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On the convergence of linear switched systems

Ulysse Serres ∗ Jean-Claude Vivalda † Pierre Riedinger ‡

March 26, 2009

Abstract

This paper investigates sufficient conditions for the convergence to zero of the trajecto-
ries of linear switched systems. We provide a collection of results that use weak dwell-time,
dwell-time, strong dwell-time, permanent and persistent excitation hypothesis. The ob-
tained results are shown to be tight by counterexample. Finally, we apply our result to the
three-cell converter.

Keywords: Switched systems, dwell-time, stability, omega-limit set, three-cell converter.

1 Introduction

1.1 Background

Switched systems have attracted a growing interest in recent years [11, 17]. Such systems are
common across a diverse range of application areas. As an example, switched systems modeling
plays a major role in the field of power systems where interactions between continuous dynamics
and discrete events are an intrinsic part of power system dynamic behavior.

In the study of stability of equilibrium points of differential systems, specific results for
switched and hybrid systems have been developed: see [6, 10] for multiple Lyapunov based
approach, [18] for Lie Algebra based results, [9, 16] for an approach based on dynamical systems
techniques, and [24] for a survey of stability criteria for switched and hybrid systems. In the
context of switched systems, recent investigations (see [2, 8, 13, 19, 20]) provide interesting
contributions leading to extremely general results that require little structure on the family of
solutions of the hybrid system ([12, 23]).

Typically, linear switched systems are represented by equations of form

ẋ(t) = Aσ(t)x(t), x ∈ R
d, t ∈ R+, (1.1)

where σ(·) denotes a piecewise constant signal that effectively switches the right-hand-side of
the differential equation by selecting different matrices from a finite family F .

In the present paper we aim to find some tight sufficient conditions on the signal t 7→ σ(t)
in order to insure the convergence of the switched system to the origin. Our aim leads us
to define several new notions of dwell-time that differ somewhat from the ones introduced
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in [12, 13, 23]. We are also led to define the notion of persistent excitation which ensures the
convergence of the solutions of the system to a minimal invariant set M .

We discuss the asymptotic properties of a switched linear systems whose matrices are only
assumed to be stable (not necessarily asymptotically stable). More precisely, a finite family of
squared matrices of the same size d, F = {A1, . . . , AN} is considered; we assume that there
exists a positive definite matrix P such that for every Ai in F ,

xT
(
AT

i P + PAi

)
x 6 0, x ∈ R

d. (1.2)

We reformulate the switched linear system (1.1) as an affine control system

ẋ(t) =

N∑

i=1

αi(t)Aix(t), x(0) = x0, (1.3)

where x(t) ∈ R
d, αi(t) ∈ {0, 1} and

∑N
i=1 αi(t) = 1. The class of switching signals considered

in this work is not equal to the whole L∞(R+, {1, . . . , N}) but we assume that there exists a
sequence ([an, an+1))n>0 of consecutive intervals (0 = a0 < a1 < a2 < · · · ) whose union is equal
to R+ and such that for every index n, there exists an index in ∈ {1, . . . , N} with αin(t) = 1
if t ∈ [an, an+1) (informally, the ai’s are the switching instants). In what follows, we use the
symbol δn to denote the length of [an−1, an) with the convention that δ0 = 0.

Moreover, we shall deal with the scalar product related to matrix P : if x, y ∈ R
d, we put

〈x, y〉 = xTPy; also we shall denote by ‖ · ‖ the related norm. We shall use the following result
see [25].

Theorem 1.1. If Ai satisfies (1.2), then we can split R
d as R

d = V i
1 ⊕ V i

2 where V i
1 and V i

2

are orthogonal and Ai-invariant, Ai when restricted to V i
1 has all its eigenvalues with negative

real parts and Ai restricted to V i
2 is skew-symmetric (with respect to the scalar product 〈·, ·〉).

In what follows, we assume that the skew-symmetric parts of matrices Ai are zero. In other
words, if Bi

k denotes a basis of V i
k (k = 1, 2), in basis Bi

1 ∪ Bi
2, matrix Ai has the following

representation

Ai =

(
Ai

11 0
0 0

)
, (1.4)

where Ai
11 is a matrix of full rank. We denote by 1.2 the following assumption.

Assumption 1.2. There exists a positive definite matrix P such that all matrices in family
F satisfy relations (1.2) and (1.4).

Hereafter, we give the precise definition of the ω-limit sets related to system (1.3).

Definition 1.3. We shall say that ℓ is an ω-limit point of system (1.3) if there exists a sequence
(tn)n∈N tending to infinity such that ℓ = limn→+∞ x(tn). We denote by Ω(x0) the set of ω-limit
points of system (1.3) issued from x0.

1.2 Preliminaries: paracontracting linear maps

We denote by pi (resp. qi) the orthogonal projection on V i
1 (resp. on V i

2 ); obviously pi+qi = Id.
According Theorem 1.1, we can write

et Ai(x) = et Ai ◦ p1(x) + q1(x) (1.5)

and
‖et Ai(x)‖2 = ‖et Ai ◦ p1(x)‖

2 + ‖q1(x)‖
2. (1.6)

Following [21] we introduce the notion of paracontracting maps.
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Definition 1.4. A linear mapping f : R
d → R

d is said to be paracontracting with respect to
the norm ‖ · ‖ if ‖f(x)‖ 6 ‖x‖ for every x ∈ R

d and ‖f(x)‖ = ‖x‖ iff f(x) = x.

A family of matrices as described in the introduction generates a paracontracting semi-
group. More precisely, we have the following result.

Lemma 1.5. If matrix A is of the same type as (1.4), et A is paracontracting for every t > 0.

Proof. If t = 0, the result is obvious; in what follows, we shall assume that t > 0. According
to formula (1.6), one infers that

‖et A(x)‖2 6 ‖p1(x)‖
2 + ‖q1(x)‖

2 = ‖x‖2.

Moreover, ‖et Ax‖ = ‖x‖ implies that ‖et A ◦ p1(x)‖
2 = ‖p1(x)‖

2. As ‖es Ax‖ 6 ‖es
′ Ax‖ if

s 6 s′, we have ‖es A ◦p1(x)‖ = ‖p1(x)‖ for every s ∈ [0, t]. As the mapping s 7→ ‖es A ◦p1(x)‖
2

is analytic, this implies that ‖es A ◦ p1(x)‖ = ‖p1(x)‖ for every s > 0, hence p1(x) is in kerA
and so p1(x) must be zero and et Ax = x follows from formula (1.5). �

This lemma allows us to state the following easy result.

Proposition 1.6. The elements of Ω(x0) are of the same norm, in other words, there exists
r > 0 such that, Ω(x0) is included in the sphere centered at the origin of R

d and with radius r.

Proof. Let ℓ and ℓ′ be two elements in Ω(x0). There exist two sequences (tn)n∈N and (t′n)n∈N

such that ℓ = limn→+∞ x(tn) and ℓ′ = limn→+∞ x(t′n). For each n, there exists mn such that
tn 6 t′mn

, so x(t′mn
) = ϕn(x(tn)) where ϕn is a product of exponentials of matrices taken in

{A1, . . . , AN}. As these exponentials are paracontracting, we have ‖x(t′mn
)‖ 6 ‖x(tn)‖ and

passing to the limit as n → +∞, we get ‖ℓ′‖ 6 ‖ℓ‖ and we can prove the opposite inequality
in the same way. �

Finally, the following elementary result, given without proof, will be useful for the proofs
of results given in the next section.

Proposition 1.7. If matrix A is of the same type as in (1.4), and if x /∈ kerA, then for all
τ > 0, there exists ρ ∈ (0, 1) such that t > τ implies ‖et Ax‖ 6 ρ‖x‖.

2 A condition for the convergence to zero

In this section, we deal with the problem of the convergence to zero of the solution of sys-
tem (1.3). First an easy remark: if the intersection

⋂N
i=1 kerAi is not {0}, then, taking as an

initial condition for (1.3) a nonzero element x0 of this intersection, the solution x(t) is constant
and equal to x0. So, we introduce this first assumption

Assumption 2.1. We say that system (1.3) satisfies the null intersection assumption if⋂N
i=1 kerAi = {0}.

As we shall see through the following example, Assumption 2.1 is not sufficient to ensure
the convergence to zero.

Example 2.2. In R
3, we consider the following matrices

A1 =




0 −1 a13

1 0 a23

−a13 −a23 a33


 A2 =




0 −1 −a13

1 0 −a23

a13 a23 a33



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with a33 < 0 and one of the coefficients a13 or a23 different from zero. Denoting by 〈·, ·〉 the
canonical scalar product in R

3, we have 〈Aix, x〉 = a33 x
2
3 6 0 (i = 1, 2) for every x ∈ R

3.
Moreover the characteristic polynomials of A1 and A2 are both equal to

−X3 + a33X
2 − (a2

13 + a2
23 + 1)X + a33

so, we can see that A1 and A2 do not have purely imaginary eigenvalues. We can conclude
that these matrices satisfy assumption 1.2. We shall use now the well known Trotter’s formula
(see [15] or [14], p. 78 and ff.):

lim
n→+∞

(
et0 M/n ◦ et0 N/n

)n
= et0 (M+N) (2.1)

whereM andN are squared matrices and t0 is a real number. Define the sequence (ek)k∈N ⊂ R
3

by: e0 = (1, 0, 0)T, e1 = (0, 1, 0)T, e2 = (−1, 0, 0)T, e3 = (0,−1, 0)T and for k > 4, ek will refer
to vector er where r is the remainder in the Euclidean division of k by 4. We have

A1 +A2 =




0 −2 0
2 0 0
0 0 2a33




and so, if we take t0 = π/4, we have et0 (A1+A2)(ek) = ek+1. Set

R = et0 (A1+A2) and ϕn =
(
et0 A1/n ◦ et0 A2/n

)n
.

Take ε > 0 and x0 = e0, from formula (2.1), we know that there exists n1 such that

‖ϕn1
(x0) −R(x0)‖ 6

ε

2
. (2.2)

Assume now that we have built a sequence (x1, . . . , xk) and we have found integers (n1, . . . , nk)
such that xp = ϕnp(xp−1) and ‖xp − R(xp−1)‖ 6 ε/2p for p = 1, . . . , k. Take nk+1 such that
‖ϕnk+1

(xk)−R(xk)‖ 6 ε/2k+1 and set xk+1 = ϕnk+1
(xk). Consider the sequences (xk)k>1 and

(nk)k>1. Inequality (2.2) can be written ‖x1 − e1‖ 6 ε/2 and we shall prove by induction that

‖xk − ek‖ 6
ε

2k
+ · · · +

ε

2
. (2.3)

We have

‖xk+1 − ek+1‖ 6 ‖xk+1 −R(xk)‖ + ‖R(xk) −R(ek)‖

6 ‖ϕnk+1
(xk) −R(xk)‖ + ‖xk − ek‖ because ‖R‖ 6 1

6
ε

2k+1
+

ε

2k
+ · · ·

ε

2
by induction hypothesis.

From (2.3), we get ‖xk − ek‖ 6 ε for every integer k. Consider the switch law α = (α1, α2)
defined by

α1(t) =

{
1 if t ∈ [(k − 1)t0 + (2p/nk)t0, (k − 1)t0 + ((2p + 1)/nk)t0);

0 otherwise;

α2(t) = 1 − α1(t).

where k and p are integers such that 2p < nk. The switched system defined by matrices A1

and A2 and laws α1 and α2 is such that Ω(e0) is included in the exterior of the circle of center
0 with radius 1 − ε and so 0 /∈ Ω(e0) if ε is chosen small enough. Moreover Ω(e0) contains at
least one point in every open ball B(ei, ε) and so, being connected, Ω(e0) is an infinite set.
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We state the following definition.

Definition 2.3. We shall say that the finite sequence (i1, . . . , ip) of indices taken in {1, . . . , N}
is compatible with system (1.3) if there exists p consecutive intervals [an, an+1), . . . , [an+p−1, an+p)
such that for every q ∈ {1, . . . , p}, αiq(t) = 1 if t ∈ [an+q−1, an+q).

We introduce now the following assumptions:

Assumption 2.4 (Dwell-time). We shall say that the mode i satisfies the condition of dwell
time if there exists a positive number τ and an integer p such that for every compatible sequence
(i1, . . . , ip) there exists an index q ∈ {1, . . . , p} with iq = i and, if [an, an+1), . . . , [an+p−1, an+p)
is the related sequence of consecutive intervals, an+q − an+q−1 > τ .

We state the following result concerning the modes satisfying the dwell-time condition.

Theorem 2.5. If assumptions 2.4 is satisfied for the mode i, then every point of the ω-limit
set Ω(x0) belongs to the kernel of matrix Ai.

Proof. Without loss of generality, we may assume that the dwell time assumption is satisfied
for mode i = 1. The solution of system (1.3) at time t ∈ [an, an+1) reads

x(t) = e(t−an) Ain+1 ◦ eδn Ain ◦ · · · ◦ eδ1 Ai1 (x0).

Let ℓ ∈ Ω(x0), there exists a sequence (tk)k∈N such that ℓ = limk→+∞ x(tk). For every k, tk
belongs to an interval [ank

, ank+1) and there exists an interval [amk
, amk+1) with amk

> ank
and

such that α1(t) = 1 if t ∈ [amk
, amk+1) and δmk+1 > τ . Due to Assumption 2.4, the sequence

of integers (mk − nk)k>1 is bounded and so even if we have to work with a subsequence of
(tk)k∈N, we can assume that

• the difference mk − nk is constant (positive), we denote by r this difference,

• the sequence of switches from tk to amk
is independent of k, that is to say, there exists

a finite sequence Ai1 , . . . , Air of matrices taken in {A1, . . . , AN} such that for every k

x(amk
) = eu

r
k

Air ◦ · · · ◦ eu
1
k

Ai1 (x(tk)),

• for each m = 1, . . . , r, or the sequence (um
k )k∈N tends to zero as k tends to infinity either

there exists υm > 0 such that um
k > υm for all k.

We first prove by induction on r that limk→+∞ x(amk
) = ℓ. If r = 1, we have x(amk

) =

eu
1
k

Ai1 (x(tk)). If limk→+∞ u1
k = 0, the result is obvious, if not, write

x(tk) = pi1(ℓ) + qi1(ℓ) + x̄k,

so we have
eu

1
k

Ai1 (x(tk)) = eu
1
k

Ai1 (pi1(ℓ)) + qi1(ℓ) + eu
1
k

Ai1 (x̄k),

and, as V i1
1 and V i1

2 are orthogonal

‖eu
1
k

Ai1 (x(tk))‖2 = ‖eu
1
k

Ai1 (pi1(ℓ))‖
2 + ‖qi1(ℓ)‖

2 + 2〈eu
1
k

Ai1 (ℓ), eu
1
k

Ai1 (x̄k)〉 + ‖eu
1
k

Ai1 (x̄k)‖
2.

Suppose, to reach a contradiction, that pi1(ℓ) 6= 0. Then, as u1
k > υ1, there exists ρ ∈ (0, 1)

such that ‖eu
1
k

Ai1 (pi1(ℓ))‖ < ρ‖pi1(ℓ)‖. Taking into account that ‖eu
1
k

Ai1‖ 6 1, we get

‖eu
1
k

Ai1 (x(tk))‖
2 < ρ2‖pi1(ℓ)‖

2 + ‖qi1(ℓ)‖
2 + 2‖ℓ‖ ‖x̄k‖ + ‖x̄k‖

2. (2.4)
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Choose ε > 0, as limk→+∞ x̄k = 0, we have

‖eu
1
k

Ai1 (x(tk))‖
2 < ρ2‖pi1(ℓ)‖

2 + ‖qi1(ℓ)‖
2 + 2ε‖ℓ‖ + ε2

if k is large enough. The right hand side of (2.4) can be made less than ‖ℓ‖2−ε2 provided that
ε is chosen such that 2ε2 +2ε ‖ℓ‖ < (1−ρ2)‖pi1(ℓ)‖

2. But in this case, we could find an element
in Ω(x0) (a cluster point of the sequence (x(amk

))k>1) whose norm is less than ‖ℓ‖, which is

impossible. Hence, pi1(ℓ) = 0 which implies ℓ = qi1(ℓ) and eu
1
k

Ai1 (x(tk)) = ℓ + eu
1
k

Ai1 (x̄k),

since ‖eu
1
k

Ai1‖ 6 1 and limk→+∞ x̄k = 0, we get the result. So, we can write

x(amk
) = eu

r
k

Air ◦ · · · ◦ eu
2
k

Ai2 (x(ank
))

with limk→+∞ x(ank
) = ℓ, applying the induction hypothesis, we conclude that limk→+∞ x(amk

) =
ℓ. Now, we have

x(amk+1) = e(amk+1−amk
) A1(x(amk

))

with amk+1 −amk
> τ . The argument used above in the case where the sequence (u1

k)k∈N does
not converge to zero proves that p1(ℓ) = 0, i.e., ℓ ∈ kerA1. �

An easy consequence of Theorem 2.5 is stated in the following corollary.

Corollary 2.6. If system (1.3) satisfies Assumption 2.1 and if every mode satisfies assump-
tion 2.4, then x(t), the solution of system (1.3), tends to zero as t tends to infinity.

Proof. According to Theorem 2.5 and Assumption 2.1, we have Ω(x0) ∈
⋂N

i=1 kerAi = {0}. �

At this step, we could wonder if it were possible to weaken the hypothesis of Theorem 2.5.
Consider the following hypothesis which is weaker than assumption 2.4.

Assumption 2.7 (Weak dwell-time). We shall say that the mode i satisfies the weak dwell-
time condition if there exists τ > 0 such that for every n0 ∈ N, there exists n > n0 with
αi(t) = 1 if t ∈ [an, an+1) and an+1 − an > τ .

To say that assumption 2.7 is satisfied amounts to say that the sequence of durations
during which mode i is activated does not tends to zero. As we shall see through the following
example, Assumption 2.4 cannot be replaced by Assumption 2.7 in Theorem 2.5.

Example 2.8. In the following family of eight matrices, we assume that the diagonal coeffi-
cients a11, . . . , a44 are negative, the nondiagonal coefficients aij (i 6= j) being nonzero.

A1 =




0 −1 a13 0
1 0 a23 0

−a13 −a23 a33 0
0 0 0 0


 , A2 =




0 −1 −a13 0
1 0 −a23 0
a13 a23 a33 0
0 0 0 0


 ,

A3 =




0 0 0 0
0 0 −1 a24

0 1 0 a34

0 −a24 −a34 a44


 , A4 =




0 0 0 0
0 0 −1 −a24

0 1 0 −a34

0 a24 a34 a44


 ,

A5 =




a11 0 a13 a14

0 0 0 0
−a13 0 0 −1
−a14 0 1 0


 , A6 =




a11 0 −a13 −a14

0 0 0 0
a13 0 0 −1
a14 0 1 0


 ,
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A7 =




0 a12 0 −1
−a12 a22 0 a24

0 0 0 0
1 −a24 0 0


 , A8 =




0 −a12 0 −1
a12 a22 0 −a24

0 0 0 0
1 a24 0 0


 .

As in Example 2.2, we can easily check that these matrices satisfy Assumption 1.2. In this
example, e1, . . . , e4 will denote the vectors of the canonical basis in R

4 and R1, . . . , R4 will
denote the matrices Ri = et0 (A2i−1+A2i) (i = 1, . . . , 4). Taking t0 = π/4, we clearly have
Ri(ei) = ei+1 for i = 1, . . . , 4 (where e5 , e4). Finally, we denote by ϕi

n (i = 1, . . . , 4) the
mappings ϕi

n =
(
e(t0/n) A2i−1 ◦ e(t0/n) A2i

)n
and we notice that, following the Trotter’s formula,

we have limn→+∞ ϕi
n = Ri. Choose τ > 0 and consider the following product of matrices

P1 =
8∏

i=5

eτ A2i+4 ◦ ϕi−4
ni

◦
4∏

i=1

eτ A2i+3 ◦ ϕi
ni

where we make the convention that if j is greater than 8, matrix Aj is equal to Ar where r is
the remainder in the Euclidean division of j by 8 excepted when r = 0 in which case, Aj is
A8. We proceed as in Example 2.2. Choose ε > 0 and n1 such that ‖ϕ1

n1
(e1)−R1(e1)‖ 6 ε/4.

Then, we have
‖eτ A5 ◦ ϕ1

n1
(e1) − eτ A5 ◦R1(e1)‖ 6 ε/4

because ‖eτ A5‖ 6 1. Notice that, in this inequality, eτ A5 ◦R1(e1) = e2. Then, choose n2 such
that

‖ϕ2
n2

◦ eτ A5 ◦ ϕ1
n1

(e1) −R2 ◦ e
τ A5 ◦ ϕ1

n1
(e1)‖ 6 ε/8

and we have

‖ϕ2
n2

◦ eτ A5 ◦ ϕ1
n1

(e1) − e3‖ 6 ‖ϕ2
n2

◦ eτ A5 ◦ ϕ1
n1

(e1) −R2 ◦ e
τ A5 ◦ ϕ1

n1
(e1)‖

+ ‖R2 ◦ e
τ A5 ◦ ϕ1

n1
(e1) −R2 ◦ e

τ A5 ◦R1(e1)‖

6 ε/8 + ‖eτ A5 ◦ ϕ1
n1

(e1) − eτ A5 ◦R1(e1)‖

6 ε/8 + ε/4.

Proceeding this way, we choose n3, . . . , n8 such that ‖P1(e1)− e1‖ 6 ε
29 + · · ·+ ε

4 <
ε
2 . We then

build P2, P3, . . . in the same way as P1 and we choose the integers n9 ,n10, . . . in such a way
that ‖Pk(e1)−e1‖ 6 ε/2k. Now reasoning as in Example 2.2, we can build a switch law related
to the family of matrices A1, . . . , A8 such that x(8k(t0 + τ)) = Pk ◦ · · · ◦ P1(e1). The ω-limit
set Ω(e1) contains at last one point in the open ball B(e1, ε); this ball does not contain the
origin of R

4 if ε is chosen small enough and so x(t) does not tend to zero as t tends to infinity.
Nevertheless, every mode of this system satisfies assumption 2.7.

This example shows that in Assumption 2.4, one cannot cancel the condition on the repar-
tition of switches (excepted in the two-dimensional case as we shall see in the next section).
Nevertheless, if we make a stronger assumption on the dwell-times, we can free ourselves from
this condition; consider the following assumption.

Assumption 2.9 (Strong dwell-time). We shall say that the mode i satisfies the condition of
strong dwell time if there exists τ > 0 such that for every ni ∈ N satisfying αi|[ani

,ani+1) = 1,
we have ani+1 − ani

> τ . In other words, the sequence of durations during which the mode i
is activated has a positive inferior limit.

We have the following result.
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Theorem 2.10. If system (1.3) satisfies Assumptions 2.1 and 2.9, then Ω(x0) = {0} for every
x0 ∈ R

d.

Proof. We let tn =
∑n

k=1 δk. As the solution x(t) of (1.3) is bounded, to get the result, it is
sufficient to prove that Ω(x0) = {0}. To this end, we have only to prove that every cluster
point of the sequence (x(tn))n∈N

is equal to zero. Let ℓ be such a point, then, ℓ is the limit

of a subsequence (x(tnk
))k∈N

of (x(tn))n∈N
. Write x(tnk

) = eδnk
A(nk)(x(tnk−1)), where A(nk)

is a matrix in family F . There exists an index i ∈ {1, . . . , N} such that, for infinitely many
indices nk, we have A(nk) = Ai. Even if we have to renumber the matrices of family F , we
can suppose that i = 1 and, even if we have to work with a subsequence of (x(tnk

))k∈N
, we can

write x(tnk
) = eδnk

A1(x(tnk−1)). We write x(tnk−1) = ℓ+ x̄k and, in exactly the same manner
as in the proof of Theorem 2.5, we prove that p1(ℓ) = 0.

We now make the following induction hypothesis: p1(ℓ) = · · · = pr−1(ℓ) = 0. For infinitely
many indices k, we can find in the sequence (x(tnk

))k∈N
, terms which write x(tmk

) = eδmk
Ar ◦

ϕk(x(tnk−1)) where ϕk is a product of exponentials of matrices taken in the set {A1, . . . , Ar−1}.
Writing x(tnk−1) = ℓ+ x̄k, we have ϕk(x(tnk−1)) = ℓ+ ϕk(x̄k) because ℓ ∈

⋂r−1
i=1 kerAi. Thus,

x(tmk
) = eδmk

Ar(ℓ) + eδmk
Ar(ϕk(x̄k)). Since limk→+∞ eδmk

Ar(ϕk(x̄k)) = 0, if we suppose that
pr(ℓ) 6= 0, we are led to a contradiction in the same way as above. We have thus proved that
p1(ℓ) = · · · = pN (ℓ) = 0, or equivalently, that ℓ ∈

⋂N
i=1 kerAi. According to Assumption 2.1,

this set is {0} and so ℓ = 0. �

3 Some properties of the ω-limit set

3.1 General considerations

In this section, we introduce the following new assumption.

Assumption 3.1 (Permanent excitation). We say that the mode i satisfies the permanent
excitation hypothesis if λ({t > 0 | αi(t) = 1}) = +∞.

We begin by proving an easy result.

Proposition 3.2. A control law which satisfies Assumption 3.1 for every mode being given,
the set of points x0 such that Ω(x0) is equal to {0} is a subspace of R

d with dimension at least
one. This implies that the set of points x0 such that Ω(x0) does not reduce to {0} is either
empty or open and dense.

Proof. Obviously the set of points x0 such that Ω(x0) = {0} is a subspace of R
d; moreover,

x(t, x0), the solution of (1.3) issued from x0 can be written as x(t, x0) = ϕ(t)(x0) where ϕ(t)
is a product of exponentials of matrices taken in the set {A1, . . . , AN}. The determinant of
ϕ(t) is equal to detϕ(t) = eτ1(t) tr A1 · · · eτN (t) tr AN , where τi(t) denotes the measure of the set
{0 6 s 6 t | αi(s) = 1} (trAi < 0). Due to Assumption 3.1, we have limt→+∞ τi(t) = +∞,
and so limt→+∞ detϕ(t) = 0. As, ϕ(t) is bounded, we can find a sequence (tn)n∈N such that
the limit limn→+∞ ϕ(tn) exists. Let us denote by φ this limit, as detφ = 0, there exists x0 6= 0
such that φ(x0) = 0; for this x0, we clearly have Ω(x0) = {0}. �

We consider now the set M related to family F defined as

M = {x ∈ R
n | 〈Aix, x〉 = 0, i = 1, . . . , N}.

For i = 1, . . . , N , we also denote by Mi the set Mi = {x ∈ R
n | 〈Aix, x〉 = 0}. Set M can

be regarded as the intersection of the sets of zeros of quadratic forms x 7→ 〈Aix, x〉 which are
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subspaces of R
d because these quadratic forms are non positive, so M is a subspace of R

d.
Notice than M can contain a nonzero vector even if all the matrices in family F are of full
rank. For instance, consider the two matrices A1 and A2 of Example 2.2, the related set M is
M = {x ∈ R

3 | x3 = 0}.
The two following propositions state that the set of ω-limit points cannot avoid sets Mi.

Proposition 3.3. Suppose that system (1.3) satisfies Assumption 3.1 for mode i, then there
exists ℓ ∈ Ω(x0) such that 〈Aiℓ, ℓ〉 = 0 (in other words, ℓ ∈Mi).

Proof. The proof is by contradiction. Assume that for every ℓ ∈ Ω(x0), the scalar product
〈Aiℓ, ℓ〉 is nonzero, it is therefore negative. As Ω(x0) is compact, this implies that there exists
µ > 0, such that 〈Aiℓ, ℓ〉 6 −µ for every ℓ ∈ Ω(x0). We denote by [ak1

, ak1+1), [ak2
, ak2+1), . . .

the intervals of times during which the mode i is activated1. For the sake of readability, we
denote by xn the solution of (1.3) at time akn+1. We have

xn = eδkn Aj ◦ ϕn(xn−1) (3.1)

where ϕn is a product of exponentials of matrices taken in family F \ {Ai}. It follows from
‖ϕn‖ 6 1 that

‖xn‖
2 − ‖x0‖

2 =

n∑

k=1

(
‖xk‖

2 − ‖ϕk(xk−1)‖
2
)

+

n∑

k=1

(
‖ϕk(xk−1)‖

2 − ‖xk−1‖
2
)

6

n∑

k=1

(
‖xk‖

2 − ‖ϕk(xk−1)‖
2
)
. (3.2)

First, we show the result when limn→+∞ δkn
= 0. In this case, we consider the series whose

general term is

‖xn‖
2 − ‖ϕn(xn−1)‖

2 = ‖eδkn A1 ◦ ϕn(xn−1)‖
2 − ‖ϕn(xn−1)‖

2.

If n is large enough, the scalar product 〈Aixn, xn〉 is far away from zero, more precisely, there
exists n0 such that 〈Aixn, xn〉 6 −µ/2 as soon as n > n0. So, as n tends to infinity, the general
term of this series is equivalent to 2〈Aixn, xn〉δkn

which is the general term of a divergent (to
−∞) series since the series whose general term is δkn

is divergent and 〈Aixn, xn〉 6 −µ/2. So
the right-hand side of inequality (3.2) can be made less than ‖ℓ‖2 − ‖x0‖

2 if n is chosen large
enough which is a contradiction since ‖xn‖ > ‖ℓ‖ for all n.

In the case where we do not have limn→+∞ δkn
= 0, there exists τ > 0 such that for all n0,

there exists n > n0 with δkn
> τ . So, even if we have to work with a subsequence of (xn)n∈N,

in (3.1) we can assume that δkn
> τ for every index n and that the sequence (ϕn(xn−1))n∈N

is convergent with limit ℓ ∈ Ω(x0). But reasoning as in the proof of Theorem 2.5, this implies
that Aiℓ = 0 and so ℓ ∈Mi. �

We immediately deduce from Proposition 1.6 and Proposition 3.3 the following corollary.

Corollary 3.4. Suppose that there exists a mode i with Mi = {0} and which satisfies Assump-
tion 3.1, then Ω(x0) = {0}.

The next proposition tell us that each ω-limit point belongs to at least one set Mi.

1
αi(t) = 1 if t belongs to the union of these intervals
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Proposition 3.5. We assume that Assumption 3.1 is satisfied by every mode. Then, for
every ℓ ∈ Ω(x0), there exists a mode i ∈ {1, . . . , N} such that ℓ ∈ Mi. In other words, Ω(x0)
is included in the union

⋃N
i=1Mi.

Proof. If Ω(x0) is a singleton, the result is given by Proposition 3.3. If Ω(x0) is not a singleton,
let ℓ ∈ Ω(x0) and take ε > 0 such that Ω(x0) contains at least a point outside of the open
ball B(ℓ, ε). From the definition of Ω(x0), there exists a sequence of times (tn)n∈N such that
limn→∞ x(tn) = ℓ and we can assume that x(tn) ∈ B(ℓ, ε) for every n ∈ N. Denote by t′n the
number defined by t′n = inf{t > tn | x(t) ∈ ∂B(ℓ, ε)}. We claim that there exists τ > 0 such
that, for every n, t′n − tn > τ . The proof of the existence of τ is by contradiction, suppose
that for every τ > 0, there exists n0 such that t′n − tn < τ as soon as n > n0, then there exists
an increasing sequence of indices (nk)k∈N such that t′nk

− tnk
< 1/k. As x(s) is bounded and

t′nk
− tnk

tends to 0, we have

x(t′nk
) − x(tnk

) =

∫ t′nk

tnk

N∑

i=1

αi(s)Aix(s)ds →
k→∞

0,

which implies that x(t′nk
) tends to ℓ, which contradicts the definition of the sequence (t′n)n∈N.

Assume now that for every i ∈ {1, . . . , N}, we have 〈Aiℓ, ℓ〉 < 0, then there exists µ > 0 such
that 〈Aiℓ, ℓ〉 < −µ and, if ε is chosen small enough, we have 〈Aix(t), x(t)〉 < −µ/2 for every t
in the union of intervals [tn, t

′
n). Hence,

‖x(t′n)‖2 − ‖x(tn)‖2 =

∫ t′n

tn

2

N∑

i=1

αi(t)〈Aix(t), x(t)〉dt

6 −µ(t′n − tn)

6 −µτ. (3.3)

Even if we have to work with a subsequence of (x(tn))n∈N
, we can assume that tn−1 < t′n−1 < tn.

In this case, ‖x(tk)‖ 6 ‖x(t′k−1)‖ and we deduce from (3.3) that

‖x(t′n)‖2 − ‖x(t0)‖
2 =

n∑

k=0

(
‖x(t′k)‖2 − ‖x(tk)‖

2
)

+

n∑

k=1

(
‖x(tk)‖2 − ‖x(t′k−1)‖

2
)

6

n∑

k=0

(
‖x(t′k)‖2 − ‖x(tk)‖

2
)

6 −(n+ 1)µτ,

which leads to ‖x(t′n)‖2 negative if n is chosen large enough which is impossible. �

We prove here a proposition announced in the previous section and stating a result of
convergence to zero in the two-dimensional case.

Proposition 3.6. In the two-dimensional case (d = 2), if every mode of system (1.3) satisfies
Assumptions 2.1 and 2.7, then Ω(x0) = {0} for every x0 ∈ R

2.

Proof. Take x0 ∈ R
2, the ω-limit set Ω(x0) is included in

⋃N
i=1Mi. Due to Assumption 1.2,

the sets Mi are zero or one-dimensional subspaces of R
2, so their intersection with S1 gives a

set of isolated points. Assume that Ω(x0) is not {0}, then it is included on a circle with center
the origin and radius r > 0; moreover due to Assumption 3.1, it is also included in the union⋃N

i=1Mi. Therefore Ω(x0) is included in a finite set of points located on the circle. As Ω(x0)
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is a connected set, we deduce that Ω(x0) is a single point that we shall denote by ℓ. Take
i0 ∈ {1, . . . , N}, due to Assumption 2.7, we can find a sequence (tn)n∈N tending to infinity
such that we can write x(tn) = eτn Ai0 (x(tn − τn)) with τn > τ > 0. Reasoning as in the proof
of Theorem 2.5, we deduce that the limit of x(tn − τn) as n tends to infinity belongs to kerAi0

but this limit is equal to ℓ. So we proved that ℓ ∈
⋂N

i=1 kerAi and as this intersection is {0}
(Assumption 2.1) we have also ℓ = 0. �

In order to give a more precise description of the ω-limit set, we shall assume that the
different modes are well distributed. Roughly speaking, this means that the contribution of a
given mode cannot be neglected with respect to the contributions of the other modes. Below
is the precise definition.

Assumption 3.7 (Persistent excitation). We shall say that the mode i satisfies the “persistent
excitation” assumption if, for every sequence of intervals ([tn, t

′
n])n∈N such that

• the limit of tn as n tends to infinity is equal to infinity;

• there exists τ > 0, such that t′n − tn > τ for every n > 0;

• the limit of the number of commutations occurring in the interval [tn, t
′
n] tends to infinity

as n tends to infinity,

we have lim infn→+∞ λ{t ∈ [tn, t
′
n] | αi(t) = 1} > 0.

Proposition 3.8. Assume that Assumptions 3.1 and 3.7 are satisfied by the mode i, then
Ω(x0) ⊂Mi.

Proof. Let ℓ ∈ Ω(x0), if Ω(x0) reduces to ℓ, the result follows from Proposition 3.3; if not,
we shall argue by contradiction. So, we suppose that there exists ℓ ∈ Ω(x0) such that
〈Aiℓ, ℓ〉 < −µ < 0. As in the proof of Proposition 3.5, we take a sequence (tn)n∈N such that
limn→+∞ x(tn) = ℓ, we choose ε > 0 and we define the sequence (t′n)n∈N by t′n = inf{t > tn |
‖x(t′n)− ℓ‖ = ε}. The positive number ε is chosen small enough to have 〈Aix(t), x(t)〉 6 −µ/2
for every t ∈ [tn, t

′
n] and, up to a subsequence of (t′n)n∈N, we assume that the limit, denoted

by ℓ′, of the sequence (x(t′n))n>1 exists. As in the proof of Proposition 3.5, we can show that
there exists τ > 0 with t′n − tn > τ .

Moreover, the number of commutations occurring in the interval [tn, t
′
n] cannot be bounded.

If it were the case, up to a subsequence of ([tn, t
′
n])n∈N, we could assume that there exists

a finite sequence (i1, . . . , ir) of indices taken in {1, . . . , N} such that x(t′n) = eu
1
nAi1 ◦ · · · ◦

eu
r
nAirx(tn), with u1

n, . . . , u
r
n > 0. As in the proof of Theorem 2.5, in this case, we could show

that limn→+∞ x(t′n) = ℓ which is impossible since ‖ℓ′ − ℓ‖ = ε. So, we can suppose that the
limit, as n tends to infinity, of the number of commutations occurring in the interval [tn, t

′
n] is

infinite. Therefore, denting by Jn the set Jn = {t ∈ [tn, t
′
n] | αi(t) = 1}, from Assumption 3.7,

we have lim infn→+∞ λ(Jn) = τi > 0. Now we have

‖x(t′n)‖2 − ‖x(tn)‖2 = 2

∫ t′n

tn

N∑

j=1

αj(s)〈Ajx(s), x(s)〉dt

6 2

∫

Jn

〈Aix(s), x(s)〉dt

6 −µλ(Jn). (3.4)

11



But λ(Jn) > τi/2 if n is large enough and so from (3.4), we get

‖x(t′n)‖2 − ‖x(tn)‖2 6 −
τiµ

2
(3.5)

for n large enough. Passing to the limit in (3.5), we get ‖ℓ′‖2−‖ℓ‖2 6 − τiµ
2 which is impossible

since ‖ℓ′‖ = ‖ℓ‖. �

From Proposition 3.8 we deduce the following easy consequence.

Corollary 3.9. If Assumption 3.7 is satisfied and if M = {0}, then x(t), the solution of
system (1.3), tends to zero as t tends to infinity.

Proof. If Assumption 3.7 is satisfied, then Ω(x0) reduces to {0}. �

Remark. We may wonder if we could weaken the hypothesis in Proposition 3.8 by assuming only
the permanent excitation (Assumption 3.1). The following example gives a negative answer to
this question.

Example 3.10. In this example, we take the matrices A1 and A2 from Example 2.2 as well
as the following matrix A3 defined as

A3 =



−1 0 0
0 0 0
0 0 0


 .

Put ψn = (et0 A1/n ◦ et0 A2/n ◦ et0 A3/n2

)n with t0 = π/4. We have limn→+∞ ψn = et0 (A1+A2).
Given integers n1, . . . , n4, set

Θ(n1, n2, n3, n4) = ψn4
◦ et0 A3 ◦ ψn3

◦ ψn2
◦ et0 A3 ◦ ψn1

.

A positive number ε being given, proceeding as in Example 2.2, one can prove that it is possible
to choose the integers n1, . . . , n4 in such a way that ‖Θ(n1, n2, n3, n4)(e0) − e0‖ 6 ε/2; more
generally, we can find a sequence (nk)k∈N such that

‖Θ(n4k+1, n4k+2, n4k+3, n4k) ◦ · · · ◦ Θ(n1, n2, n3, n4)(e0) − e0‖ 6
ε

2
+ · · · +

ε

2k+1
. (3.6)

We choose now a switch law such that the solution of (1.3) (with x0 = e0) is such that

x

(
6(k + 1)t0 +

4k+4∑

i=1

t0/ni

)
= Θ(n4k+1, n4k+2, n4k+3, n4k) ◦ · · · ◦ Θ(n1, n2, n3, n4)(e0).

For this switch law, inequality (3.6) shows that there exists an ω-limit point ℓ in the open ball
B(e0, ε) and, if ε is chosen small enough this limit point is such that 〈A3ℓ, ℓ〉 6= 0.

3.2 What happens when Ω(x0) is a singleton

In this section, we freely use the convenient chronological calculus notation which allows an
exponentiel representation of flows and for which we refer to [1, Chapter 2].

The following result is well-known, but for the convenience of the reader we shall supply a
simple proof.

Lemma 3.11. Let (ϕn)n∈N be a sequence in L∞(R+,B) where B is a bounded subset of R
N .

If ϕn
∗
⇀ ϕ, then ϕ takes values in co(B) (the closed convex hull of B) for almost every t in R+.
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Proof. Let L denote the set of affine forms of R
N with rational coefficients. Let LB = {L ∈

L | L(B) ⊂ R+}. We have co(B) =
⋂

L∈LB L−1(R+). Take L ∈ LB. Since ϕn takes values in B,∫
A L(ϕn(t))dt > 0, for any measurable subset A ⊂ R+. Since ϕn

∗
⇀ ϕ and L is continuous, we

get for any measurable set A ⊂ R+

∫

A
L (ϕ(t)) dt = L

(∫

A
ϕ(t)dt

)
= lim

n→+∞
L

(∫

A
ϕn(t)dt

)
= lim

n→+∞

∫

A
L (ϕn(t)) dt > 0,

which implies that L ◦ ϕ is almost surely nonnegative on R+. In other words, λ{t > 0 |
L ◦ ϕ(t) < 0} = 0 for every L ∈ LB. Using the countability of LB, it follows that

λ({t > 0 | ϕ(t) /∈ co(B)}) = λ
({

∪L∈LB(L ◦ ϕ)−1((−∞, 0))
} )

6
∑

L∈LB

λ ({t > 0 | L ◦ ϕ(t) < 0}) = 0,

or, equivalently that ϕ(t) ∈ co(B) almost surely. �

We denote by ∆>0 and ∆>0 the sets defined by

∆>0 =
{
α ∈ R

N
+ | α1 + · · · + αN = 1

}
,

and
∆>0 = {α ∈ ∆>0 | αi > 0, ∀i = 1, . . . , N} .

As consequence of Lemma 3.11 to switched linear system we have the following results. We
begin with proving the following proposition.

Proposition 3.12. If Ω(x0) = ℓ, then there exists α ∈ ∆>0 such that
∑N

i=1 αiAiℓ = 0.

Proof. Let B = {e1, . . . , eN} be the canonical basis of R
N . Let (tn)n∈N be a sequence of positive

numbers tending to infinity. Define β ∈ L∞(R+,B) by β(t) = ei if α(t) = i. Set ϕn(t) =
β|[tn,tn+1](n + t). For all n > 1, we have ϕn ∈ L∞(R+,B). It follows from Alaoglu’s theorem
(see e.g. [7, Theorem III.15]) and Lemma 3.11 that ϕn admits a converging subsequense

ϕnk

∗
⇀ ϕ ∈ L∞(R+, co(B)). Thus, ϕ(t) =

∑N
k=1 αi(t)ei, where the αi(·)’s are non negative

measurable functions. To each ϕnk
corresponds a nonautonomus vector field Xnk

t defined by

Xnk
t (x) =

N∑

i=1

〈ϕnk
(t), ei〉Aix. (3.7)

Consequently, for every x ∈ R
d, Xnk

· (x)
∗
⇀

k→∞
X·(x) =

∑N
i=1 αi(·)Aix, which implies in partic-

ular, that for every t > 0, ∫ t

0
Xnk

s ds →
k→∞

∫ t

0
Xsds. (3.8)

It is easy to see that this convergence is indeed uniform with respect to (t, x) on every compact
subset of R+ ×R

d (we prove this fact in Lemma 3.13 after the present proof), and because the
Xnk

t are linear (in x), the same property of uniform convergence holds for all derivatives with
respect to x. Hence (see [1, Lemma 8.10]),

−→
exp

∫ t

0
Xnk

s ds →
k→∞

−→
exp

∫ t

0
Xsds,

2 (3.9)

2If Yt is a nonautonomous vector field,
−→
exp

R t

0
Ysds stands for its flow (for details on this notation see [1,

Chapter 2]).
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uniformly with respect to (t, x) on every compact subset of R+ × R
d. In particular, it is true

for the compact K = [0, t] × {x(s) | s ∈ R+}. In other words,

∀ ε > 0, ∃ k0 ∈ N |

∥∥∥∥
−→
exp

∫ t

0
Xsds(z) −

−→
exp

∫ t

0
Xnk

s ds(z)

∥∥∥∥ < ε, (3.10)

for all k > k0 and all z ∈ K. In particular, for z = x(tnk
),

∥∥∥∥
−→
exp

∫ t

0
Xsds(x(tnk

)) −
−→
exp

∫ t

0
Xnk

s ds(x(tnk
))

∥∥∥∥

=

∥∥∥∥
−→
exp

∫ t

0
Xsds(x(tnk

)) − x(tnk
+ t)

∥∥∥∥ < ε. (3.11)

and passing to the limit as k goes to infinity in the previous equation, we get that for every ε,
t > 0, ‖

−→
exp

∫ t
0 Xsds(ℓ)− ℓ‖ < ε, or equivalently that, for every t > 0,

−→
exp

∫ t
0 Xsds(ℓ) = ℓ, from

which follows the result after differentiating with respect to t. �

Lemma 3.13. The convergence in relation (3.8) is uniform with respect to (t, x) on every
compact subset of R+ × R

d.

Proof. In view of relation (3.7), and because the mappings x 7→ Aix are linear, it is sufficient

to show that the convergence (which holds true since ϕnk

∗
⇀ ϕ)

∫ T

0
ϕnk

(s)ds →
k→∞

∫ T

0
ϕ(s)ds

is uniform with respect to t on [0, T ]. Fix ε > 0 and p ∈ N such that 5
2p 6 ε. Set Iq

p =

[ q
pT,

q+1
p T [. Since ϕnk

∗
⇀ ϕ, there exists k0(p, q) such that

∣∣∣∣
∫ T

0
χ

Iq
p
(s)(ϕnp − ϕ)(s)ds

∣∣∣∣ 6
1

k2i+1
, ∀ k > k0(p, q).

Let k0 = max{k0(p, 1), . . . , k0(p, p)}. Denote by qt the index for which t ∈ Iqt
p . For all k > k0,

we have,

∣∣∣∣
∫ t

0
(ϕnk

− ϕ)(s)ds

∣∣∣∣ 6

p−1∑

q=0

∣∣∣∣
∫ t

0
χ

Iq
p
(s)(ϕnk

− ϕ)(s)ds

∣∣∣∣

=
∑

q 6=qt

∣∣∣∣
∫ T

0
χ

Iq
p
(s)(ϕnk

− ϕ)(s)ds

∣∣∣∣+
∣∣∣∣
∫ t

0
(ϕnk

− ϕ)(s)ds

∣∣∣∣

6

p−1∑

q=0

∣∣∣∣
∫ T

0
χ

Iq
p
(s)(ϕnk

− ϕ)(s)ds

∣∣∣∣+
2

p
‖ϕnk

− ϕ‖∞ 6 ε,

from which the uniform convergence (3.8) follows. �

Definition 3.14. We say that a subset I ∈ {1, . . . , N} is minimal (with respect to ℓ) if there
exists a unique α = (α0

1, . . . , α
0
n) ∈ ∆>0 such that

∑
i∈I α

0
iAiℓ = 0.

We now prove that Assumption 3.7 (and thus Assumption 3.1) is necessary under the
strong condition of minimality (whose definition is below) of the set {1, . . . , N}.
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Theorem 3.15. Assume that Ω(x0) = {ℓ}. If {1, . . . , N} is minimal (with respect to ℓ), then
Assumption 3.7 is satisfied.

Proof. Let α0 = (α0
1, . . . , α

0
N ) be the unique element of ∆>0 such that

∑N
i=1 α

0
iAiℓ = 0. Ac-

cording to Lemma 3.12, there exists α ∈ ∆>0 such that
∑N

i=1 αiAiℓ = 0. It follows from the
minimality of {1, . . . , N} that α = α0. In particular, αi > 0 for all i ∈ {1, . . . , N}. Keeping
the same notation as in the proof of Lemma 3.12, we thus have proved that all the (weak
star) convergent subsequences of ϕn converge to

∑N
i=1 α

0
i ei. Consequently, ϕn converges to∑N

i=1 α
0
i ei. In particular, 〈ϕn, ei〉

∗
⇀ α0

i for all i ∈ {1, . . . , N}. Consequently, taking tn = n,
we have,

λ ({t ∈ [n, n+ 1] | αi(t) = 1}) =

∫ n+1

n
〈β(s), ei〉 ds =

∫ 1

0
〈ϕn, ei〉 → α0

i > 0.

This computation proves that the total time of activation of the mode i on an interval [tn, t
′
n]

(where limn→+∞ tn = +∞) is equivalent, as n → +∞, to α0
i (t

′
n − tn), consequently, Assump-

tion 3.7 is satisfied. �

3.3 Further remarks

In subsection 3.1, we have seen that, under Assumptions 3.1, the set Ω(x0) is included in⋃N
i=1Mi; moreover in subsection 3.2, we have seen that, in the case where Ω(x0) reduces to an

unique point ℓ, there exists a convex combination of the vectors Aiℓ which vanishes. In this
subsection, we shall see what we can say of the convex combinations of the Aiℓ’s in the general
case. We begin with a definition.

Definition 3.16. We shall say that ℓ is an ordinary point of
⋃N

i=1Mi if, whenever we have i1
and i2 in Iℓ, either Mi1 ⊂Mi2 or Mi2 ⊂Mi1 . We shall say that ℓ ∈

⋃N
i=1Mi is an extraordinary

point if it is not ordinary.

Notice that if ℓ ∈
⋃N

i=1Mi is an ordinary point, there exists an index iℓ such that
⋃

i∈Iℓ
Mi =

Miℓ . Clearly, the set of ordinary points of
⋃N

i=1Mi is an open and dense subset of
⋃N

i=1Mi.

Moreover, if ℓ is an ordinary point of
⋃N

i=1Mi, there exists an open neighborhood U of ℓ such

that U ∩
⋃N

i=1Mi = U ∩
⋃

i∈Iℓ
Mi. The following proposition gives an additional condition to

be satisfied by a point ℓ in order it belongs to Ω(x0).

Proposition 3.17. Assume that ℓ ∈ Ω(x0). There exists α ∈ ∆>0 such that

1. if ℓ is an ordinary point,
∑N

i=1 αiAiℓ ∈
⋃

i∈Iℓ
Mi,

2. if ℓ is an extraordinary point, there exists I ′ℓ ⊂ Iℓ such that
∑N

i=1 αiAiℓ ∈
⋂

i∈I′
ℓ
Mi.

Proof. Assume first that ℓ is an ordinary point of Ω(x0). Assume that, for every α ∈ ∆>0,
the sum

∑N
i=1 αiAiℓ does not belong to

⋃
i∈Iℓ

Mi, then there exists a vector u orthogonal to⋃
i∈Iℓ

Mi = Miℓ and a positive constant c, such that 〈Aiℓ, u〉 > c > 0 for every i ∈ Iℓ. Choose

U = B(ℓ, r) a small enough open ball around ℓ such that U ∩
⋃N

i=1Mi = U ∩
⋃

i∈Iℓ
Mi and

〈Aiℓ
′, u〉 > c/2 for every ℓ′ ∈ U ∩

⋃
i∈Iℓ

Mi. There exists a sequence (tn)n∈N tending to infinity
such that limn→+∞ x(tn) = ℓ and x(tn) ∈ B(ℓ, r/2) for every n ∈ N.

If Ω(x0) reduces to ℓ, put τn = 1. Since limn→+∞ x(tn + τn) = ℓ, x(tn + τn) ∈ B(ℓ, r/2)
if the index n is large enough. If Ω(x0) does not reduce to ℓ, there exists an ω-limit point
outside of the ball B(ℓ, r) if r is chosen small enough. In this last case, we choose τn = inf{t >
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tn | x(t) ∈ ∂B(ℓ, r/2)} which is well defined for every index n. In any case, the sequence
(x(tn + τn))n∈N being bounded, we can assume that it converges to ℓ̄ ∈ U . We have

〈x(tn + τn) − x(tn), u〉 =

∫ tn+τn

tn

N∑

i=1

αi(s)〈Aix(s), u〉ds >
c

2
τn, (3.12)

if n is large enough. If ℓ = ℓ̄, put τn = 1 for every index n. If ℓ̄ 6= ℓ, as we cannot have
lim infn→+∞ τn = 0, there exists τ > 0 such that τn > τ as soon as index n is large enough, so
from (3.12), we deduce

c

2
τ 6 〈x(tn + τn) − x(tn), u〉. (3.13)

As ℓ̄ ∈
⋃

i∈Iℓ
Mi, the limit of the right-hand side of (3.13) is 0, which leads to a contradiction.

Assume now that ℓ is an extraordinary point in
⋃N

i=1Mi, if ℓ is the limit of a sequence
(ℓk)k∈N of ordinary points, we can assume that the sets of indices Iℓk

are all equal to a set
I0 ⊂ {1, . . . , N}. So, there exists a sequence (αℓk)k∈N of elements of ∆>0 such that

N∑

i=1

αℓk

i Aiℓk ∈
⋃

i∈I0

Mi. (3.14)

Now, as ∆>0 is compact, we can suppose that the sequence (αℓk)k∈N converges to α ∈ ∆>0

and equality (3.14) implies
∑N

i=1 αiAiℓ ∈
⋃

i∈I0
Mi. If there exists an open neighborhood U of

ℓ such that U ∩
⋃N

i=1Mi is constituted by extraordinary points, let (ℓk)k∈N be a sequence of
extraordinary points tending to ℓ, we can assume that all the subsets of indices Iℓk

are equal
to I0 and we can also assume that all the ℓk as well as ℓ belong to a same intersection of
subspaces

⋂
i∈I0

Mi, reasoning as in the first part of this proof, we get the result stated in the
proposition. �

3.4 Nonconvergence to zero of the switched system under some weak hy-

pothesis

The next two results show that Assumption 3.7 is not sufficient to ensure the converge to zero
of system (1.3) when the space M of non detectability is not reduced to zero.

Proposition 3.18. Let ℓ ∈ M \ {0}. Suppose that there exists α = (α1, · · · , αN ) ∈ ∆>0 such
that

∑N
i=1 αiAiℓ = 0. Then, there exists a trajectory satisfying Assumption 3.7 which does not

converge to zero.

Proof. Let (α1, . . . , αN ) ∈ ∆>0 be such that
∑N

i=1 αiAiℓ = 0. For any fixed t ∈ [0, 1] define
the linear map Φt = etαN AN ◦ · · · ◦ etα1A1 . The mapping t 7→ Φt(ℓ) has the Taylor expansion

Φt(ℓ) = Φ0(ℓ) + t
d

dt
Φt(ℓ)

∣∣∣
t=0

+ t2vt = ℓ+ t

N∑

i=1

αiAiℓ+ t2vt = ℓ+ t2vt,

where the vector vt satisfies vt = O(1) since [0, 1] is a compact interval. The vector vt is
thus bounded, i.e., there exists v0 such that ‖vt‖ 6 ‖v0‖ for all t ∈ [0, 1], which implies that
‖Φt(ℓ) − ℓ‖ 6 t2‖v0‖. Let (tn)n∈N be a sequence in [0, 1]. We have

Φtn+1 ◦ Φtn(ℓ) = Φtn+1(ℓ+ t2nvtn) = ℓ+ t2n+1vtn+1
+ t2nΦtn+1(vtn).

Since ‖Φt(v)‖ 6 ‖v‖, we have

‖Φtn+1 ◦ Φtn(ℓ) − ℓ‖ 6 t2n+1‖vtn+1
‖ + t2n‖Φ

tn+1(vtn)‖ 6 (t2n+1 + t2n)‖v0‖.
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Put Φp,q = Φtq ◦ · · · ◦ Φtp . By induction, we get, for q > p, ‖Φp,q(ℓ) − ℓ‖ 6 ‖v0‖
∑q

n=p t
2
n,

and letting q go to infinity leads to limq→+∞ ‖Φp,q(ℓ) − ℓ‖ 6 ‖v0‖
∑∞

n=p t
2
n. As the Φp,q’s are

equibounded, we can select a converging subsequence Φp,qk
. Set Ψp = limk→+∞ Φp,qk

. Now,
taking (for example) tn = 1

n and p sufficiently large, the above inequality implies that

∀ ε > 0 ∃ pε | ∀ p > pε ‖Ψp(ℓ) − ℓ‖ 6 ε, (3.15)

which shows in particular that Ψp(ℓ) 6= 0. Moreover, because α ∈ ∆>0, the constructed
trajectory satisfies Assumption 3.7. �

Proposition 3.19. Suppose that there exists α = (α1, · · · , αN ) ∈ ∆>0 such that M ⊂
ker
∑N

i=1 αiAi. Then, for every ℓ ∈ M , there exists a trajectory, satisfying the permanent
excitation and the persistent excitation assumptions, and such that ℓ ∈ Ω(x0).

Proof. Let (α1, . . . , αN ) ∈ ∆>0 be such that M ⊂ ker
∑N

i=1 αiAi and let Ψp be defined as in
the proof of Theorem 3.18 according to which it remains to show that for any point in M ,
there exists a trajectory that converges to this point. Because M ⊂ ker

∑N
i=1 αiAi, relation

(3.15) can be rewritten as

∀ ℓ ∈M ∀ ε > 0 ∃ pε | ∀ p > pε ‖Ψp(ℓ) − ℓ‖ 6 ε. (3.16)

To get the result it is sufficient to show that there exists a p such that the image by Ψp of
an open ball in M centered at the origin contains an open ball. Let SM be the unit sphere
of M that is the boundary of the open unit ball BM . Let 0 < ε < 1. Since all mappings Φt

are Lipschitzian with constant one, all mappings Ψp Lipschitzian with constant one. Thus the
family (Ψp)p>0 is equicontinuous. Relation (3.16) indicates that as p goes to infinity, Ψp→Id|M ,
pointwise, thus uniformly. Consequently, there exists p0 such that ‖Ψp0

(ℓ) − ℓ‖ < ε holds for
all ℓ ∈ SM from which it follows that BM (0, 1 − ε) ⊂ Ψp(BM ) (see [22, Lemma 7.23]). This
completes the proof. �

4 Application to the three-cell converter

In this section we apply our theoretical result to the (non linear) continuous-time model of the
multilevel converters. For simplicity, we limit ourselves to the case of the three-cell converter
although all our results are true for p-cell converters with p > 3. Some particularity of the
two-cell converter which follows from Proposition 3.6 will be explained at the end of present
section.

4.1 Description of the system

The circuit topology of the three-cell converter is represented in the picture below.

Figure 1: Sketch of the three-cell converter
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Our main goal is to estimate the voltage of the capacitors in the case where only the
current in the load is measured. Defining x(t) = (x1(t), x2(t), x3(t)) = (VC1

, VC2
, ich) as the

state vector, where VC1
, VC2

are the voltages of the corresponding capacitors, ich is the load
current and y = ich is the output, the model can be represented by a unique state equation:

{
ẋ = F (u)x+ EG(u)

y = Cx,

where E is the input voltage, u = (u1, u2, u3) ∈ {0, 1}3 is the control vector and the matrices
F (u), G(u) and C are given by

F (u) =




0 0 u2−u1

C1

0 0 u3−u2

C2

−u2−u1

L −u3−u2

L −R
L


 , G(u) =




0
0
u3

L


 , CT =




0
0
1


 .

In order to achieve our goal, we build a Luenberger switched observer based on the load current
measurement (other approaches are possible see for instance [3, 4, 5]). Such an observer takes
the form

˙̂x = F (u)x̂− L(u)(Cx̂− y) +G(u), L(u) ∈ R
3×1,

and the dynamics of the error e = x̂− x reads

ė(t) = A(u)e(t), A(u) = F (u) − L(u)C.

Using the convention i =
∑3

j=1 uj2
j−1, we can rewrite this last equation as

ẋ(t) =

8∑

i=1

αi(t)Aix(t), αi(t) ∈ {0, 1},
8∑

i=1

αi(t) = 1. (4.1)

It is easy to show that the gain matrices Li can be chosen in such a way that family {A1, . . . , A8}
satisfies Assumption 1.2 Straightforward calculations show that necessarily,

P =



p11 p12 0
p12 p22 0
0 0 p33


 , AT

i P + PAi =




0 0 αi

0 0 βi

αi βi γi


 , γi 6 0, ∀ i ∈ {1, · · · , 8}.

The spectrum of AT
i P + PAi, sp(AT

i P + PAi) = {0, 1
2(γi ±

√
4α2

i + 4β2
i + γ2

i )} is a subset

of nonpositive numbers if and only if αi = βi = 0. In particular, we have M =
⋂8

i=1Mi =
Mi = {x ∈ R

3 | x3 = 0}. When P and the gain matrices Li are chosen in such a way that
Assumption 1.2 holds, we have

Ai =
1

L




0 0 (u2 − u1)µ1 − (u3 − u2)µ3

0 0 (u3 − u2)µ2 − (u2 − u1)µ3

u1 − u2 u2 − u3 −Ri


 , Ri > 0, ∀ i ∈ {1, . . . , 8}.

with µ1 = p22p33

det P , µ2 = p11p33

det P , µ3 = p12p33

det P .

We want to know under which condition solutions to (4.1) converge to zero. All results from
Section 4 leading to convergence to zero being dwell-time based, we may wonder which type
of dwell-time hypothesis are satisfied by the multi-cell chopper. Unfortunately, the different
modes of the three-cell converter do not admit any dwell-time, only the switches do have one.
In other words, one may switch from mode Ai to mode Aj (i 6= j) in an as small time as he
wants, but has to wait a positive minimum time between two switches of the same the switch.
We thus consider the following assumption.
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Assumption 4.1 (Switch dwell-time). The time elapsed between two commutations of the
same switch has a positive inferior limit.

Notice that Assumption 4.1 implies that there exists at least one mode which satisfies the
weak dwell-time Assumption 2.7, but it turns out that its does not imply stronger assumptions
on modes.

One may naturally wonder if Assumption 4.1 implies the convergence to zero of the solution
to system (4.1). The answer is negative as we shall in the next section.

Notice moreover that although ker
∑8

i=1
1
8Ai = M (which shows that the three-cell con-

verter satisfies the hypothesis of Proposition 3.19), the counter example given by Proposition
3.19 is no more valid since the dwell-time on switches has not been taken into account.

4.2 The ω-limit set of a trajectory of the 3-cell converter observer is not

necessarily a singleton

In the present section, we construct a trajectory of the 3-cell converter observer (4.1) whose
ω-limit set is not a singleton. Moreover, we will see that the trajectory can be constructed in
such a way that 3.1 Assumptions 2.7, 3.1, 3.7 and 4.1 are satisfied.

First of all, let us rewrite system (4.1) in a simpler way. Notice that up to the change of
coordinates x→ P 1/2 and the time reparametrization t 7→ Lt (two transformation that do not
altered the topological structure of ω-limit sets), we may assume that all the Ai’s have the
form

Ai =




0 0 ai
1

0 0 ai
2

−ai
1 −ai

2 −ai
3


 , (ai

1, a
i
2) ∈ {0,±1}2 \ {±(1, 1)}, ai

3 > 0.

We now rewrite the system (4.1) using spherical coordinates z = (r, θ, ϕ) defined by:

x1 = r cos θ cosϕ

x2 = r sin θ cosϕ

x3 = r sinϕ.

It is easy to check that:

ṙ = −ai
3r sin2 ϕ (4.2)

θ̇ = (ai
2 cos θ − ai

1 sin θ) tanϕ (4.3)

ϕ̇ = −ai
3 cosϕ sinϕ− (ai

1 cos θ + ai
2 sin θ), (4.4)

which shows in particular that ṙ(t) = o(θ̇(t)) as t approaches infinity since ϕ(t) goes to zero
as t goes to infinity. This means that, approaching infinity, a trajectory of system (4.1) looses
less in norm than it can win in angular position θ, which encourages us to believe that we can
build a trajectory of system (4.1) whose ω-limit set is not a singleton.

Before beginning with the construction of the trajectory, let us fix the set K in which the
trajectory will lie and some notation. We set:

• K = [0, r0] × [θ0, θf ] × [0, ε0] ⊂ {(r, θ, ϕ) | cos θ > sin θ > 0}

• f(i, z) = −ai
1 cos θ − ai

2 sin θ, g(i, z) = ai
2 cos θ − ai

1 sin θ

• αi
1 = minz∈K {f(i, z)} , αi

2 = maxz∈K {f(i, z)}
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• α = min{z∈K, i6=7,8} {|ϕ̇(i, z)|, |g(i, z)|} , β = max{z∈K, i6=7,8} {|ϕ̇(i, z)|, |g(i, z)|}

• If (vn)n∈N is a sequence we denote by (S(v)n)n∈N the sequence of its partial sums, i.e.,
S(v)n =

∑n
k=0 vk.

Fix ε0 > 0 so small that we have α > 0, β > 0 and αi
j 6= 0 for every j ∈ {1, 2} and every

i 6= 7, 8.

1st step: Construction of the switching trajectory lying in K

We will construct here a trajectory x(·) of system (4.1) such that x(t) ∈ K for all positive time
t. In order to choose an order for the concatenation of the modes, let us make a sign table of
velocities in K.

signs in K 1 2 3 4 5 6 7 8

θ̇ + − − + + − 0 0

ϕ̇ + − + − + − 0 0

(4.5)

According to the sign table (4.5), one sees that the forward motions in θ are the flows etA1 ,
etA4 , etA5 and the backward motions in θ the flows etA2 , etA3 , etA6 . For simplicity, we will only
use the modes 2, 3, 4 and 5 for the construction of the trajectory. These modes correspond to
the matrices

A2 =




0 0 1
0 0 −1
−1 1 −a2

3


 , A3 =




0 0 0
0 0 −1
0 1 −a3

3


 , A4 =




0 0 0
0 0 1
0 −1 −a4

3


 , A5 =




0 0 −1
0 0 1
1 −1 −a5

3


 ,

From (4.4), one infers that −ai
3ϕ + αi

1 6 ϕ̇ 6 −ai
3ϕ + αi

2. Hence, as long as θ(t) stays in
[θ0, θf ], we have

yi
1(t) 6 ϕ(t) 6 yi

2(t), (4.6)

where yi
j(·, t0) is the solution of the Cauchy problem ẏ = −ai

3y + αi
j, y(t0) = ϕ(t0), i.e.,

yi
j(t, t0) = e−ai

3tϕ(t0) +
αi

j

ai
3

(
1 − e−ai

3(t−t0)
)
. (4.7)

Construction of the ε0-forward motion from θ0 to θf

Denote by Φ the inverse map of diffeomorphism (r, θ, ϕ) 7→ (r cos θ cosϕ, r sin θ cosϕ, r sinϕ).
For every i ∈ {1, · · · , 8}, according to (4.2)-(4.4), the projection onto (θ, ϕ) of the pushforward
by Φ of the field Ai is a well-defined nonlinear autonomous vector field in the variables (θ, ϕ)
which we denote by Āi. Let etĀi denote the flow of Āi and π be the projection z 7→ (θ, ϕ).

Set x0 = (r0, θ0, 0) to be the initial condition and t0 = 0 the initial time. We begin with
following the mode A5. Define τ1 = inf{t > 0 | etA5(x0) ∈ ∂K}. Necessarily, τ1 < +∞. If not,
we would have θ(t) < θf for all positive time, which, according to (4.7) and (4.6), would imply
that

ϕ(t) > y5
1(t) →

t→+∞

α5
1

a5
3

> 0,

which is impossible since ϕ(t) tends to zero as t goes to infinity.

First case: θ(τ1) = θf . For the same reason as τ1, inf{t > 0 | e−tĀ4(θf , 0) ∈ ∂π ◦
Φ(K)}, is a positive real number which implies that there must exists δ1, δ2 > 0 such that
π
(
Φ
(
eδ1A5(x0)

))
= e−δ2Ā4(θf , 0), i.e., such that π ◦ Φ

(
eδ2A4 ◦ eδ1A5(x0)

)
= (θf , 0).

Second case: θ(τ1) < θf . Then, by construction, ϕ(τ1) = ε0. In such a case, we define
τ2 by τ2 = inf{t > 0 | etA4 ◦ eτ1A5(x0) ∈ ∂K}, which belongs to R+ \ {0} for the same
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reason as τ1. As in the first case, if θ(τ2) = θf , there must exists δ1, δ2 > 0 such that

π
(
Φ
(
eδ1A5(x0)

))
= e−δ2Ā4(θf , 0). Indeed, the nonexistence of such δ1, δ2 would imply that

{e−δ2Ā4(θf , 0) | t > 0} ∩ {π ◦ Φ
(
etA4 ◦ eτ1A5(x0)

)
| t > 0} =

= {e−δ2Ā4(θf , 0) | t > 0} ∩ {etĀ4
(
π ◦ Φ

(
eτ1A5(x0)

))
| t > 0} 6= ∅,

which contradicts the uniqueness theorem for solutions to ODEs. If θ(τ2) < θf , we set δ1 = τ1.
Then, define τ3 by τ3 = inf{t > 0 | etA5 ◦eτ2A4 ◦eδ1A5(x0) ∈ ∂K}, and go back, as with τ1 to the
distinction between first and second case and so on. Step by step, we iteratively construct a
sequence (tn)n∈N = (S(δ)n)n∈N of switching times such that θ(tn) ∈ [θ0, θf ] and ϕ(tn) ∈ [0, ε0]
for all n. We next show that this process must stop. That is, we reach θf after finitely many
commutations. To show this let us first evaluate the time elapsed between two consecutive
commutations.

Evaluation of δn+1 − δn

According to the mean value theorem, for every ξ ∈ (tn, tn+1], there exists c ∈ (tn, ξ) such that
|ϕ(ξ) − ϕ(tn)| = |ϕ̇(c)| (ξ − tn). Consequently, according to the definition of α and β,

0 < α 6
|ϕ(ξ) − ϕ(tn)|

ξ − tn
6 β, ∀ ξ ∈ (tn, tn+1]. (4.8)

Suppose to reach a contradiction that θ(tn) < θf for infinitely many n. In this case, we have
|ϕ(tn+1) − ϕ(tn)| = ε0. At this point, integrating (4.3) we can evaluate the covered distance
in θ. According to (4.8) and because θ̇(t), ϕ(t) > 0, we get

|θ(t2n+1) − θ0| =

2n∑

k=0

∫ tk+1

tk

θ̇(ξ)dξ >

2n∑

k=0

∫ tk+1

tk

αϕ(ξ)dξ

>

n∑

k=0

∫ t2k+1

t2k

α |ϕ(ξ) − ϕ (t2k)| dξ (t2k = 0)

>

n∑

k=0

∫ t2k+1

t2k

α2 (ξ − tk) dξ =

n∑

k=0

α2

2
(t2k+1 − t2k)

2

> n
α2ε20
2β2

→
n→+∞

+∞, (4.9)

which contradicts the fact that θ(tn) < θf for infinitely many n. Let N0 = N(ε0) denote the
number of switching times during the constructed ε0-forward motion. Notice that N0 is even
if the initial time (t0 = 0) is counted as the first switching time. Once θf has been reached,
in the same manner as the ε0-forward motion was constructed, we use the flows etA2 and etA3

in order to construct an ε1-backward motion (with ε1 6 ε0) to go back to θ0. Step by step,
we iteratively construct a switching trajectory of system (4.1) which is a concatenation of
εn-motions where (εn)n∈N is a chosen sequence of positive numbers decreasing to zero. Let
Nn denote the number of commutations during an εn-motion. By construction, the trajectory
t 7→ x(t) satisfies for every n ∈ N:

ϕ(t2k) = 0, ∀ k ∈ N,

|ϕ (tk+1) − ϕ (tk)| = εn, ∀ k ∈ {S(N)n−1 + 1, S(N)n − 2},∣∣ϕ
(
tS(N)n

)
− ϕ

(
tS(N)n−1

)∣∣ = γn, 0 < γn 6 εn,∣∣θ
(
tS(N)n+1

)
− θ

(
tS(N)n

)∣∣ = θf − θ0,
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where γn corresponds to the value of ϕ at the last switching time of the εn-motion.

2nd step: evaluation of the number of switching times during an εn-motion
One easily repeats on the time interval of an εn-motion a computation similar to (4.9) to
conclude that

θf − θ0 = θ
(
tS(N)n+1

)
− θ

(
tS(N)n

)
>
(
(Nn/2 − 1) ε2n + γ2

n

) α2

2β2
,

from which it follows that

Nn 6 4β2(θf − θ0)/(α
2ε2n) + 2(ε2n − γ2

n)/ε2n 6 C/ε2n, (4.10)

with C =
(
4β2(θf − θ0) + 2α2ε20

)
/ε2n.

3rd step: evaluation of the loss in norm
The last thing we have to do is to evaluate the loss in norm during along the whole trajectory.
Let us first estimate the loss in norm during an εn-motion. Denote by [bn0 , b

n
Nn

] the time
intervals corresponding to this motion. Set a = max{a1

3, . . . , a
8
3}. According to (4.2), (4.8) and

(4.10), one infers that

r (bn0 ) − r
(
bnNn

)
=

∫ bn
Nn

bn
0

|ṙ(ξ)| dξ 6

∫ bn
Nn

bn
0

ar0ϕ
2(ξ)dξ

6 ar0ε
2
n

∫ bn
Nn

bn
0

dξ = ar0ε
2
n

Nn∑

k=1

∣∣bnk − bnk−1

∣∣ dξ

6 ar0ε
2
n

Nn∑

k=1

α−1
∣∣ϕ (bnk) − ϕ

(
bnk−1

)∣∣ dξ

6 Nnar0α
−1ε3n 6 C̃εn,

where C̃ = ar0C/α. Consequently, the loss in norm up to time bnNn
is

r0 − r
(
bnNn

)
=

n∑

k=0

∣∣∣r
(
bk0
)
− r
(
bkNk

)∣∣∣ 6 C̃

n∑

k=0

εn,

And, passing to the limit as n tends to infinity, we get

r0 − lim
t→+∞

r(t) = r0 − lim
n→+∞

r
(
bnNn

)
6 C̃

+∞∑

k=0

εn,

which can be chosen to be strictly less than r0. In such a case, limt→+∞ r(t) = rf 6= 0 and by
construction, ω(r(t), θ(t), ϕ(t)) = {rf} × [θ0, θf ] × {0} which is not a singleton.

4th and last step: ensuring Assumption 4.1
The constructed trajectory violates Assumption 4.1 (switch dwell-time). We show here that
we can slightly modify this trajectory so that it will respect the dwell-time on switches. Notice
that during a forward motion the commutation from mode 5 to mode 4 involves only the use
of switch u1. Thus, at every switching time t2k (k ∈ N), instead of switching back to mode
mode 5 we can switch to mode 8 using the switch u3. Since x(t2k) ∈ kerA8 = {x3 = 0},
we have eτ A8 (x(t2k)) = x(t2k) for every positive τ . Choosing τ greater than the switch
dwell-time shows that any forward ε2k-motion can be done respecting Assumption 4.1. The
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reader can easily check that the same can also be done for every backward ε2k+1-motion.
Consequently, we can assume that the constructed trajectory satisfies Assumption 4.1. Even
more, by complicating somewhat the way we construct the trajectory, we can involve each
matrix of the family {A1, . . . , A8} in such a way that the assumption of persistent excitation
(Assumption 3.7) is satisfied.

Final remark. It is easy to see that one can construct a trajectories of system (4.1) whose
ω-limit sets does not reduce to a singleton which satisfy both the weak dwell-time and the
switch dwell-time assumptions. Such trajectories can be can be constructed as soon as the
number cells in the converter is greater or equal to three. When the number of cells is smaller
or equal to two, Proposition 3.6 shows that the weak-time assumption is sufficient to insure
the convergence of the trajectories to zero.
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