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Abstract

We study the following Constrained Bipartite Fdge Coloring problem: We are
given a bipartite graph G = (U, V, F) of maximum degree [ with n vertices, in which
some of the edges have been legally colored with ¢ colors. We wish to complete the
coloring of the edges of G minimizing the total number of colors used. The problem
has been proved to be NP-hard even for bipartite graphs of maximum degree three.

Two special cases of the problem have been previously considered and tight upper
and ower bounds on the optimal number of colors were proved. The upper bounds
led to 3/2-aproximation algorithms for both problems. In this paper we present a
randomized (1.37 4+ o(1))—approximation algorithm for the general problem in the
case where max{/,c} = w(In n). Our techniques are motivated by recent works on
the Circular Arc Coloring problem and are essentially different and simpler than
the existing ones.

* A preliminary version of this paper appeared in Proceedings of the 27th Workshop
on Graph-Theoretic Concepts in Computer Science (WG 2001). This work was
partially funded by the European Union under IST FET Project CRESCCO, IST
FET Project ALCOM-FT and RTN Project ARACNE.
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1 Introduction

Konig’s classical result from graph theory [11], states that the edges of a
bipartite graph with maximum degree [ can be colored using exactly [ colors so
that edges that share an endpoint are assigned different colors (see also [1]). We
call such edge colorings legal colorings. Konig’s proof is constructive, yielding a
polynomial-time algorithm for finding optimal bipartite edge colorings. Faster
algorithms have been presented in [3,4,7,8,16], most of which are using as
a subroutine an algorithm that finds perfect matchings in bipartite graphs

[4,9,16].

Bipartite edge coloring can be used to model scheduling problems such as
timetabling. An instance of timetabling consists of a set of teachers, a set of
classes, and a list of pairs (¢, ¢) indicating that the teacher ¢ has to teach class
¢ during a time slot within the time span of the schedule [16]. A timetable is
an assignment of the pairs to time slots in such a way that no teacher ¢ and
no class ¢ occurs in two pairs that are assigned to the same time slot. This
problem can be modelled as an edge coloring problem on a bipartite graph.

In real-life situations, the problem is made somehow harder due to additional
constraints that are imposed on the solutions. This is a general feature of
practical optimization problems and it is due to the fact that an optimization
problem at hand is most of the time just a subproblem of a larger—scale op-
timazition that one seeks to obtain. In the example of scheduling classes and
teachers, it is sometimes the case that some teachers have been assigned to a
particular class during a particular timeslot because of some other duties that
they have to attend during other time slots; thus, assignments will have to
take into account this extra restriction. In general, such additional constraints
that are put on a timetable make the problem hard [5].

In this paper we study the following Constrained Bipartite Fdge Coloring
(CBEC) problem: We are given a bipartite graph G = (U, V, ) of maximum
degree [ with n vertices, in which some of the edges have been legally colored
with ¢ colors. We wish to complete the coloring of the edges of ¢ minimizing
the total number of colors used. The problem (also known as edge precolor-
ing extension) has been proved to be NP-hard even for bipartite graphs of
maximum degree three [6].

A simple 2-approximation algorithm can be obtained as follows. Given a bi-
partite graph GG of maximum degree [ in which some of the edges have been
legally colored with ¢ colors, we can complete the coloring of the edges of ¢
using at most [ extra colors. This is due to the fact that the subgraph of GG that
does not contain the precolored edges is bipartite and has maximum degree
at most [. This gives a coloring of the edges of G with at most [ 4+ ¢ colors.



Since max{l,c} > H'TC is a lower bound on the optimal number of colors, we

obtain that this algorithm has approximation ratio 2.

Caragiannis et al. in [2] studied two special cases of CBEC that arise from
algorithmic problems in optical networks (see [13,10]). Their results can be
summarized as follows:

— Problem A: Some of the edges adjacent to a specific pair of opposite
vertices of an [-regular bipartite graph are already colored with S colors
that appear only on one edge (single colors) and D colors that appear on two
edges (double colors). They show that the rest of the edges can be colored
using at most max{min{l + D, %},1 4+ £} total colors. They also show
that this bound is tight by constructing instances in which max{min{l +
D, %l},l + %} colors are indeed necessary.

— Problem B: Some of the edges of an [-regular bipartite graph are already
colored with S colors that appear only on one edge. They show that the
rest of the edges can be colored using at most max{/ 4+ S/2, S} total colors.
They also show that this bound is tight by constructing instances in which
max{l + 5/2,5} total colors are necessary.

Their techniques are based on the decomposition of the bipartite graph into
matchings. Matchings are grouped into pairs and the edges in each pair of
matchings are colored independently. Detailed potential and averaging argu-
ments are used to prove the upper bounds on the total number of colors used.
Their results imply 3/2-aproximation algorithms for both problems.

The original proofs in [2] consider [-regular bipartite graphs G = (U,V, E)
with |U] = |V| = n/2. However, these results extend to bipartite graphs of
maximum degree [ with n vertices using a simple observation presented in
Section 2.

1.1 Our approach

In this paper, motivated by a recent work of Kumar [12] on the circular arc
coloring problem, the steps we follow to obtain a provably good approximation
to CBEC are summarized below:

— Given a bipartite graph of maximum degree [ in which some of the edges
are legally colored with ¢ colors, we reduce the problem to an integral mul-
ticommodity flow problem with constraints.

— We formulate the multicommodity flow problem as a 0-1 integer linear
program.

— We relax the integrality constraint, and solve the linear programming re-
laxation obtaining an optimal fractional solution.



— We use randomized rounding to obtain a provably good integer solution of
the integral multicommodity flow problem which corresponds to a partial
edge coloring.

— We extend the edge coloring by assigning extra colors to uncolored edges.

In this way we extend the coloring of the edges of G using a total number of
colors which is provably close to the optimal one. OQur algorithm is randomized
and works with high probability provided that the optimal number of colors
is large (i.e., w(logn)).

1.2 Roadmap

The remainder of this paper is structured as follows. We present the reduction
from the costrained bipartite edge coloring problem to an integral multicom-
modity flow problem in Section 2. In Section 3 we demostrate how to approxi-
mate the solution of the integral multicommodity flow problem and prove that
this solution corresponds to an approximate edge coloring. An improvement
to our approach is then presented in Section 4.

2 Bipartite edge coloring and multicommodity flows

In this section we describe the reduction of an instance of CBEC to an instance
of an integral multicommodity flow problem with constraints. We first present
a reduction of the initial instance of CBEC to the following problem.

Consider an instance of CBEC which consists of a bipartite graph G' =
(U, V, F) with n = ny 4 ny vertices, with U = {uy, ...,un, }, V = {v1, ..., 00},
and with maximum degree [, in which some of the edges in E are already
legally colored. This partial coloring is represented by a set of constraints C'
containing pairs of the form (e, x) where e € E and x is a color. A pair (e, x)
denotes that the edge e is colored with color x.

Given the initial instance of CBEC, we construct a series of instances of CBEC
which, for any integer & > 0, consists of a bipartite graph G and a set of
constraints Cy. For any integer k > 0, the bipartite graph G = (A, B, E(G}))
has the sets of vertices A and B defined as

A= {zi|u; € U} U {yj|lv; € V'},
and

B = {y;lv; e V} U {z}|ju; € U}.



For graph G, the set of edges F(Gy) is defined as follows. For any edge
(us,v;) € E(G) with u; € U and v; € V, E(Gyg) contains two edges: (z;,y;)
and (z},y:). We call these edges regular edges. Also, let | be the maximum
degree of GG and let d(u;) (respectively d(v;)) be the degree of a vertex u; € U
(respectively v; € V) in (. The edge set E(Gy) also contains [ — d(u;) copies
of (w;,2!) for i =1,...,n1, and [ — d(v;) copies of (y;,y!) for e = 1,...,nq. These
edges are called cross edges. Graph G}, for & > 0 is obtained from Gy, by
adding k copies of the edges (z;,z!) for i = 1,...,ny, and k copies of the edges
(yi,yl), for e = 1,...,n2. An example for the construction of graph G; from ¢
is depicted in Figure 1.
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Fig. 1. The graph G, the graph G, and the corresponding multicommodity network

Hy. The edges of E(Gp) are represented as plain edges while the dotted edges are
the cross edges we add to graph Gy in order to get graph Gj.
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For any k& > 0, the set of constraints C} is defined as follows. For each edge
(u;,v;) constrained to be colored with color y in the set of constraints €, the
set of constraints C) requires the edge (x;,y;) of graph G} to be colored with
color x.

Lemma 1 For any positive integer k, there exists a coloring of the edges of G
with [ + k colors which maintains the set of constraints C' if and only if there
exists a coloring of the edges of G with | + k colors which maintains the set
of constraints Cy.

Proof. Since GG is a subgraph of Gy, any legal edge coloring of Gy trivially
yields a legal edge coloring of GG by coloring the edge (u;,v;) of G with the
color used by the edge (z;,y;) in Gy. Clearly, by the definition of the set of



constraints Cy, if the coloring of the edges of GGy maintains the set of con-
straints Cf, the coloring of the edges of G maintains the set of constraints C'
as well.

Assume that we have a legal edge coloring of G with [+ £ colors which main-
tains the set of constraints C'. Then, the edges of GG; can be colored with [+ &
colors as follows. For any edge (u;,v;) € E(G) colored with a color x, we color
the edges (z;,y;) and (z{,y}) of E(G%) with x. This gives a partial edge color-
ing of GG}, which maintains the set of constraints C, in which the cross edges are
uncolored. Let u; € U (respectively v; € V') and let d(u;) (respectively d(v;))
be the degree of u; (respectively v;) in GG. The cross edges between z; and !
(respectively between y; and y!) are now constrained by d(u;) (respectively
d(v;)) colors. Thus, we can use the [ + k — d(u;) (respectively [ + k — d(v;))
colors not used by edges adjacent to u; (respectively v;) to color the cross
edges between x; and ) (respectively y; and y!). This completes the coloring

of G, with [ 4+ k colors. O

Now, for any integer k& > 0, consider the multicommodity network H; =
(W, A, B, Z, E(H)) constructed as follows. Sets of vertices A and B are the
same with those of graph G. Also,

W = {'wl, ceey 'wl-|—k}
and

Z = {21, ceey Zl-}—k}-
The set E(Hy) is defined as

E(H) = E(Gy)

Uf(wi,z;)|l <t <14k 1< 5 <ny}
U{(wi, y))|1 < i <14k, 1<j<ny}
U{(yj, 2i)|1 <1 <14k, 1< j < ny}
U, 21 <i <14k 1< j<n}

77

All the edges in E(Hj) have unit capacity, and an edge can carry only an
integral amount of flow for each commodity. There are [+ k commodities. The
source for the i—th commodity is located at w;, while the corresponding sink
is located at z;. An example for the construction of network H; from graph
(G is depicted in Figure 1.

Intuitively, an integral flow of the [+ k commodities corresponds to a (partial)
legal coloring of the edges of Gii: an edge between A and B carrying one unit



of flow for commodity ¢ in Hj corresponds to an edge colored with color 7 in

G.

Since some of the edges of the graph G are precolored, our multicommodity
flow problem has some additional constraints. If an edge is precolored with
color 7 in G, it i1s constrained to carry a unit amount of flow for commodity
v in Hy. These flow constraints are represented by a set of constraints Fj. So,
we can reduce an instance of CBEC to multicommodity flow with constraints
using the following observation.

Lemma 2 For any positive integer k, there exists a coloring of the edges of
Gy with [ + k colors which maintains the set of constraints Cy, if and only if
there exists an integral flow of value n(l+ k) for commodities 1,...,[+k in the
network Hyp which maintains the set of constraints Fy.

In the next section we show how to approximate the corresponding integral
constrained multicommodity flow problem, and, using the reduction above,
we obtain a provably good solution for the initial instance of CBEC.

3 Approximating the multicommodity flow problem

In general, integral multicommodity flow (without constraints) is NP—complete
[5]. However, it is straightforward to formulate the constrained multicommod-
ity flow problem as a 0-1 integer linear program and solve its linear program-
ming relaxation by setting aside the integrality constraint. In this way, we
obtain an optimal fractional solution.

Consider again the graph GG and let ¢ be the number of colors used in the
set of constraints C. Clearly, max{/,c} is a lower bound on the minimum
number of colors sufficient for extending the partial edge—coloring of . We
begin with network Hyaxi,c1—i and the set of constraints Fiaxicj—i, solving the
corresponding linear program LP (11 —;- If the maximum flow is smaller than
nmax{/, c}, this means that the integer linear program has no flow with value
nmax{/, c}, meaning (by Lemma 2) that there exists no coloring of Gax{i,c}—i
with max{/, c} colors which maintains the set of constraints Cyaxi,cj—i- We
continue with networks Hpax(ic}—i+1, Hmax{i,c}-1+2, .- and the corresponding
sets of constraints, until we find some L such that the solution of LP;_; gives
a fractional (constrained) multicommodity flow of value nL. Clearly, L is a
lower bound for the minimum number of colors sufficient for coloring the edges

of GL—Z-

Now, we will use the fractional solution of the linear program LP_; in order to
obtain a solution for the corresponding integer linear program ILPy_; which



is provably close to the optimal one. We will use the randomized rounding
technique proposed by Raghavan [15].

Let f be the flow obtained by solving LP;_;. Flow f can be decomposed into
L flows f1, fa, ..., fr; one for each commodity. Each f; can be further broken
up into t; sets Py, Pia, ..., Piy, of n vertex—disjoint paths from w; to z; (i.e.,
the edges between A and B in each set of vertex—disjoint paths forms a perfect
matching) each carrying an amount m; ; of flow for commodity ¢, such that
Z;;l m;; = fi = 1. We call the procedure of decomposing flow matching
stripping (since it is similar in spirit to the path stripping technique proposed

in [15)).

Lemma 3 Matching stripping can be done in polynomial time.

Proof. Matching stripping can be performed as follows. Consider a solution to
LPj and the associated flows for commodity ¢ in network Hj. Set 7 = 1. Let ¢;
be the edge carrying the smallest non-zero amount m; ; of flow for commodity
i. Find a set P;; of n vertex-disjoint paths from w; to z; containing edges
that carry non-zero amounts of flow for commodity ¢, including e;. Associate
amount m; ; with P; ; and subtract amount m; ; from the flow for commodity
i carried by each edge in P, ;. Repeat this process for 7 = 2,3, ..., until no flow
remains. This will decompose the flow f; into sets of n vertex—disjoint paths
P; ; between w; and z; each carrying amount m; ; of flow for commodity .

We first inductively prove that a set of n vertex—disjoint paths P; ; from w; to z;
can be found at any execution of the above process. Let €; be the edge carrying
the smallest non-—zero amount m;; of flow for commodity ¢ in the beginning
of the first execution. Assume that any set of vertex—disjoint paths from w;
to z; containing edges that carry non—zero amounts of flow for commodity 2
including e; has size at most n—1. This means that there is no perfect matching
containing e; in the subgraph of Hj containing the vertex sets A and B and
the edges between them that carry non—zero amounts of flow for commodity z.
By Hall’s Matching Theorem (see [1]), we obtain that there exists a set S C A
(such that e; is incident to one of its vertices) with neighborhood N(S5) C B
of size |[N(S)| < |S|— 1. Observe that since the solution of LP} is optimal, the
edges incident to a vertex of A carry unit total amount of flow for commodity
i. Thus, the edges incident to S carry a total amount |S| of flow for commodity
i and, since |[N(S5)| < |S| — 1, the capacity constraints for some of the edges
incident to N(.S) are violated. Thus, a perfect matching M, ; containing edges
between A and B including e; exists. The set P;; of vertex-disjoint paths is
constructed by adding all edges between w; and A and all edges between B
and z; to M, ;.

Assume now that 7 — 1 sets of n vertex disjoint paths Py, P2, ..., Pij1



between w; and z; have been constructed in the beginning of the j—th execution
of the above process and let m; 1, m;g, ..., m; j_1 be the associated flows for
commodity 7. Furthermore, assume that there still exists an edge which carries
a non—zero amount of flow for commodity i. Note that an amount of 3_] m; ¢
of flow for commodity 7 has been subtracted from each edge between w; and A,
from each edge between B and z;, from the edges between A and B incident to
each vertex of A, and, similarly, from the edges between A and B incident to
each vertex of B. Following the same reasoning as above, we consider the edge
e¢; carrying the smallest non-zero amount of flow and we obtain that there
exists a perfect matching M, ; between A and B containing edges that carry
non—zero amounts of flow for commodity ¢ including e; (otherwise, some of
the edge capacity contraints in the original solution of LP; would have been
violated). Again, the set P; ; of vertex—disjoint paths is constructed by adding
all edges between w; and A and all edges between B and z; to M, ;.

We now easily prove that the number ¢; of executions of the above process is
polynomial. Observe that after the j—th execution, there exists at least one
edge (e;) which carry zero amount of flow, and, thus, it will not be considered
in the construction of paths F;; for ¢ > j. Thus, the number of executions of
the process is at most the number of edges between A and B, i.e.,t; < n(l+k).

The lemma follows since maximum bipartite matching can be solved in poly-
nomial time. O

In order to obtain an integer solution for ILPy_;, for each commodity ¢, we
will select one out of the ¢; sets of vertex—disjoint paths, and use its edges to
route commodity ¢. To select a set of vertex—disjoint paths for commodity 7,
we cast a t,—faced die (one face per each of the t; sets of vertex—disjoint paths)
where m; ; are the probabilities associated with the faces. The selection is
performed independently for each commodity. Performing this procedure for
each commodity, we obtain L sets of n vertex—disjoint paths to route the L
commodities.

However, these sets of n vertex—disjoint paths may not constitute a feasible
integer solution to ILP_; since some edge capacities may be violated. Since
in the fractional solution an edge between A and B may carry flow for two or
more commodities, it is possible that, during the rounding procedure, two or
more commodities may select sets of vertex—disjoint paths that contain that
edge. This is not the case for edges between A and B constrained to carry a
unit amount of flow for some commodity. Consider such an edge e incident
to a vertex u € A constrained to carry a unit amount of flow of commodity
i. Due to the capacity constraint for edge (w;,u), all edges between u and B
different than e carry zero flow for commodity 2. Thus, the edge e will belong
to each of the t; sets of n vertex-disjoint paths to which flow for commodity



¢ is decomposed after matching stripping, and, hence, edge e will certainly
carry a unit amount of flow for commodity ¢ after randomized rounding. Also,
due to the capacity constraint, the edge e carries no flow for any commodity
different than ¢ in the fractional solution, and, hence, no commodity different
than ¢ will select e to carry a unit amount of flow after randomized rounding.

Next, in each edge between A and B that was selected by at least two com-
modities, we arbitrarily select one commodity that will use this edge. In this
way, we obtain a feasible integer solution for ILP_;.

Note that the feasible solution of the integral multicommodity flow problem
in Hy_; corresponds to a partial edge coloring of Gy_; with L colors which
maintains the set of constraints Cr_;. By using extra colors to color the edges
of G_; left uncolored leads to a coloring of the edges of (G;,_; which maintains
the set of constraints Cp,_;.

Let GG} _, be the (random) subgraph of GGz_; that contains all vertices of G,
and the edges that do not correspond to edges of Hy_; that were selected by
the rounding procedure. Next, in Lemma 5, we will provide an upper bound on
the maximum degree of graph G _,, i.e., to the number of extra colors used
to complete the edge coloring of Gp_;. Our proof is based on the following
technical lemma on a well-known occupancy problem. A proof can be found
in Kumar [12] (see also [14]).

Lemma 4 Consider the process of randomly throwing my balls into my bins
such that the expectation of the number of balls thrown into any bin is at most
one. For the random variable Z denoting the number of empty bins, it holds
that

Pr[Z > my — my +my /e + Ay/mi] < 2exp(—A?/2).

Lemma 5 The maximum degree of Gy_, s at most L/e + 2/ Llnn, with
probability at least 1 —4/n.

Proof. The random graph G _, consists of the set of vertices AU B and the
edges in the middle level of the multicommodity network Hy_; (i.e., edges
between vertices of A and vertices of B) which are not selected to carry in-
tegral multicommodity flow after randomized rounding. During randomized
rounding, each commodity ¢ randomly selects a set of n vertex—disjoint paths
between the source w; and destination z; in Hr_;. Thus, for each vertex u of
AU B, one of the L edges in the middle level of H;_; which are incident to u is
selected to carry unit flow for a specific commodity. Intuitively, we can think of
the integral flow for each commodity as a ball and the edges between incident
to a vertex u as bins. The randomized rounding procedure can be modelled

10



by the classical occupancy problem where L balls are to be randomly and
independently thrown into L bins.

Consider a bin corresponding to an edge e of the middle level of Hy,_; which is
incident to vertex w and a ball corresponding to integral flow of commodity z.
The probability that the ball corresponding to commodity ¢ is thrown to the
bin corresponding to edge e is equal to the probability that the commodity 2
selects the edge e to route a unit amount of flow. By the definition of random-
ized rounding, this probability equals to the amount of flow for commodity
¢ carried by edge e in the fractional solution. Hence, the expectation of the
number of balls thrown to the bin corresponding to edge e equals to the sum
of the flows for all commodities carried by edge e in the fractional solution
which, due to the edge capacity constraints, is at most one.

Thus, we may apply Lemma 4 with m; = my = L and A = 2v/Inn to obtain
that the random variable denoting the number of empty bins, i.e., the number
of edges in the middle level of Hy_; incident to u which are not selected for
carrying flow for any commodity, is at most L/e 4+ 2v/ LInn with probability
at least 1 — 2/n?.

This means that the probability that more than L/e 4+ 2v/ L1lnn edges in the
middle level of Hy_; incident to some of the 2n vertices of Gj,_; have not been
selected after the execution of the randomized rounding procedure is at most
2n - 2/n? = 4/n. Thus, the degree of graph G, _, is at most L/e + 2v/LInn,
with probability at least 1 —4/n. O

By Lemma 5, the edges of G, _, can be colored with at most L/e 4+ 2v Llnn
extra colors, with probability at least 1 —4/n. The next theorem summarizes
the discussion in Sections 2 and 3.

Theorem 6 Let G = (U, V, E) be a bipartite graph of mazimum degree | with
n vertices in which some the edges of £ are legally colored according to a set
of constraints C and let L be the smallest integer such that the network Hyp_;
has a (fractional) flow of value nL for commodities 1, ..., L which maintains
the set of constraints Fr_;. There exists a polynomial time algorithm which
colors the edges of G maintaining the set of constraints C' using at most (1 +

1/e)L 4+ 2v L1nn total colors, with probability at least 1 — 4/n.

Since L is a lower bound to the optimal number of colors sufficient for col-
oring the edges of the bipartite graph maintaining the set of constraints, we
obtain that, in the case where L is large (i.e., L = w(lnn)), our algorithm has
approximation ratio 1 + 1/e + o(1) = 1.37 4 o(1).

11



4 Decreasing the number of colors

In this section we discuss some modifications of our algorithm which lead
to a better upper bound on the total number of colors sufficient for solving
instances of CBEC. Note that, in general, this improved result does not imply
an approximation ratio better than the one obtained in Section 3.

We slightly modify the reduction described in Section 2. Starting from a bipar-
tite graph G with n vertices and of maximum degree [ and a set of constraints
C' which requires some of the edges of E to be colored with ¢ colors, consider
again the bipartite graph G, = (A, B, E(Gy)) (for integer & > 0) together with
the set of constraints C}, defined in Section 2. For any integer k& > max{l, ¢} —1,
we construct the multicommodity flow network H;, = (W', A, B, Z', E(H}))
where now

W/ = {wl, ey 'wmax{l,C}}

and

Z'={z1,..., Zmax{l,c} }-
The set E(H},) is defined as

E(H}) = E(Gr)
U{(w;, ;)1 <@ <max{l,c},1 <7 <ng}
U{(wi, yj)|1 <1 <max{l,c}, 1 <j <na}
U{(y;,zi)|l <@ <max{l,c},1<j<ny}
U{(z}, 2:)[1 <@ <max{l,c},1 <j <m}

All the edges in E(H}) have unit capacity, and an edge can carry only an
integral amount of flow for each commodity. There are max{/, ¢} commodities.
The source for the i—th commodity is located at w;, while the corresponding
sink is located at z;.

We also define the set of flow constraints £} as follows. For each edge € of G,
constrained to use some color 7 in the set of constraints Cy, edge e in the middle
level of Hj is constrained to carry a unit amount of flow for commodity :.

Our reduction is now based on the following lemma.

Lemma 7 For any positive integer k, there exists a coloring of the edges of G,
with [+ k colors which maintains the set of constraints Cy. if and only if there
exists an integral flow of value nmax{l, ¢} for commodities 1,...,max{l,c} in
network Hj which maintains the set of constraints Fj.

12



Proof. A coloring of GG, with [+ colors which maintains the set of constraints
C) can be reduced to an integral flow of value nmax{l, ¢} for commodities
1,...,max{l, ¢} in network Hj which maintains the set of constraints F} by
making each edge between A and B colored with some color ¢ in G} (for
1 <t < max{l,c}) carry a unit amount of flow for commodity :.

Given an integral flow of value n max{l, ¢} for commodities 1, ..., max{l, ¢} in
network H; which maintains the set of constraints F}, we can achieve a partial
coloring of GGy with max{l, ¢} colors by using color ¢ (for 1 < i < max{l,c})
to color an edge of GG whose corresponding edge in H}, carries a unit amount
of flow for commodity ¢. This partial coloring maintains the set of constraints
C%. Observe that the vertex—induced subgraph of GG which contains the edges
of G left uncolored is (I + k — max{l, ¢} )—regular. This is due to the fact that,
in a flow of value nmax{l,c} for commodities 1, ..., max{l, ¢} in the network
Hy, the number of edges in the middle level of the network Hj (i.e., edges
between vertices of A and B) incident to a vertex u € AU B which carry a
unit amount of flow for some commodity is max{l, c}.

Thus, [ + k — max{l,c} colors can be used to complete the coloring of the
edges of G with [ 4+ k colors in total. O

The general structure of our approach is the same with the one described
in Section 3. We begin with network HJ .« ., , and the set of constraints
Fr’nax{hc}_l, solving the corresponding linear program LPaxicj—. If the max-
imum flow is smaller than nmax{/, ¢}, this means that the integer linear pro-
gram has no flow with value nmax{/, ¢}, meaning (by Lemma 7) that there
exists no coloring of Gax,c}—1 with max{/, ¢} colors which maintains the set of
constraints Crax{i,c}—1. We continue with networks Hr'nax{l’c}_l“, I,nax{l,c}—l+27
and the corresponding sets of constraints, until we find some L such that the
solution of LPy,_; gives a fractional multicommodity flow of value n max{l, c}.
By Lemma 7, L is a lower bound for the minimum number of colors suffi-
cient for coloring the edges of G;_; such that the set of constraints Cp_; is

maintained.

Then, we use the fractional solution of LP;_; to obtain a feasible solution
of ILP;_; using randomized rounding. In a way similar to Lemma 3, we can
prove that matching stripping can be correctly performed in polynomial time.

In order to obtain an upper bound on the degree of the graph G7_; (the
subgraph of G1_; containing edges of GG;_; left uncolored after the application
of the rounding procedure), we again use Lemma 4 (with m; = max{[,c},

my = L, and A = 2v/Inn) to show that G _, can be edge colored with at
most L — max{l, ¢} + max{l,c}/e + 2y/max{l, ¢} Inn additional colors, with

probability at least 1 —4/n. The following theorem summarizes the discussion
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of this section.

Theorem 8 Let G = (U,V,E) be a bipartite graph of mazimum degree |
with n vertices in which some the edges of E are legally colored with ¢ colors
according to a set of constraints C' and let L be the smallest integer such that
the network Hj_, has a (fractional) flow of value n max{l,c} for commodities
1,...,max{l, ¢} which maintains the set of constraints F|_,. There exists a
polynomial time algorithm which colors the edges of G maintaining the set of

constraints C' using at most L + %{lc} + 2y/max{l, c}Inn total colors, with
probability at least 1 —4/n.

Since both L and max{/, ¢} are lower bounds on the optimal number of colors,
in the case where max{l,c} is large (i.e., L = w(Inn)), our algorithm has
approximation ratio 1 4+ 1/e + o(1) = 1.37 4 o(1). Better approximations are
possible in the case where max{l, ¢} is significantly smaller than L.
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