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Abstract

Timed Weighted Event Graphs (in short TWEG) are widely usedriodeling industrial problems
or embedded systems. The aim of this paper is to develop poiial algorithms to check the existence
of periodic schedules and to compute their optimal throwghp necessary and sufficient condition
of existence of periodic schedules is first expressed. Thendevelop an algorithm to compute the
optimal throughput of a periodic schedule. This theoréticark can be considered as a generalisation
of Reiter’s result ([1]). The gap between the optimal thrgpigt of a TWEG and the throughput of an

optimal periodic schedule is also experimentally investg for a circuit.
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I. INTRODUCTION

Cyclic scheduling problems, in which a set of generic tadSKksas to be performed infinitely
often, have numerous practical applications in producsgatems (mass production) [2] or
embedded systems (repeated computations or synthesigitdl diignal processing) [3]. The
usual objective is to maximize the throughput min, .r{)\;, }, where)\,, measures the mean
number of occurrences of a tagkperformed by time unit. Several models for such task systems
exist in the literature [4], [5], [6], [7]. In this paper wedas on the powerful subclass of Timed
Petri Nets called Timed Weighted Event Graph model (TWEQ)ictv includes both ordinary
Timed Event Graph model (TEG also called marked graphs [BY) dataflow graphs, oftenly
used in the computer science area. TWEGs model problemsichwio resource conflict exists.

In the context of cyclic scheduling, transitions are gentasks. A schedule is the time instants
of the successive firings of the transitions. For a given TWHf@ first questions that arise on

this model are:

« Livenessdoes it exist an infinite schedule?

« Optimal scheduleis it possible to describe an infinite optimal schedule?

Both questions are polynomially solved for ordinary TEG, [[H], [6], [8]. In particular, it
has been shown that if a TEG is live, there always exists ag@erischedule with the optimal
throughput (e. with the same throughput that the earliest schedule), thatbe computed in
polynomial time. For TWEG, the complexity of these two qimst questions remains open.
It has been shown in [9] that a quite useful subclass of TWEK&dainitary TWEG can be
transformed into an equivalent TEG. However, this transftion is pseudo-polynomial, and
leads to graphs that might be very large even for TWEG withlsmanber of transitions.

So challenging questions are to devise polynomial algarittor liveness checking and for
building optimal schedules. In this paper, we define pedadihedules for unitary TWEG, in
which each transitiom; fires everyw; time units. A polynomial algorithm to check the existence
of such a schedule and to compute the optimal periodic séheslpresented. However, unlike
the TEG model, it can be observed that this algorithm mightdeeide whether a unitary TWEG
is schedulable. Moreover, according to the throughpuegdh, such a periodic schedule might
not be optimal among all schedules.

This paper is organized as follows: TWEG and the main corsciptstudying their behaviors



are presented in Section 2. Section 3 is devoted to the stuogrmdic schedules, their existence
condition and their computation. In Section 4, we study fairauit the optimal throughput of a
periodic schedule and we experimentally measure its distanth the throughput of the earliest

schedule. Section 5 is our conclusion.

[I. PROBLEM DEFINITION

First, Weighted Event Graphs and Timed Weighted Event Gzagrle defined and a small
application is presented. A simple necessary conditionveinkss is then recalled, leading to
the definition of unitary and normalized TWEG. Some defimsigpecific to TWEG are lastly

recalled.

A. Weighted Event Graphs

A Weighted Event Graplg = (P,T) (in short WEG) is given by a set of placd? =
{p1,...,pm} and a set of transitiong' = {¢,,...,t,}. A TWEG is a decision-free Petri net.
every placep € P is defined between two transitiomsandt; and is denoted by = (t;,t;).
The arcs(t;, p) and(p, t;) are valued by strictly positive integers denoted respebtiby w(p)
and v(p). At each firing of the transitiort; (resp.t;), w(p) (resp.v(p)) tokens are added to
(resp. removed from) placep. If v(p) = w(p) = 1 for every placep € P, thengG is an
Event Graph (in short EG). For any integer> 0 and any transitiort; € T, (t;,v) denotes
the vth firing of ¢;. C'(G) denotes the set of circuits @. For any transitiont € 7', we set
Ptt)={p=(t)e Pt eTand P (t)={p=(t',t) e P,t' € T}.

Fig. 1. A placep = (t;,t;) of a marked WEG.

A marked Weighted Event Graph is a WEG associated with aralimitarking M,(p),p € P

(see.Figure 1).



B. Timed Weighted Event Graphs

A Timed Weighted Event Graph (in short TWEG) is a WEG assedavith a function
¢ : T — N* such that, for any € T', {(t) is the duration of a firing of. It is usually denoted
by G = (P, T./). For every placey = (t;,t;) € P, w(p) (resp.v(p)) tokens are added toesp.
removed from)p ¢(¢;) time units after the firing of; (resp.at the firing oft;). We assume that
transitions are non-reentrane. two successive firings of the same transition cannot overlap
this is modeled by a loop plage= (t;,t;), Vt; € T' with w(p) = v(p) = 1 and M,(p) = 1. For
a sake of simplicity, these loops are not pictured by figuid$r, p) denotes the instantaneous

marking of the place at time instantr > 0. Clearly, M (0, p) = My(p).

C. Example

Let us consider the assembling of products from raw matefial and )M, following three
levels as pictured by Figure 2. Levglcorresponds to the final assembling, lex¢b the loading
of material raws on the line. It is also assumed that a produd¢vel/ > 0 may be used for
only one operation at levél— 1. Each arc(i, j) is valued by an integer corresponding to the

number of products needed to get one produgt

@ level 0

level 1

[ 1]
2 3
level 2

Fig. 2. Levels for the assembling of products.

Moreover, each workshop is dedicated to exactly one operatiore(there is no conflict
between assembling operations) and is composed by one meald. two distinct products
cannot be assembled simultaneously by the same workshppjatibns and their corresponding
durations are given by Table I.

The number of work-in-process of the linedsMoreover, a transporter tak&sproducts and
brings 6 raw materials toM; and9 to M,. At the starting point, there aré raw materials in
M; and9 in M,. A model of this assembling line using a TWEG is depicted byuFe 3.
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Fig. 3. Modeling an assembling line using a TWEG.

D. Liveness of a marked WEG

1) Definition: A marked WEG is said to be live if each transition can be firdahitely often.

2) Useful tokensFor any place € P, gcd, denotes the greatest common divisor of integers
v(p) andw(p). It has been proved in [10] that the initial markidg,(p) of any placep = (¢;,1;)
may be replaced by/}(p) = w[g—éﬂ -gcd,, without any influence on the feasible firing sequences
of a WEG. In patrticular, the liveness property of WEG is kefitus in the rest of the paper, it
is assumed that the initial markin/,(p) of any placep € P is a multiple ofgcd,,.

3) Algorithms and complexitytiveness checking of a marked EG is a polynomial problem:
settingH (c¢) = Y. My(p) the height of a circuit from C(G), it is proved in [5] that)M, is a
live marking if,pzlil?jc only if, the height of every circuit @ is not null.

Liveness checking is a slightly more complicated for markédG and algorithms developed
up to now to answer this question are pseudo-polynomial [9].

4) A simple necessary condition of liveness for a marked WEGimple necessary condition

of liveness was noticed by several authors [9], [11], [12}. fhis purpose, let us define the weight



(or gain [11]) of every path: of a Weighted Event Grap8, denoted by (i) as

pEPNu ,U(p) ‘

Then, if a marked Weighted Event Graphis live, every circuit has a weight not less than
This condition is clearly not sufficient, since it is fulfileby any EG which is not necessarily

live.

E. Unitary and Normalized WEG

In this subsection we introduce unitary WEG and normalizeBGVWe also show how to

compute a normalized WEG from a unitary WEG in polynomialdim

1) Unitary graphs:A unitary WEGG is a strongly connected WEG such that every circuit of
G has a unit weight (or neutral gain). In the litterature, anitWEG are also called consistent
WESG. It has been proved in [13] that the instantaneous mg@rkina WEG remains always
bounded if, and only if, it is unitary. As models for which thember of tokens is unbounded
are usually not realistic and according to the necessargition of liveness exposed previously,

we restrict our study to unitary WEG.

2) Normalized WEGA transitiont; is normalized if there existg; € N* s.t.,Vp € P*(t;),
w(p) = Z; andVp € P~ (t;), v(p) = Z;. A WEG is said to be normalized if all its transitions
are normalized.

In [10], it is stated that any unitary marked WEG can be polgialy transformed into an
equivalent normalized WEG by multiplying marking functgand initial marking by integers
a(p),p € P such thatvt; € T there exists an integeX; with Vp € P*(¢;), a(p)w(p) = Z;
andVp € P~ (t;), a(p)v(p) = Z;. For any transitior;, Z; becomes the new marking function
of every arcs adjacent t. The corresponding initial marking of any plage= (¢;,¢;) is then
a(p)Mo(p). Z = (44, ..., Z,) is called a normalization vector.

The two WEGS are equivalent in the sense that they have betlsaime feasible schedules.
Note that the normalization concept is quite different frira traditionnal P-invariant definition
in the Petri net community. Indeed, P-invariants are plagariants whereas normalization builds

TWEG for which the number of tokens per circuit is invariant.



3) Minimal normalization algorithm:The algorithm presented in [10] computes a feasible
normalization vector. However, the transformation ddsenli above may consider rational values
(instead of integer values) far(p) if the normalization vectoZ and the initial markings obtained

are integers. Theorem 1 characterizes then the minimum alaation vector.

Theorem 1. Let Z* = (Z,,...,Z,) the minimum integer solution to the systéifi7) defined

as:

Zi _ Zj

Z* is then the minimum normalization vector.

Proof: Every normalization vectoZ verifies¥(G). Thus, if Z* is a feasible normalization

vector, it is the minimum normalization vector.

1) By X(G), Z* € N*". It remains to prove that, for every plage= (¢;,¢,), the initial

marking Mz (p) = ——M,(p) is an integer value.
0 w(p

2) Clearly, M (p) = Z<") : Moilp) - gcd,. SinceMy(p) may be divided byycd, using useful
w\p gca,
tokens assumption, we must prove ttigt can be divided byuLf;).
gcap
Let A € Q" such thatZ = A - w(p) and Z} = A- U(p). If A € Q\N* then there is a
gedy gedy
. 9 roo. . w(p)
couple of integergr, ¢) € N** such thatgcd(r,q) = 1 and A = —. SinceZ} = ¢ ged
q
andz = .. M are both inN, theng dividesw(p) and U(p). Sincew(p) and vlp
T g ged, gcd, gcd, gcd, gcd,

are prime to each other, there is a contradiction.2 5@ N* which achieves the proof.

The minimum normalization vectar* may be computed using a path algorithms similar to

the one presented in [9].

4) Example:Let us consider the example pictured by Figure 3. It can bemksd that this
unitary TWEG is not normalized. Setting(p;) = 3, a(p2) = 2, a(ps) = 3, a(ps) = 6,
a(ps) = 2, a(ps) = 6, a(p;) = 3 and a(ps) = 2, we get the minimum normalized TWEG
pictured by Figure 4. The normalization vector4s= (3,2, 6,6, 18).
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Fig. 4. Equivalent minimum normalized TWEG.

F. Schedules, precedences, and throughput of TWEGS

1) Schedulesiet G be a marked TWEG. A schedule is a functionT x N* — Q* which
associates, with any tuplé;,q) € T x N*, the starting time of thejth firing of ¢;. There
is a strong relationship between a schedule and the comdspp instantaneous marking. Let
p = (t;,t;) be a place ofP. For any valuer € R**, let us denote by (r,t;) the number of

firings of t; completed at time-. More formally,
E(r,t;) = max{q € N,s(t;,q) + £(t;) < T}.
On the same way3(7,t;) denotes the number of firings of started up to time- and
B(r,t;) = max{q € N, s(t;,q) < 7}.

Clearly,
M(7,p) = M(0,p) +w(p) - E(7,t;) — v(p) - B(7, ;).

A schedule (and its corresponding marking) is feasiblé/ifr, p) > 0 for every tuple(r,p) €
R** x P. The throughput of a transitiot) for a schedules is defined by

AP = lim )
b g s(ty, q)

The throughput of is the smallest throughput of a transition

A =min{\; }.

i€T



2) Precedence relationsThe set of constraints induced by a place- (¢;,¢;) on the firings
of the adjacent transition's and¢; may be expressed as classical precedence relations, mgduci
inequalities on each schedule. We say thatenerates a precedence constraint betwegem;)
and (t;, v;) if

Condition 1: (¢;,v;) can be done afteft;,v;);

Condition 2: (t;,v; — 1) can be done befor&;, v;) but not(¢;, v;).

Such a precedence relation induces the following inequédit any schedule:
S(ti,l/i) —|—€(tz) S S(tj,l/j). (l)

The following lemma was proved in [9] and characterizes tbe of precedence relations

induced by a place:

Lemma 1. A placep = (¢;,t;) € P induces a precedence relation between #ta firing of ¢,

and thev,th firing of ¢; if, and only if,
w(p) > Mo(p) + w(p)vi — v(p)v; > max{w(p) —v(p),0}.

Precedence relations fully define feasible schedules of &&Wndeed, in [9] it is proved
that a schedule fulfils the precedence relations defined Ioynha 1 if and only if it is feasible.
According to the definition of precedence constraint andpievious lemma, one can check
that the place = (¢;,t;) depicted by Figure 5 induced for artye N the two following sets of
precedence constraints betwegrandt;:
(ti,1+2k) — (t;,1+3k)
{ (ti,2+2k) — (t;,3+3k)
In [9], it is stated that there is exactiyin{w(p), v(p)} different sets of precedence constraints

induced by a place (as depicted by Figure 1), which is exponential in the sizéhefinstance.

Fig. 5. A placep = (t;,t;) which induces two types of precedence constraints.
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3) Earliest scheduleNotice that for live marked TWEG, the earliest schedule @Rlgonsists
in firing the transitions as soon as possible) always existshes a maximum throughput. For
marked TEGs, computing the throughput of the earliest sdleecn be done polynomially [6],
[14], but it has an unknown theoretical complexity for matkanitary TWEGS. Ifn is the number
of transitions andA denotes the highest marking function value, the time corifyi®f the al-
gorithms developed until now for computing the optimal tigbput isO(n®+ (nA™)3 log(nA™))
[9], [15]. Hence, it is not polynomial because of the termAn

4) Periodic schedulesA schedules is periodic if there exists a vectar = (wy, ..., w,) € Q"
such that, for any couplé;, q) € T x N*, s(t;,q) = s(t;, 1) + (¢ — 1)w;. w; is then the period
of the transitiont; and \; = wil its throughput. Periodic schedules are of high interesinfro
a practical point of view, because their representationogact so that they can be easily

implemented in real systems.

G. Problem formulation

According to the previous section, any TWEG can be normdJize from now, we shall only
consider normalized TWEGSs. The two problems addressedisnptper can then be expressed
as follows:

1) Existence of a periodic schedule for a marked normalized GWE

Input: G is a marked normalized TWEG.
Question: Is there a feasible periodic scheduled@r
2) Computation of an optimal periodic schedule for a markednmalized TWEG

Input: G is a marked normalized TWEG.
Output: If it exists, a feasible periodic schedule with rmaxim throughput.

[1l. STUDY OF PERIODIC SCHEDULES

This section is devoted to the study of periodic schedules DWEG. It is proved that every
placep induces an inequality on the starting time of the first firi@jsts adjacent transitions.
A necessary and sufficient condition for the existence of rogde schedule and a polynomial

algorithm to compute a periodic schedule are derived.
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A. Properties of periodic schedule

Let us first consider an important property of precedencatias induced by a place, which
will be used in Theorem 2 to prove feasibility conditions @fripdic schedules.

Lemma 2. Let us consider a place = (t;,t;) € P, and let the integer values,,;,, =
max{w(p) = v(p), 0} = Mo(p) oy _ wip) = Mop)
gedy gedy
1) If p induces a precedence relation between the firiftgs/;) and (¢;,v;) then there exists
k € {kmins - - -, kmaz } SUCh thatw(p)v; — v(p)v; = k - gcd,,.

2) Conversely, for anyt € {kin, - - -, kmas }» there exist an infinite number of tuples, v;) €

N*2 such thatw(p)v; — v(p)v; = k - ged, and p induces a precedence relation between
firings (t;,v;) and (¢;, v;).

Proof:
1) Sincegcd, = ged(v(p), w(p)), for any tuple(v;,v;) € N*? there existsk € Z such that
w(p)v; — v(p)v; = k- ged,. Now, if there is a precedence relation betweeny;) and

(tj,vj)), we get by Lemma 1, as we assumed th&f(p) is a multiple ofgcd,,

w(p) — Mo(p) > w(p)vi — v(p)v; > max{w(p) — v(p),0} — Mo(p),

which is equivalent to

w(p) — Mo(p) — gedy > k - ged, > max{w(p) — v(p), 0} — Mo(p).
So we getk,,in < k < ks
2) Conversely, there exists, b) € Z? such thataw(p) — bu(p) = ged,. Then for anyk €
{kmins - - - kmaz }, @and any integeq > 0, the couple of integers;, v;) = (ka+qu(p), kb+
qu(p)) is such thatv(p)v;—v(p)v; = k-gcd,. Thusp induces a precedence relation between
(t;,v;) and (t;, v;), which achieves the proof.

Theorem 2. Let G be a unitary normalized TWEG. For any periodic schedyl¢here exists a
rational K € Q**, called thetoken flow of s such that, for any couple of transitiofis, ¢;) € 77,
% = % = K. Moreover, the precedence relations associated with aagegh = (¢;,¢;) are
fulfilled by s iff

s(tj, 1) — s(t;, 1) > U(t;) + K(Z; — Mo(p) — ged,y).
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Proof: Let be a placep = (¢;,¢;) € P inducing a precedence relation between the firings

(t;,v;) and (t;, v;). Then, according to inequality 1 page 9, and sinds periodic, we get

s(ti, 1) + (vi = 1) - w; + L(t;) < s(ty, 1) + (v; — 1) - w;.
w(p)v; — k- ged,

o) and

Then, by Lemma 2, there exiskse {k,.in, - - ., kmaz } SUCh thaty; =

k- ged
S(t,1) — s(ts, 1) > (L) + w; — wi + vyw; — PR 9y

v(p) g
So,
s(ty, 1) — s(ti, 1) > 0(t;) + (wi _ %%) Vi + (1 n kl-)iq;)dp> w; — w;.
This inequality must be true for arbitrarily large valuese N*, sow; — %wj < 0 and then
% < %. As G is normalizedw(p) = Z; andv(p) = Z;. Since§ is unitary, it is strongly
connected and thus, for any plage= (¢;,¢,), % = tZU—j So, there exists a valuE € Q* such

that, for any transitiont; € T, % = K. Then, the previous inequality becomes

k- gcd,

J

and thus

s(ty, 1) —s(ty, 1) > U(ts) + K(Z; — Zi + k - ged,y).

Now, the right term grows withk and according to Lemma 2, there exis$ts, v;) € N*? such

thatk =k, = M
gcd,

s(tj, 1) —s(t, 1) > U(t;) + K(Z; — Z; + Z; — My(p) — gedy)

— 1, thus the precedence relation holds if, and only if,

which is equivalent to
s(tj, 1) —s(t;, 1) > U(t;) + K(Z; — Mo(p) — gedy).

Conversely, assume this last inequality and thate T, % = K. Then, for any integers; and
v; With w(p)v; —v(p)v; = k- ged, for k € {kmin, . - ., kma;}, it can be proven that checks the

precedence relation betweéh, v;) and (¢;, ;) using the reverse arguments. n
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B. Existence of periodic schedules

Let us build a bi-valued grapty = (7', £, L, H) as follows: nodes of7 are the transitions,
and any place = (¢;,t;) induces an arc from nodg to nodet;. Valuations of the are € E
corresponding to a plage= (t;,t;) are L(e) = {(t;) and H (e) = My(p) + gcd, — v(p). For any
value K € Q**, we also denote by7; = (T, E, dx) the graphG defined previously but which
arcs are valued byx(e) = L(e) — KH(e).

According to Theorem 2, starting tim¢s(¢;, 1),¢; € 7'} exists for a fixed valué’ € Q* if and
only if, the sum of the valuations on every circuidf G is such thavx(c) = > ... dx(e) < 0.
This induces the following necessary and sufficient existerondition of periodic schedules:

Theorem 3. LetG be a normalized TWEG. There exists a periodic schedul®ifgvery circuit

c of G, H(c) > 0. Moreover, if this condition is fulfilled, and if

L(c)
Koin = clglcaé) ma and 7. = Ttl}g%i{zz}
then for anyK > K,,;, there exists a periodic schedutewith token flow/K and throughput
s 1
)\ B KZmax .

Proof:

A= B Let us suppose that there exists a cireuivf G with H(c) < 0. Then, for every
value K € Q**, dx(c) > 0 and no periodic schedule exists.

B = A Let us suppose now that, for every circuiof GG, H(c) > 0. Let us consider any
K > K,.;,- Then, for every circuit of G, dx(c) < 0, so there exists a periodic
schedule with token flowk. The period of a task in this schedule isv; = K Z;,
so that the throughput of the schedule\is= !

max;e (1, .. n}iwit

[
Surprisingly, this condition is similar to a sufficient caton of liveness of a marked WEG
proved in [10]. An algorithm inO(max{nm, m max;cr{log Z;}}) to evaluate this condition
can be found in this paper. It is also proved that this coodiis a necessary and sufficient
condition of liveness for circuits composed by two tramsis. So, the following corollary is

easily deduced:
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Corollary 1. Let G be a normalized marked TWEG composed by a circuit of two itrans. G

is live if and only ifG has a periodic schedule.

This corollary is not true anymore for circuits withtransitions. For example, let us consider
the normalized TWE® presented by Figure 6 with no particular assumption on fidagations.
The sequences of firings = i3t t1t1tatstitit1t1t2ts can be repeated infinitely, so it is live.
However,>"%_, My(p;) = 28 and 3%, (v(p;) — ged,,) = 29, so the condition of Theorem 3 is

false and this circuit has no periodic schedule.

th 6 y4!
6
14
D3 —— to
14
L/ C)
ty 2! D2

Fig. 6. G is live but has no periodic schedule.

C. Computation of an optimal periodic schedule

Assume thayg is a normalized TWEG which fulfils the condition expressedTieorem 3.

According to this theorem the optimal throughput of a pedasthedules* . for G is defined

per

1
K'min Zmax

Several polynomial and pseudo-polynomial algorithms wreeloped to comput&’,,;,, (see.
as example [16], [17], [18]). An experimental study of thedgorithms can be found in [19].

by the minimum token flowi,,,;,,. Then\seer = where Z,,., = maxeq1,.. n3{ 2}

Corresponding starting time$s(t;,1),t; € T} can then be computed using Bellmann-Ford
algorithm [20] onGk, ., .
1) Example:Figure 7 presents the bi-valued gra@hassociated with the TWEG pictured by
Figure 4. Note that the necessary and sufficient conditigmessed by Theorem 3 is fulfilled, so

a periodic schedule exists. We get héfg;, = 13 for the circuitc = tyt3t,t5t2, SO the optimum
periods of the transitions ame; = 39, w, = 26, w3 = 78, wy, = 78 andws; = 234.
Figure 8 presents the graph,; for our example pictured by Figure 4 and starting times

{s(t;, 1), t; € T}.
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Fig. 7. A bi-valued graphG associated with the TWEG of Figure 4.

—222 )

2 t1 166 ‘t5
)
—222

J

Fig. 8. G13 and starting times(t;, 1),¢; € T' (in circles) associated with the TWEG of Figure 4.

2) Optimal periodic versus optimal scheduldow, we can observe that the throughput of a
periodic schedule may be quite far from the optimum. For elamlet us consider a marked
normalized TWEG which consists in a circuit with two plagas= (¢, t2), p2 = (t2,t1) such
thatged,, = ged,, =1, My(p1) = v(p1) +w(p1) —1 = Zo+Z; —1 and My(p2) = 0. This TWEG
fulfils the condition stated in Theorem 3VIy(p1) + Mo(p2) + ged,, + gedyp, — Zo — Z; = 1. The
associated grapty is then pictured by Figure 9.

(U(t1), Z1)
(I(t1), Z1) (I(t2), Z2)

(I(t2), 1 — Z1)

Fig. 9. Bi-valued graplG associated with the normalized TWEG with two places.
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Zy 0 Zy
er 1 _ 1 er
transitions for the optimum periodic schedulg, is /\t” = or = G and /\t” =

Now, since the total number of tokens in the circuitdst+ Z, — 1, transitions

We get K,;n = max{g(tl) it €(t1)+€(t2)} = ((t,) + ((t) and the throughput of

1
wa Zz(é(t1>+f(tz>)'

t; andt, will never be fired simultaneously by the earliest schedMereover, if we denote by
ny (resp.ny) the number of firings of; (resp.t;) such that the system will return in its initial
state {.e. with Z; + Z, — 1 tokens inp; and0 tokens inp,), then we must have,Z; —n,Z, = 0,
so there exist& € N* with n; = kZ, andny, = kZ;. Thus, the throughput of transitioris and

and \;*? = 2L Now,

t, for the earliest schedule,,, is \;;** = VISV

Zgé(t1)+Z1é t2)

)\tsfs‘”’ )\f:“”’ I Za(L(ty) 4 L(t2))

R = = '
)\tper )\fgeT Z2€<t1) + Z1€<t2)

Assume without loss of generality that > 7, then

\Sasap )\s‘“‘”’ _ Zl <Zzﬁ(t1) + Zlg(tz) — (Zl - ZZ)E(t2)>
\Sper )\tfer ZQ£<t1> + Zlg(t2)

R =

So,

_ (Z1 = Zo){(12)
h=2 <1 AR Z1€(t2)> <

The ratio R is then maximum wher{(¢,) tends to infinity and the bounthax{Z;, Z,} is

asymptotically reached.

IV. STUDY OF A CIRCUIT

We first present some simple properties on the optimal perischedule of a circuit. These
properties are considered to study experimentally the gdwden the throughput of a schedule
with the asap scheduling policy and the maximum throughput of a periodicesiule for the

same initial marking.

A. Periodic schedule of a circuit

The TWEG studied here is a circuit af transitions andn places,n > 2 denoted byC =
(t1,p1,te, ..., tn, pn,t1). We also set,.; = t; in order to simplify formulas. Let us consider
x = Y7 Mo(p), and we define bys,,;, (z) the minimum token flow of the circuit for an initial

marking valuez. We now study this token flow as a function of
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Let us set

n

V=>(Zi — gcd(Z;, Zi+1)).

i=1
According to Theorem 3, a periodic schedule existsHffiC) > 0, i.e. z > x,,;, = V + 1. Now,

assumingr > x,,;,, wWe get:

ot = s (| = ol {57} i o ()25}

Notice that tokens distribution in the initial marking has mcidence on the minimum token

flow. Due to the fact that transitions are non-reentrant, e definek™* as the lower bound of

h= 3“3%({ Z, } ‘
. . . L(C)
Let x,,., be the minimum integer value such that,;,(z) = K*. Then, we have:iv <
Lmaz —

K* andL > K™,

Loz — 1 — V
Thus,
_ [ L(C)
meLZE_ ’7 K* —‘ +V
. L(C)
Now, if Z,in < 2 < Tyae, then K, (z) = v Theorem 4 follows.
T —

Theorem 4. The throughput of an optimal periodic schedule for the dtrali with z initial

tokens is:

—y 1 .
{ E(C) ' Zf Tmin < T < Tmaz,

if T > Ty

Unlike z,.:,, the valuer,,,, depends on the duratiod$(¢;),t; € T'}. The following theorem
defines an upper bound fat,,,, which does not depend on the durations. For this purpose, let

us definez* as follows:
=1

Theorem 5. z,,., < z*. Moreover, if there exists € Q™ such thatVi € {1,...,n}, & = p,

thenz* = z,,40.

Proof:
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By definition of z,,,, andz*, we have to show that

m e

K* i=1
As >, Z;isin N, it is equivalent to prove that
Let i* € {1,...,n} such thatf(t: — max,, ET{
0(t;) Ziw < U(ti)Z;, and thus

} Then, for all¢; € T, it follows that

Zp 3o U(t) < U(t) o0y Z
"oy t; i
N < maer {4}
L(C n

ot

Now, if there existyp € Q™* such thatVi € {1,...,n}, Zf) = p, then K* = p and we have

L v pZ; "
xmax:[ ((ﬂﬂf [M—‘—FV:ZZH—V:x*
K P i=1

Hence, the second part of the theorem. [ |
A simple outcome of Theorem 5 is théf,,;,,(z*) = K*.
As transitions are non-reentrant, the best throughput afhedule with theasapscheduling

policy is also limited by
1

K*Zmam7

As the throughput of a schedule with tasapscheduling policy is optimum, we have

Nsaser (1) <

Y2 > Tin.-

Nsasar (1) > Xper (), VT > Ty

ThenVz > 202,

Sas 1 s
ASesar () = 7 Aper ().

However, a schedule with thasap scheduling policy may reach this maximum throughput

for a smaller value ofc. For instance, we consider a marked normalized TWEG whictsists
in a circuit of two place®, = (t1,t5), p2 = (t2,t1) and such that(t;) = 4 and ((ty) = 2 (see.
Figure 10). For this initial marking, we hav&,,;, = 1.5 and thenw; = 4.5 andw, = 3 . One
can see on Figure 10, that the schedije has idle times for both transitions wherefascan

be fired periodically without idle time in the schedulg,,.
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Sasep T L[ b

Fig. 10. A TWEGG for which the schedule,s., reaches the best throughput whereas the schegujecannot.

B. Periodic optimal throughput versus optimal throughput

We made our experiments on a randomly generated normalirewita’ in order to analyze
the ratio R between optimal throughput and periodic optimal throughpu

For any fixed integer value corresponding to the number of transitions, the integeuesl
Z; and the durationg(t;), ¢« € {1,...,n} are randomly fixed respectively ifil, ..., 100} and
{1,...,50}. By Theorem 4 and Theorem 5, the relevant number of tokens {$.j,;., ..., 2*}.
Thus, we setr = x,,;, + [ f - X1, Z;] for different values off (from 0 to 1 with step0.02). The
optimal throughput was obtained by running the earliesedale and analyzing its throughput
after a while.

We first considered the special cage= 0, depicted by Figure 11, for which the initial
marking is the minimum number such that there exists a perischedule. It appears that the
ratio may then be very important (up to 268) and much gredtan the bound observed for
circuits with two transitions. Moreover, the mean and masoreoughly increase with the number
of transitions, even if some decreasing parts can be olbderve

Then we observed that even for other quite small value§ tfie mean and max ratio decrease
with the number of transitions. The mean ratio is less thanfor n > 10, and very close td
for n > 50

Figure 12 shows the variation of the ratio with the numberrahsitions.

Now, if we consider the variation of the ratio in terms of thelue f, depicted in Figure 13,
we observe that the ratio (mean and max) decreases draltyattea f = 0.02 the mean ratio
equals5, due to a very few number of instances with great ratio, whaemhenf > 0.08 the

mean ratio is less thak and reaches for f = 0.8.
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mean and maxratio for =0

300

250

200

150 — MaxRatio

--- Mean Ratio
100

50

2 4 6 8 10203040506070 80
n

Fig. 11. Mean and worst ratio fof = 0 increase with the number of transitions.

25 .
max and mean ratio for £~0,02

20

max ratio
15

““T'mean ratio

10

2 4 6 8 10 20 30 40 50 60 70 80
n

Fig. 12. Mean and max ratio decreases as the number of imarssit increases forf > 0, 02.

We can also notice that in all the experiments, the mean andtx curves are quite far from
each other, since the worst case instances have a huge oatjgaced to the transition durations
and the values of the arcs. So, periodic schedules do noyslgravide good solutions, especially

when the initial marking is very close to the minimal valug;,,.

This gives a first insight on the quality of the optimal perothroughput with respect to

optimal one. In the future, we shall run experiments on manamgex graphs.
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mean and max ratio in function of

—max ratio

" mean ratio

0,02 0,04 0,06 0,08 0,1 012014 0,16 0,18 02 04 06 08 1

Fig. 13. Mean and worst ratio decrease wheincreases.

V. CONCLUSIONS

In this paper we established an existence condition andyapuaiial algorithm to compute the
optimal periodic schedule of a TWEG. Experiments prove Hititough such schedules are not
optimal, their computation gives an interesting lower bdbon the optimal throughput, especially
if the existence condition of Theorem 3 is not tighe, if the initial marking of circuits is large
enough.

In the future, it would be worth to derive a lower bound on tlaéia between the optimal
throughput and the optimal periodic throughput of a gen@iEG, and to further study the

complexity of the liveness problem.
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