoid dealing with
the whole exponential set of rounds. The branch-and-bound
algorithm provides mono-routing. We make experiments with
networks with different numbers of gateways.

Experimental results as well as theoretical insights let us
conjecture that the bottleneck region analysis is enough to
find the optimal solution. Therefore the RWP can be easily
solved once we have covered this critical region. It is easy
to assign time slots to the edges out of this region because,
once we have covered the critical region, they will have
several possibilities to get activated whitout change the total
routing time W. Distributed algorithms could solve optimally
this problem considering a given optimal configuration of the
critical region.

The IRUP holds in our tests instances. Consequently the
problem with integer flows is as easy as its relaxed version.
We are getting further the proof of whether the integer round-
up property holds for specific class of graphs.
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