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Timed Weighted Event Graphs (in short TWEG) are widely used for modeling industrial problems or embedded systems. The aim of this paper is to develop polynomial algorithms to check the existence of periodic schedules and to compute their optimal throughput. A necessary and sufficient condition of existence of periodic schedules is first expressed. Then, we develop an algorithm to compute the optimal throughput of a periodic schedule. This theoretical work can be considered as a generalisation of Reiter's result ([1]). The gap between the optimal throughput of a TWEG and the throughput of an optimal periodic schedule is also experimentally investigated for a circuit.

I. INTRODUCTION

Cyclic scheduling problems, in which a set of generic tasks T has to be performed infinitely often, have numerous practical applications in production systems (mass production) [START_REF] Proth | Les réseaux de Petri pour la conception et la gestion des systèmes de production[END_REF] or embedded systems (repeated computations or synthesis of digital signal processing) [START_REF] Hanen | Cyclic scheduling on parallel processors: An overview[END_REF]. The usual objective is to maximize the throughput λ = min t i ∈T {λ t i }, where λ t i measures the mean number of occurrences of a task t i performed by time unit. Several models for such task systems exist in the literature [START_REF] Levner | A parametric critical path problem and an application for cyclic scheduling[END_REF], [START_REF] Commoner | Marked directed graphs[END_REF], [START_REF] Chrétienne | Les réseaux de petri temporisés[END_REF], [START_REF] Lee | Synchronous data flow[END_REF]. In this paper we focus on the powerful subclass of Timed Petri Nets called Timed Weighted Event Graph model (TWEG), which includes both ordinary Timed Event Graph model (TEG also called marked graphs [START_REF] Commoner | Marked directed graphs[END_REF]) and dataflow graphs, oftenly used in the computer science area. TWEGs model problems in which no resource conflict exists.

In the context of cyclic scheduling, transitions are generic tasks. A schedule is the time instants of the successive firings of the transitions. For a given TWEG, the first questions that arise on this model are:

• Liveness: does it exist an infinite schedule?

• Optimal schedule: is it possible to describe an infinite optimal schedule? Both questions are polynomially solved for ordinary TEG [START_REF] Reiter | Scheduling parallel computations[END_REF], [START_REF] Commoner | Marked directed graphs[END_REF], [START_REF] Chrétienne | Les réseaux de petri temporisés[END_REF], [START_REF] Ramamoorthy | Performance evaluation of asynchronous concurrent systems using petri nets[END_REF]. In particular, it has been shown that if a TEG is live, there always exists a periodic schedule with the optimal throughput (i.e. with the same throughput that the earliest schedule), that can be computed in polynomial time. For TWEG, the complexity of these two questions questions remains open.

It has been shown in [START_REF] Munier | Régime asymptotique optimal d'un graphe d'événements temporisé généralisé: application à un problèmed'assemblage[END_REF] that a quite useful subclass of TWEG called unitary TWEG can be transformed into an equivalent TEG. However, this transformation is pseudo-polynomial, and leads to graphs that might be very large even for TWEG with small number of transitions.

So challenging questions are to devise polynomial algorithms for liveness checking and for building optimal schedules. In this paper, we define periodic schedules for unitary TWEG, in which each transition t i fires every w i time units. A polynomial algorithm to check the existence of such a schedule and to compute the optimal periodic schedule is presented. However, unlike the TEG model, it can be observed that this algorithm might not decide whether a unitary TWEG is schedulable. Moreover, according to the throughput criterion, such a periodic schedule might not be optimal among all schedules. This paper is organized as follows: TWEG and the main concepts for studying their behaviors are presented in Section 2. Section 3 is devoted to the study of periodic schedules, their existence condition and their computation. In Section 4, we study for a circuit the optimal throughput of a periodic schedule and we experimentally measure its distance with the throughput of the earliest schedule. Section 5 is our conclusion.

II. PROBLEM DEFINITION

First, Weighted Event Graphs and Timed Weighted Event Graphs are defined and a small application is presented. A simple necessary condition of liveness is then recalled, leading to the definition of unitary and normalized TWEG. Some definitions specific to TWEG are lastly recalled.

A. Weighted Event Graphs

A Weighted Event Graph G = (P, T ) (in short WEG) is given by a set of places P = {p 1 , . . . , p m } and a set of transitions T = {t 1 , . . . , t n }. A TWEG is a decision-free Petri net i.e. every place p ∈ P is defined between two transitions t i and t j and is denoted by p = (t i , t j ).

The arcs (t i , p) and (p, t j ) are valued by strictly positive integers denoted respectively by w(p) and v(p). At each firing of the transition t i (resp. t j ), w(p) (resp. v(p)) tokens are added to (resp. removed from) place p. If v(p) = w(p) = 1 for every place p ∈ P , then G is an Event Graph (in short EG). For any integer ν > 0 and any transition t i ∈ T , t i , ν denotes the νth firing of t i . C(G) denotes the set of circuits of G. For any transition t ∈ T , we set A marked Weighted Event Graph is a WEG associated with an initial marking M 0 (p), p ∈ P (see. Figure 1).

P + (t) = {p = (t, t ′ ) ∈ P, t ′ ∈ T } and P -(t) = {p = (t ′ , t) ∈ P, t ′ ∈ T }. t i t j p M 0 (p) w(p) v(p)

B. Timed Weighted Event Graphs

A Timed Weighted Event Graph (in short TWEG) is a WEG associated with a function ℓ : T → N ⋆ such that, for any t ∈ T , ℓ(t) is the duration of a firing of t. It is usually denoted by G = (P, T, ℓ). For every place p = (t i , t j ) ∈ P , w(p) (resp. v(p)) tokens are added to (resp. removed from) p ℓ(t i ) time units after the firing of t i (resp. at the firing of t j ). We assume that transitions are non-reentrant i.e. two successive firings of the same transition cannot overlap:

this is modeled by a loop place p = (t i , t i ),

∀t i ∈ T with w(p) = v(p) = 1 and M 0 (p) = 1.
For a sake of simplicity, these loops are not pictured by figures. M(τ, p) denotes the instantaneous marking of the place p at time instant τ ≥ 0. Clearly, M(0, p) = M 0 (p).

C. Example

Let us consider the assembling of products from raw materials M 1 and M 2 following three levels as pictured by Figure 2. Level 0 corresponds to the final assembling, level 2 to the loading of material raws on the line. It is also assumed that a product at level l > 0 may be used for only one operation at level l -1. Each arc (i, j) is valued by an integer corresponding to the number of products i needed to get one product j.

M 1 M 2 I P level 2 level 1 level 0 2 3
Fig. 2. Levels for the assembling of products.

Moreover, each workshop t i is dedicated to exactly one operation (i.e. there is no conflict between assembling operations) and is composed by one machine (i.e. two distinct products cannot be assembled simultaneously by the same workshop). Operations and their corresponding durations are given by Table I.

The number of work-in-process of the line is 

D. Liveness of a marked WEG 1) Definition:

A marked WEG is said to be live if each transition can be fired infinitely often.

2) Useful tokens: For any place p ∈ P , gcd p denotes the greatest common divisor of integers v(p) and w(p). It has been proved in [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF] that the initial marking M 0 (p) of any place p = (t i , t j ) may be replaced by M ⋆ 0 (p) = M 0 (p) gcdp •gcd p without any influence on the feasible firing sequences of a WEG. In particular, the liveness property of WEG is kept. Thus in the rest of the paper, it is assumed that the initial marking M 0 (p) of any place p ∈ P is a multiple of gcd p .

3) Algorithms and complexity: Liveness checking of a marked EG is a polynomial problem: setting H(c) = p∈P ∩c M 0 (p) the height of a circuit c from C(G), it is proved in [START_REF] Commoner | Marked directed graphs[END_REF] that M 0 is a live marking if, and only if, the height of every circuit of G is not null.

Liveness checking is a slightly more complicated for marked WEG and algorithms developed up to now to answer this question are pseudo-polynomial [START_REF] Munier | Régime asymptotique optimal d'un graphe d'événements temporisé généralisé: application à un problèmed'assemblage[END_REF].

4) A simple necessary condition of liveness for a marked WEG:

A simple necessary condition of liveness was noticed by several authors [START_REF] Munier | Régime asymptotique optimal d'un graphe d'événements temporisé généralisé: application à un problèmed'assemblage[END_REF], [START_REF] Karp | Properties of a model for parallel computations: Determinacy, termination, queueing[END_REF], [START_REF] Teruel | On weighted T-systems[END_REF]. For this purpose, let us define the weight (or gain [START_REF] Karp | Properties of a model for parallel computations: Determinacy, termination, queueing[END_REF]) of every path µ of a Weighted Event Graph G, denoted by W (µ) as

W (µ) = p∈P ∩µ w(p) v(p) .
Then, if a marked Weighted Event Graph G is live, every circuit has a weight not less than 1.

This condition is clearly not sufficient, since it is fulfilled by any EG which is not necessarily live.

E. Unitary and Normalized WEG

In this subsection we introduce unitary WEG and normalized WEG. We also show how to compute a normalized WEG from a unitary WEG in polynomial time.

1) Unitary graphs:

A unitary WEG G is a strongly connected WEG such that every circuit of G has a unit weight (or neutral gain). In the litterature, unitary WEG are also called consistent WEG. It has been proved in [START_REF] Marchetti | Minimizing place capacities of weighted event graphs for enforcing liveness[END_REF] that the instantaneous marking of a WEG remains always bounded if, and only if, it is unitary. As models for which the number of tokens is unbounded are usually not realistic and according to the necessary condition of liveness exposed previously, we restrict our study to unitary WEG.

2) Normalized WEG:

A transition t i is normalized if there exists Z i ∈ N ⋆ s.t., ∀p ∈ P + (t i ), w(p) = Z i and ∀p ∈ P -(t i ), v(p) = Z i .
A WEG is said to be normalized if all its transitions are normalized.

In [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF], it is stated that any unitary marked WEG can be polynomially transformed into an equivalent normalized WEG by multiplying marking functions and initial marking by integers α(p), p ∈ P such that ∀t i ∈ T there exists an integer

Z i with ∀p ∈ P + (t i ), α(p)w(p) = Z i and ∀p ∈ P -(t i ), α(p)v(p) = Z i .
For any transition t i , Z i becomes the new marking function of every arcs adjacent to t i . The corresponding initial marking of any place p = (t i , t j ) is then

α(p)M 0 (p). Z = (Z 1 , . . . , Z n ) is called a normalization vector.
The two WEGs are equivalent in the sense that they have both the same feasible schedules.

Note that the normalization concept is quite different from the traditionnal P-invariant definition in the Petri net community. Indeed, P-invariants are place invariants whereas normalization builds TWEG for which the number of tokens per circuit is invariant.

3) Minimal normalization algorithm:

The algorithm presented in [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF] computes a feasible normalization vector. However, the transformation described above may consider rational values (instead of integer values) for α(p) if the normalization vector Z and the initial markings obtained are integers. Theorem 1 characterizes then the minimum normalization vector.

Theorem 1. Let Z ⋆ = (Z 1 , . . . , Z n ) the minimum integer solution to the system Σ(G) defined as:

Σ(G) : ∀p = (t i , t j ) ∈ P, Z i w(p) = Z j v(p)
Z ⋆ is then the minimum normalization vector.

Proof: Every normalization vector Z verifies Σ(G). Thus, if Z ⋆ is a feasible normalization vector, it is the minimum normalization vector.

1) By Σ(G), Z ⋆ ∈ N ⋆n . It remains to prove that, for every place p = (t i , t j ), the initial

marking M ⋆ 0 (p) = Z ⋆ i w(p) M 0 (p) is an integer value. 2) Clearly, M ⋆ 0 (p) = Z ⋆ i w(p) • M 0 (p) gcd p
• gcd p . Since M 0 (p) may be divided by gcd p using useful tokens assumption, we must prove that Z ⋆ i can be divided by

w(p) gcd p . Let ∆ ∈ Q ⋆ such that Z ⋆ i = ∆ • w(p) gcd p and Z ⋆ j = ∆ • v(p) gcd p . If ∆ ∈ Q ⋆ \ N ⋆ , then there is a couple of integers (r, q) ∈ N ⋆2 such that gcd(r, q) = 1 and ∆ = r q . Since Z ⋆ i = r q • w(p) gcd p and Z ⋆ j = r q • v(p)
gcd p are both in N, then q divides w(p) gcd p and v(p) gcd p . Since w(p) gcd p and v(p) gcd p are prime to each other, there is a contradiction. So ∆ ∈ N ⋆ which achieves the proof.

The minimum normalization vector Z ⋆ may be computed using a path algorithms similar to the one presented in [START_REF] Munier | Régime asymptotique optimal d'un graphe d'événements temporisé généralisé: application à un problèmed'assemblage[END_REF]. F. Schedules, precedences, and throughput of TWEGs 1) Schedules: Let G be a marked TWEG. A schedule is a function s : T × N ⋆ → Q + which associates, with any tuple (t i , q) ∈ T × N ⋆ , the starting time of the qth firing of t i . There is a strong relationship between a schedule and the corresponding instantaneous marking. Let p = (t i , t j ) be a place of P . For any value τ ∈ R +⋆ , let us denote by E(τ, t i ) the number of firings of t i completed at time τ . More formally,

E(τ, t i ) = max{q ∈ N, s(t i , q) + ℓ(t i ) ≤ τ }.
On the same way, B(τ, t j ) denotes the number of firings of t j started up to time τ and B(τ, t j ) = max{q ∈ N, s(t j , q) ≤ τ }.

Clearly,

M(τ, p) = M(0, p) + w(p) • E(τ, t i ) -v(p) • B(τ, t j ).
A schedule (and its corresponding marking) is feasible if M(τ, p) ≥ 0 for every tuple (τ, p) ∈ R +⋆ × P . The throughput of a transition t i for a schedule s is defined by

λ s t i = lim q→∞ q s(t i , q) .
The throughput of s is the smallest throughput of a transition

λ s = min i∈T {λ s t i }.
2) Precedence relations: The set of constraints induced by a place p = (t i , t j ) on the firings of the adjacent transitions t i and t j may be expressed as classical precedence relations, inducing inequalities on each schedule. We say that p generates a precedence constraint between t i , ν i and t j , ν j if Condition 1: t j , ν j can be done after t i , ν i ;

Condition 2: t j , ν j -1 can be done before t i , ν i but not t j , ν j .

Such a precedence relation induces the following inequality for any schedule:

s(t i , ν i ) + ℓ(t i ) ≤ s(t j , ν j ). (1) 
The following lemma was proved in [START_REF] Munier | Régime asymptotique optimal d'un graphe d'événements temporisé généralisé: application à un problèmed'assemblage[END_REF] and characterizes the set of precedence relations induced by a place: Lemma 1. A place p = (t i , t j ) ∈ P induces a precedence relation between the ν i th firing of t i and the ν j th firing of t j if, and only if,

w(p) > M 0 (p) + w(p)ν i -v(p)ν j ≥ max{w(p) -v(p), 0}.
Precedence relations fully define feasible schedules of a TWEG. Indeed, in [START_REF] Munier | Régime asymptotique optimal d'un graphe d'événements temporisé généralisé: application à un problèmed'assemblage[END_REF] it is proved that a schedule fulfils the precedence relations defined by Lemma 1 if and only if it is feasible.

According to the definition of precedence constraint and the previous lemma, one can check that the place p = (t i , t j ) depicted by Figure 5 induced for any k ∈ N the two following sets of precedence constraints between t i and t j :

     t i , 1 + 2k → t j , 1 + 3k t i , 2 + 2k → t j , 3 + 3k
In [START_REF] Munier | Régime asymptotique optimal d'un graphe d'événements temporisé généralisé: application à un problèmed'assemblage[END_REF], it is stated that there is exactly min{w(p), v(p)} different sets of precedence constraints induced by a place p (as depicted by Figure 1), which is exponential in the size of the instance.

t i t j p 1 3 2 
Fig. 5. A place p = (ti, tj) which induces two types of precedence constraints.

3) Earliest schedule: Notice that for live marked TWEG, the earliest schedule (which consists in firing the transitions as soon as possible) always exists and has a maximum throughput. For marked TEGs, computing the throughput of the earliest schedule can be done polynomially [START_REF] Chrétienne | Les réseaux de petri temporisés[END_REF], [START_REF] Chao | Iteration bounds of single-rate data flow graphs for concurrent processing[END_REF], but it has an unknown theoretical complexity for marked unitary TWEGs. If n is the number of transitions and A denotes the highest marking function value, the time complexity of the algorithms developed until now for computing the optimal throughput is O(n 5 +(nA n ) 3 log(nA n ))

[9], [START_REF] Ito | Determining the minimum iteration period of an algorithm[END_REF]. Hence, it is not polynomial because of the term in A.

4) Periodic schedules:

A schedule s is periodic if there exists a vector w = (w 1 , . . . , w n ) ∈ Q n such that, for any couple (t i , q) ∈ T × N ⋆ , s(t i , q) = s(t i , 1) + (q -1)w i . w i is then the period of the transition t i and λ s t i = 1 w i its throughput. Periodic schedules are of high interest from a practical point of view, because their representation is compact so that they can be easily implemented in real systems.

G. Problem formulation

According to the previous section, any TWEG can be normalized, so from now, we shall only consider normalized TWEGs. The two problems addressed in this paper can then be expressed as follows:

1) Existence of a periodic schedule for a marked normalized TWEG

Input:

G is a marked normalized TWEG.

Question: Is there a feasible periodic schedule for G?

2) Computation of an optimal periodic schedule for a marked normalized TWEG Input: G is a marked normalized TWEG.

Output: If it exists, a feasible periodic schedule with maximum throughput.

III. STUDY OF PERIODIC SCHEDULES

This section is devoted to the study of periodic schedules of a TWEG. It is proved that every place p induces an inequality on the starting time of the first firings of its adjacent transitions.

A necessary and sufficient condition for the existence of a periodic schedule and a polynomial algorithm to compute a periodic schedule are derived.

A. Properties of periodic schedule

Let us first consider an important property of precedence relations induced by a place, which will be used in Theorem 2 to prove feasibility conditions of periodic schedules. 1) If p induces a precedence relation between the firings t i , ν i and t j , ν j then there exists

k ∈ {k min , . . . , k max } such that w(p)ν i -v(p)ν j = k • gcd p .
2) Conversely, for any k ∈ {k min , . . . , k max }, there exist an infinite number of tuples (ν i , ν j ) ∈ N ⋆2 such that w(p)ν iv(p)ν j = k • gcd p and p induces a precedence relation between firings t i , ν i and t j , ν j .

Proof:

1) Since gcd p = gcd(v(p), w(p)), for any tuple (ν i , ν j ) ∈ N ⋆2 there exists k ∈ Z such that

w(p)ν i -v(p)ν j = k • gcd p . Now, if
there is a precedence relation between t i , ν i and t j , ν j ) , we get by Lemma 1, as we assumed that M 0 (p) is a multiple of gcd p ,

w(p) -M 0 (p) > w(p)ν i -v(p)ν j ≥ max{w(p) -v(p), 0} -M 0 (p),
which is equivalent to

w(p) -M 0 (p) -gcd p ≥ k • gcd p ≥ max{w(p) -v(p), 0} -M 0 (p).
So we get k min ≤ k ≤ k max .

2) Conversely, there exists (a, b) ∈ Z 2 such that aw(p)bv(p) = gcd p . Then for any k ∈ {k min , . . . , k max }, and any integer q ≥ 0, the couple of integers (ν i , ν j ) = (ka+qv(p), kb+ qw(p)) is such that w(p)ν i -v(p)ν j = k•gcd p . Thus p induces a precedence relation between t i , ν i and t j , ν j , which achieves the proof.

Theorem 2. Let G be a unitary normalized TWEG. For any periodic schedule s, there exists a rational K ∈ Q ⋆+ , called the token flow of s such that, for any couple of transitions (t i , t j ) ∈ T 2 , w i Z i = w j Z j = K. Moreover, the precedence relations associated with any place p = (t i , t j ) are fulfilled by s iff s(t j , 1)s(t i , 1) ≥ ℓ(t i ) + K(Z j -M 0 (p)gcd p ).

Proof: Let be a place p = (t i , t j ) ∈ P inducing a precedence relation between the firings t i , ν i and t j , ν j . Then, according to inequality 1 page 9, and since s is periodic, we get

s(t i , 1) + (ν i -1) • w i + ℓ(t i ) ≤ s(t j , 1) + (ν j -1) • w j .
Then, by Lemma 2, there exists k ∈ {k min , . . . , k max } such that

ν j = w(p)ν i -k • gcd p v(p) and 
s(t j , 1) -s(t i , 1) ≥ ℓ(t i ) + w j -w i + ν i w i - w(p)ν i -k • gcd p v(p) • w j .
So,

s(t j , 1) -s(t i , 1) ≥ ℓ(t i ) + w i - w(p) v(p) w j ν i + 1 + k • gcd p v(p) w j -w i .
This inequality must be true for arbitrarily large values ν i ∈ N ⋆ , so w i -w(p) v(p) w j ≤ 0 and then

w i w(p) ≤ w j v(p) . As G is normalized, w(p) = Z i and v(p) = Z j .
Since G is unitary, it is strongly connected and thus, for any place p = (t i , t j ),

w i Z i = w j Z j . So, there exists a value K ∈ Q ⋆ such that, for any transition t i ∈ T , w i Z i = K.
Then, the previous inequality becomes

s(t j , 1) -s(t i , 1) ≥ ℓ(t i ) + KZ j 1 + k • gcd p Z j -KZ i
and thus

s(t j , 1) -s(t i , 1) ≥ l(t i ) + K(Z j -Z i + k • gcd p ).
Now, the right term grows with k and according to Lemma 2, there exists 

(ν i , ν j ) ∈ N ⋆2 such that k = k max = Z i -M 0 (p) gcd p -1,
s(t j , 1) -s(t i , 1) ≥ ℓ(t i ) + K(Z j -Z i + Z i -M 0 (p) -gcd p )
which is equivalent to

s(t j , 1) -s(t i , 1) ≥ ℓ(t i ) + K(Z j -M 0 (p) -gcd p ).
Conversely, assume this last inequality and that ∀t i ∈ T , w i Z i = K. Then, for any integers ν i and ν j with w(p)ν iv(p)ν i = k • gcd p for k ∈ {k min , . . . , k max }, it can be proven that s checks the precedence relation between t i , ν i and t j , ν j using the reverse arguments.

B. Existence of periodic schedules

Let us build a bi-valued graph G = (T, E, L, H) as follows: nodes of G are the transitions, and any place p = (t i , t j ) induces an arc from node t i to node t j . Valuations of the arc e ∈ E corresponding to a place p = (t i , t j ) are L(e) = ℓ(t i ) and H(e) = M 0 (p) + gcd pv(p). For any value K ∈ Q +⋆ , we also denote by G K = (T, E, δ K ) the graph G defined previously but which arcs are valued by δ K (e) = L(e) -KH(e).

According to Theorem 2, starting times {s(t i , 1), t i ∈ T } exists for a fixed value K ∈ Q ⋆ if and only if, the sum of the valuations on every circuit c of

G K is such that δ K (c) = e∈c δ K (e) ≤ 0.
This induces the following necessary and sufficient existence condition of periodic schedules:

Theorem 3.
Let G be a normalized TWEG. There exists a periodic schedule iff, for every circuit c of G, H(c) > 0. Moreover, if this condition is fulfilled, and if

K min = max c∈C(G) L(c) H(c)
, and Z max = max

t i ∈T {Z i }
then for any K ≥ K min there exists a periodic schedule s with token flow K and throughput

λ s = 1 KZ max .

Proof:

A ⇒ B Let us suppose that there exists a circuit c of G with H(c) ≤ 0. Then, for every value K ∈ Q ⋆+ , δ K (c) > 0 and no periodic schedule exists.

B ⇒ A Let us suppose now that, for every circuit c of G, H(c) > 0. Let us consider any K ≥ K min . Then, for every circuit c of G K , δ K (c) ≤ 0, so there exists a periodic schedule with token flow K. The period of a task i in this schedule is w i = KZ i , so that the throughput of the schedule is λ s = 1 max i∈{1,...,n} {w i } Surprisingly, this condition is similar to a sufficient condition of liveness of a marked WEG proved in [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF]. An algorithm in O(max{nm, m max t i ∈T {log Z i }}) to evaluate this condition can be found in this paper. It is also proved that this condition is a necessary and sufficient condition of liveness for circuits composed by two transitions. So, the following corollary is easily deduced:

Corollary 1. Let G be a normalized marked TWEG composed by a circuit of two transitions. G is live if and only if G has a periodic schedule.

This corollary is not true anymore for circuits with 3 transitions. For example, let us consider the normalized TWEG G presented by Figure 6 with no particular assumption on firing durations.

The sequences of firings s = t 3 t 1 t 1 t 1 t 2 t 3 t 1 t 1 t 1 t 1 t 2 t 2 can be repeated infinitely, so it is live. However, 3 i=1 M 0 (p i ) = 28 and 3 i=1 (v(p i )gcd p i ) = 29, so the condition of Theorem 3 is false and this circuit has no periodic schedule. 

C. Computation of an optimal periodic schedule

Assume that G is a normalized TWEG which fulfils the condition expressed by Theorem 3.

According to this theorem the optimal throughput of a periodic schedule s ⋆ per for G is defined by the minimum token flow K min . Then λ s ⋆ per = 1 K min Zmax where Z max = max i∈{1,...,n} {Z i }. Several polynomial and pseudo-polynomial algorithms were developed to compute K min (see.

as example [START_REF] Dantzig | Finding a cycle in a graph with minimum cost to time ratio with applications to a ship routing problem[END_REF], [START_REF] Gondran | Graphs and algorithms[END_REF], [START_REF] Gondran | Les problèmes de ratio minimum en optimisation combinatoire[END_REF]). An experimental study of these algorithms can be found in [START_REF] Dasdan | Efficient algorithms for optimum cycle mean and optimum cost to time ratio problems[END_REF].

Corresponding starting times {s(t i , 1), t i ∈ T } can then be computed using Bellmann-Ford algorithm [START_REF] Cormen | Introduction to Algorithms[END_REF] on G K min . 4. Note that the necessary and sufficient condition expressed by Theorem 3 is fulfilled, so a periodic schedule exists. We get here K min = 13 for the circuit c = t 2 t 3 t 4 t 5 t 2 , so the optimum periods of the transitions are w 1 = 39, w 2 = 26, w 3 = 78, w 4 = 78 and w 5 = 234.

1) Example:

Figure 8 presents the graph G 13 for our example pictured by Figure 4 and starting times 2) Optimal periodic versus optimal schedule: Now, we can observe that the throughput of a periodic schedule may be quite far from the optimum. For example, let us consider a marked normalized TWEG which consists in a circuit with two places

{s(t i , 1), t i ∈ T }. t 1 t 2 t 3 t 4 t 5 (2, -3) (2, -4) (2, 0) (10, -12) (12, 18) (12, 18) (10, 12) (10, 12) 
p 1 = (t 1 , t 2 ), p 2 = (t 2 , t 1 ) such that gcd p 1 = gcd p 2 = 1, M 0 (p 1 ) = v(p 1 )+w(p 1 )-1 = Z 2 +Z 1 -1 and M 0 (p 2 ) = 0. This TWEG fulfils the condition stated in Theorem 3 : M 0 (p 1 ) + M 0 (p 2 ) + gcd p 1 + gcd p 2 -Z 2 -Z 1 = 1.
The associated graph G is then pictured by Figure 9.

t 1 t 2 (l(t 1 ), Z 1 ) (l(t 2 ), Z 2 ) (l(t 1 ), Z 1 ) (l(t 2 ), 1 -Z 1 )
Fig. 9. Bi-valued graph G associated with the normalized TWEG with two places.

We get

K min = max ℓ(t 1 ) Z 1 , ℓ(t 2 ) Z 2 , ℓ(t 1 ) + ℓ(t 2 ) = ℓ(t 1 ) + ℓ(t 2
) and the throughput of transitions for the optimum periodic schedule s ⋆ per is λ

s ⋆ per t 1 = 1 w 1 = 1 Z 1 (ℓ(t 1 )+ℓ(t 2 )) and λ s ⋆ per t 2 = 1 w 2 = 1 Z 2 (ℓ(t 1 )+ℓ(t 2 )
) . Now, since the total number of tokens in the circuit is Z 1 + Z 2 -1, transitions t 1 and t 2 will never be fired simultaneously by the earliest schedule. Moreover, if we denote by n 1 (resp. n 2 ) the number of firings of t 1 (resp. t 2 ) such that the system will return in its initial state (i.e. with Z 1 + Z 2 -1 tokens in p 1 and 0 tokens in p 2 ), then we must have n 1 Z 1 -n 2 Z 2 = 0, so there exists k ∈ N ⋆ with n 1 = kZ 2 and n 2 = kZ 1 . Thus, the throughput of transitions t 1 and t 2 for the earliest schedule s asap is λ

sasap t 1 = Z 2 Z 2 ℓ(t 1 )+Z 1 ℓ(t 2 ) and λ sasap t 2 = Z 1 Z 2 ℓ(t 1 )+Z 1 ℓ(t 2 ) . Now, R = λ sasap t 1 λ s ⋆ per t 1 = λ sasap t 2 λ s ⋆ per t 2 = Z 1 Z 2 (ℓ(t 1 ) + ℓ(t 2 )) Z 2 ℓ(t 1 ) + Z 1 ℓ(t 2 ) .
Assume without loss of generality that

Z 1 ≥ Z 2 , then R = λ sasap λ s ⋆ per = λ sasap t 1 λ s ⋆ per t 1 = Z 1 Z 2 ℓ(t 1 ) + Z 1 ℓ(t 2 ) -(Z 1 -Z 2 )ℓ(t 2 ) Z 2 ℓ(t 1 ) + Z 1 ℓ(t 2 ) So, R = Z 1 1 - (Z 1 -Z 2 )ℓ(t 2 ) Z 2 ℓ(t 1 ) + Z 1 ℓ(t 2 ) < Z 1
The ratio R is then maximum when ℓ(t 1 ) tends to infinity and the bound max{Z 1 , Z 2 } is asymptotically reached.

IV. STUDY OF A CIRCUIT

We first present some simple properties on the optimal periodic schedule of a circuit. These properties are considered to study experimentally the gap between the throughput of a schedule with the asap scheduling policy and the maximum throughput of a periodic schedule for the same initial marking.

A. Periodic schedule of a circuit

The TWEG studied here is a circuit of n transitions and n places, n ≥ 2 denoted by C = (t 1 , p 1 , t 2 , . . . , t n , p n , t 1 ). We also set t n+1 = t 1 in order to simplify formulas. Let us consider x = t i ∈T M 0 (p), and we define by K min (x) the minimum token flow of the circuit for an initial marking value x. We now study this token flow as a function of x.

Let us set

V = n i=1 (Z i -gcd(Z i , Z i+1 )).
According to Theorem 3, a periodic schedule exists iff H(C) > 0, i.e. x ≥ x min = V + 1. Now, assuming x ≥ x min , we get:

K min (x) = max c∈C(G) L(c) H(c) = max max t i ∈T ℓ(t i ) Z i , L(C) H(C) = max max t i ∈T ℓ(t i ) Z i , L(C) x -V .
Notice that tokens distribution in the initial marking has no incidence on the minimum token flow. Due to the fact that transitions are non-reentrant, we can define K ⋆ as the lower bound of K min (x):

K ⋆ = max t i ∈T ℓ(t i ) Z i .
Let x max be the minimum integer value such that K min (x) = K ⋆ . Then, we have:

L(C) x max -V ≤ K ⋆ and L(C) x max -1 -V > K ⋆ .
Thus,

x max = L(C) K ⋆ + V. Now, if x min ≤ x ≤ x max , then K min (x) = L(C) x -V . Theorem 4 follows.
Theorem 4. The throughput of an optimal periodic schedule for the circuit C with x initial tokens is:

λ s ⋆ per (x) =      x-V L(C) • 1 Zmax if x min ≤ x < x max , 1 K ⋆ • 1 Zmax if x ≥ x max .
Unlike x min , the value x max depends on the durations {ℓ(t i ), t i ∈ T }. The following theorem defines an upper bound for x max which does not depend on the durations. For this purpose, let us define x ⋆ as follows:

x ⋆ = n i=1 Z i + V. Theorem 5. x max ≤ x ⋆ . Moreover, if there exists ρ ∈ Q +⋆ such that, ∀i ∈ {1, . . . , n}, ℓ(t i ) Z i = ρ, then x ⋆ = x max . Proof:
By definition of x max and x ⋆ , we have to show that

L(C) K ⋆ + V ≤ n i=1 Z i + V. As n i=1 Z i is in N, it is equivalent to prove that L(C) K ⋆ ≤ n i=1 Z i . Let i ⋆ ∈ {1, . . . , n} such that ℓ(t i ⋆ ) Z i ⋆ = max t i ∈T ℓ(t i ) Z i
. Then, for all t i ∈ T , it follows that

ℓ(t i )Z i ⋆ ≤ ℓ(t i ⋆ )Z i ,

and thus

Z i ⋆ n i=1 ℓ(t i ) ≤ ℓ(t i ⋆ ) n i=1 Z i n i=1 ℓ(t i ) n i=1 Z i ≤ max t i ∈T ℓ(t i ) Z i L(C) K ⋆ ≤ n i=1 Z i .
Now, if there exists ρ ∈ Q +⋆ such that, ∀i ∈ {1, . . . , n}, ℓ(t i ) Z i = ρ, then K ⋆ = ρ and we have

x max = L(C) K ⋆ + V = n i=1 ρZ i ρ + V = n i=1 Z i + V = x ⋆
Hence, the second part of the theorem.

A simple outcome of Theorem 5 is that K min (x ⋆ ) = K ⋆ .

As transitions are non-reentrant, the best throughput of a schedule with the asap scheduling policy is also limited by

λ sasap (x) ≤ 1 K ⋆ Z max , ∀x ≥ x min .
As the throughput of a schedule with the asap scheduling policy is optimum, we have

λ sasap (x) ≥ λ s ⋆ per (x), ∀x ≥ x min . Then ∀x ≥ x max , λ sasap (x) = 1 K ⋆ Z max = λ s ⋆ per (x).
However, a schedule with the asap scheduling policy may reach this maximum throughput for a smaller value of x. For instance, we consider a marked normalized TWEG which consists in a circuit of two places p 1 = (t 1 , t 2 ), p 2 = (t 2 , t 1 ) and such that ℓ(t 1 ) = 4 and ℓ(t 2 ) = 2 (see.

Figure 10). For this initial marking, we have K min = 1.5 and then w 1 = 4.5 and w 2 = 3 . One can see on Figure 10, that the schedule s ⋆ per has idle times for both transitions whereas t 1 can be fired periodically without idle time in the schedule s asap . 

B. Periodic optimal throughput versus optimal throughput

We made our experiments on a randomly generated normalized circuit C in order to analyze the ratio R between optimal throughput and periodic optimal throughput.

For any fixed integer value n corresponding to the number of transitions, the integer values Z i and the durations ℓ(t i ), i ∈ {1, . . . , n} are randomly fixed respectively in {1, . . . , 100} and {1, . . . , 50}. By Theorem 4 and Theorem 5, the relevant number of tokens is in {x min , . . . , x ⋆ }.

Thus, we set x = x min + ⌈f • n i=1 Z i ⌉ for different values of f (from 0 to 1 with step 0.02). The optimal throughput was obtained by running the earliest schedule and analyzing its throughput after a while.

We first considered the special case f = 0, depicted by Figure 11, for which the initial marking is the minimum number such that there exists a periodic schedule. It appears that the ratio may then be very important (up to 268) and much greater than the bound observed for circuits with two transitions. Moreover, the mean and max ratio roughly increase with the number of transitions, even if some decreasing parts can be observed.

Then we observed that even for other quite small values of f , the mean and max ratio decrease with the number of transitions. The mean ratio is less than 1.8 for n ≥ 10, and very close to 1 for n ≥ 50

Figure 12 shows the variation of the ratio with the number of transitions. Now, if we consider the variation of the ratio in terms of the value f , depicted in Figure 13, we observe that the ratio (mean and max) decreases dramatically. For f = 0.02 the mean ratio equals 5, due to a very few number of instances with great ratio, whereas when f ≥ 0.08 the mean ratio is less than 2 and reaches 1 for f = 0.8. We can also notice that in all the experiments, the mean and the max curves are quite far from each other, since the worst case instances have a huge ratio compared to the transition durations and the values of the arcs. So, periodic schedules do not always provide good solutions, especially when the initial marking is very close to the minimal value x min .

This gives a first insight on the quality of the optimal periodic throughput with respect to optimal one. In the future, we shall run experiments on more complex graphs. 

V. CONCLUSIONS

In this paper we established an existence condition and a polynomial algorithm to compute the optimal periodic schedule of a TWEG. Experiments prove that although such schedules are not optimal, their computation gives an interesting lower bound on the optimal throughput, especially if the existence condition of Theorem 3 is not tight, i.e. if the initial marking of circuits is large enough.

In the future, it would be worth to derive a lower bound on the ratio between the optimal throughput and the optimal periodic throughput of a general TWEG, and to further study the complexity of the liveness problem.
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 1 Fig. 1. A place p = (ti, tj) of a marked WEG.

Fig. 3 .

 3 Fig.3. Modeling an assembling line using a TWEG.
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 4 Example: Let us consider the example pictured by Figure 3. It can be observed that this unitary TWEG is not normalized. Setting α(p 1 ) = 3, α(p 2 ) = 2, α(p 3 ) = 3, α(p 4 ) = 6, α(p 5 ) = 2, α(p 6 ) = 6, α(p 7 ) = 3 and α(p 8 ) = 2, we get the minimum normalized TWEG pictured by Figure 4. The normalization vector is Z = (3, 2, 6, 6, 18).
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 4 Fig. 4. Equivalent minimum normalized TWEG.
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 2 Let us consider a place p = (t i , t j ) ∈ P , and let the integer values k min = max{w(p)v(p), 0} -M 0 (p) gcd p and k max = w(p) -M 0 (p) gcd p -1.
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 6 Fig.6. G is live but has no periodic schedule.
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 7 presents the bi-valued graph G associated with the TWEG pictured by

Figure

  Figure 4. Note that the necessary and sufficient condition expressed by Theorem 3 is fulfilled, so

Fig. 7 .

 7 Fig. 7. A bi-valued graph G associated with the TWEG of Figure 4.
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 8 Fig. 8. G13 and starting times s(ti, 1), ti ∈ T (in circles) associated with the TWEG of Figure 4.
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 11 Fig. 11. Mean and worst ratio for f = 0 increase with the number of transitions.

Fig. 12 .

 12 Fig. 12. Mean and max ratio decreases as the number of transitions n increases for f ≥ 0, 02.

Fig. 13 .

 13 Fig. 13. Mean and worst ratio decrease when f increases.

  2. Moreover, a transporter takes 3 products and brings 6 raw materials to M 1 and 9 to M 2 . At the starting point, there are 6 raw materials in M 1 and 9 in M 2 . A model of this assembling line using a TWEG is depicted by Figure3.
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  thus the precedence relation holds if, and only if,

  Fig.10. A TWEG G for which the schedule sasap reaches the best throughput whereas the schedule s ⋆ per cannot.
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