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Abstract: We propose a general framework for identification of linear discrete-time hybrid
systems in which arbitrary loss functions can be easily included. Our framework includes
the algebraic (Vidal et al., 2003) and support vector regression (Lauer and Bloch, 2008a,b)
methods as particular cases. Inspired by these approaches, we then propose an optimization
framework that relies on the minimization of a product of loss functions. Here, the identification
problem is recast as a nonlinear and non-convex, though continuous, optimization program that
involves only the model parameters as variables. As a result, its complexity scales linearly with
the number of data and it can easily be solved using standard global optimization methods.
Moreover, we show that by choosing a saturated loss function, such as Hampel’s loss function,
the algorithm can efficiently deal with noise and outliers in the data. The final result is a general
framework for linear hybrid system identification that can deal efficiently with noise, outliers,
and large data sets. Numerical experiments demonstrate the efficiency and robustness of the
proposed approach.

Keywords: switched systems; piecewise affine systems; linear hybrid systems; system
identification; global optimization; large-scale problems; robustness to outliers.

1. INTRODUCTION

In this paper, we are concerned with the identification of
a class of discrete-time hybrid systems of the ARX form

yi = fλi
(xi) + ei, (1)

where xi = [yi−1 . . . yi−na
, ui−nk

. . . ui−nk−nc+1]
T is

the continuous state (or regression vector) of dimension p
containing the lagged nc inputs ui−k and na outputs yi−k,
λi ∈ {1, . . . , n} is the discrete state (or mode) determining
which one of the n subsystems {fj}n

j=1 is active at time
step i, and ei is an additive noise term. In particular,
we concentrate on the problem of finding a hybrid model
f = {fj}n

j=1 of the form (1) from input–output data

{(xi, yi)}N
i=1. In the following, we assume the number of

modes n to be known.

Related work. Recently, six main approaches to hybrid
system identification have been developed: the cluster-
ing approach (Ferrari-Trecate et al., 2003; Nakada et al.,
2005), the Bayesian approach (Juloski et al., 2005b), the
mixed integer programming (MIP) approach (Roll et al.,
2004), the bounded-error approach (Bemporad et al.,
2005), the algebraic approach (Vidal et al., 2003; Ma and
Vidal, 2005), and the Support Vector Regression (SVR)
approach (Lauer and Bloch, 2008a; Lauer, 2008). The first
four focus on the problem of PieceWise Affine (PWA)
system identification, where the discrete state λi depends
on the continuous state xi. The first two approaches rely
on alternating minimization and are sensitive to initializa-
tion, while the next two involve solving a combinatorial
optimization problem, which can be computationally in-
tensive. Both the bounded-error and Bayesian approaches

can also be used to identify a broader class of systems,
known as switched linear systems, where the discrete state
evolves independently of the continuous state. The alge-
braic approach (Vidal et al., 2003) gives a closed form
solution to this latter problem. However, it is sensitive to
noise compared to the clustering-based or bounded-error
methods, as shown in Juloski et al. (2005a). The SVR
approach provides a convenient way of dealing with noisy
data by incorporating regularization into the optimization
framework. However, it optimizes over a number of vari-
ables that grows with the number of data points, hence it is
only applicable to small data sets. The bounded error ap-
proach suffers from the same drawback. To the best of our
knowledge, other than the bounded error approach, none
of the existing approaches deals explicitly with outliers in
the data. We refer the reader to Paoletti et al. (2007) for
a review and comparison of some of these methods.

Paper contributions. Our main contribution is a hybrid
system identification algorithm that is computationally
efficient with respect to the number of data points, and
robust with respect to outliers in the data. The proposed
method is based on the minimization of a product of
loss functions plus a regularization term. This provides
a general framework for hybrid system identification, in
which any suitable loss function can be used. In particular,
data corrupted by non-Gaussian noise can be treated by
a suitable choice of the loss function. The interpretation
of the method in a maximum likelihood framework also
allows one to choose the loss functions with respect to
the noise probability density function, as in standard
estimation theory.



We also show that unbounded loss functions that are
robust to outliers in classical linear estimation problems
cannot guarantee robustness for the product-of-errors ap-
proach. Thus, we propose to use saturated loss functions,
such as the Hampel’s loss function (Cichocki and Unbe-
hauen, 1993), which are shown to be robust in this case.
Experiments show that this loss function outperforms the
classical loss functions in the presence of outliers and
additive noise.

The paper also proposes a reformulation of the hybrid sys-
tem identification problem as an unconstrained optimiza-
tion program. Though non-convex, this nonlinear program
involves a low number of variables, equal to the number of
parameters of the hybrid model. As we will see, its com-
plexity scales linearly with the number of data and thus
it is efficiently solvable by standard global optimization
algorithms. Experiments show that the global optimum is
always found in few seconds for data sets of up to hundreds
of thousands of data points.

Paper organization. The paper starts by presenting a
general optimization framework in §2, including its min-
min and maximum likelihood interpretations (§2.1-2.2).
We also show how two existing hybrid system identification
algorithms can be interpreted as particular cases of this
framework (§2.3-2.4). §3 presents the proposed product-of-
errors approach to hybrid system identification, including
an analysis of its robustness to outliers (§3.1), and the
global optimization method (§3.2). The paper ends with
numerical experiments in §4 and conclusions in §5.

2. GENERAL FRAMEWORK

The general principle behind all hybrid system identifica-
tion methods is to find a collection of models {fi}n

i=1 that
best fit the given collection of data points {(xi, yi)}N

i=1. As
a consequence, one can pose the hybrid system identifica-
tion problem as an optimization problem of the form

min
f1,...,fn

R(f1, . . . , fn) + J(f1, . . . , fn, {(xi, yi)}
N
i=1). (2)

The first term is called the regularizer, and measures the
model smoothness or the model complexity. The second
term is called the fitting error and measures the fidelity of
the model with respect to the data. Data fidelity is often
measured using a loss function of the error eij = yi−fj(xi)
incurred by assigning the ith data point to the jth model.

The methods included in the framework differ in the choice
of the regularizer, in the choice of the loss function, or
in how these loss functions are combined across different
models to form the fitting error. Before delving into
the details, we first review some of the well known loss
functions used in estimation theory and shown in Fig. 1.

Squared loss function. The squared loss function,

l(e) = e2, (3)

is perhaps the most well known. As will be seen in §2.3, the
algebraic method (Vidal et al., 2003) can be interpreted in
the proposed framework on the basis of this loss function.

Absolute loss function. Another well known loss func-
tion is the absolute loss, which given by

l(e) = |e|. (4)
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Fig. 1. Squared, absolute, and ε-insensitive loss functions
l(e) versus the error e.

In classical linear estimation theory, this loss function
offers a certain robustness to outliers compared to the
squared loss function. As will be seen in §3.1, this property
does not hold for the proposed product-of-errors approach
to hybrid system identification.

ε-insensitive loss function. The ε-insensitive loss func-
tion, defined by Vapnik (1995) for Support Vector Regres-
sion (SVR),

l(e) = max(0, |e| − ε), (5)
builds a tube of insensitivity of radius ε, inside which the
errors are meaningless. Errors larger than ε are penalized
linearly, which ensures a certain robustness to outliers in
linear estimation theory. The ε-insensitive loss function
has been used for hybrid system identification in Lauer
and Bloch (2008a,b) as a relaxation to the bounded-error
approach (Bemporad et al., 2005).

2.1 Min-min error estimator

The min-min estimator (MME) assigns sample (xi, yi) to
the submodel fj that gives the best estimate fj(xi) of yi:

λ̂i = arg min
j=1,...,n

l(yi − fj(xi)), i = 1, . . . , N, (6)

where l is, for example, one of the loss functions above.
Thus, the fitting error to be minimized is the sum of the

errors made after assigning point i to submodel λ̂i, i.e.,

min
f1,...,fn

JMME =

N∑

i=1

(

min
j=1,...,n

l(yi − fj(xi))

)

. (7)

One of the main difficulties with this MME framework
is that it involves optimization over both discrete and
continuous variables. To see this, notice that one can
rewrite the optimization problem in (7) as

min
{fj},{βij}

N∑

i=1

n∑

j=1

βij l(yi − fj(xi)), (8)

where βij ∈ {0, 1} and
∑

j βij = 1. The discrete variables
βij encode the assignment of points to submodels, while
the continuous variables encode the parameters of each
submodel. One way to solve this mixed (discrete and
continuous) program is to use alternating minimization:
given the submodels, compute the assignment of points to
submodels using (6); and given the assignments, compute
one submodel for each group of points. This approach
is indeed effective when the submodels are linear and
the squared loss (3) is used, because the estimation of
each submodel is a linear system identification problem.
However, this approach is sensitive to initialization. Note
that problem (8) can also be solved by using mixed integer
programming techniques, as proposed in Roll et al. (2004)
for hinging hyperplane models. These latter optimization
techniques can guarantee to find the global minimum, but,
due to their high complexity, they can only be used in
practice for small data sets.



2.2 Maximum likelihood of the most likely estimator

The Maximum Likelihood (ML) approach consists in find-
ing the model f that most likely generated the data.
The Maximum Likelihood of the Most Likely (MLML)
estimator assigns each training sample (xi, yi) to the most
likely submodel fj, i.e. the one with maximal likelihood of
the sample w.r.t. fj . This leads to

f(xi) = f
λ̂i

(xi), for λ̂i = arg max
j=1,...,n

p(yi|xi, fj). (9)

As p(yi|xi, f) = p(yi|xi, fλ̂i
), the likelihood of a sample

w.r.t. the hybrid model f can be written as

p(yi|xi, f) ∝ max
j=1,...,n

p(yi|xi, fj). (10)

After replacing the maximization in (10) by the minimiza-
tion of the negative log-likelihood, we obtain the following
MLML estimator over all the samples

min
f1,...,fn

JMLML =

N∑

i=1

(

min
j=1,...,n

− ln p(yi|xi, fj)

)

. (11)

Notice that the MLML problem amounts to a min-min op-
timization program, hence there is an equivalence between
MLML and MME estimators. Indeed, choosing a particu-
lar loss function l for an MME estimator (7) corresponds
to a particular choice of the noise probability density func-
tion, p(yi|xi, fj), for an MLML estimator (11). Therefore,
MLML suffers from the same drawbacks as MME. That
is, the solution to problem (11) involves alternating mini-
mization, which is sensitive to initialization, and possibly
computationally costly for non-Gaussian errors.

2.3 Algebraic approach

One way of reducing the computational burden of mixed
optimization is to use soft assignments βij ∈ R

+ rather
than hard assignments βij ∈ {0, 1}. The algebraic ap-
proach (Vidal et al., 2003) uses a clever choice of the
assignments that leads to a closed form solution for linear
models. Specifically, the algebraic approach is based on the
observation that, in the absence of noise, yi = w

T
λi

xi. This
leads to the following hybrid decoupling constraints

n∏

j=1

(yi − w
T
j xi) = 0, i = 1, . . . , N, (12)

from which one can algebraically solve for the model
parameters as shown in Vidal et al. (2003); Ma and
Vidal (2005). In case of noisy data, the authors solve the
equations in (12) in a least squares sense by minimizing

min
w1,...,wn

JA =

N∑

i=1

n∏

j=1

(yi − w
T
j xi)

2. (13)

This cost function is the same as that in (8) with l(e) = e2,
but with soft assignments βij =

∏

k 6=j l(yi − w
T
k xi).

Though in principle (13) is a nonlinear optimization prob-
lem, the authors find a linear solution by minimizing over
the coefficients of the product polynomial, rather than over
the model parameters wj . This approximation results in
a convex (quadratic) optimization problem, which can be
solved very efficiently using linear techniques. However,
this approximation comes at the cost of sensitivity to noise
and outliers. Whenever pertinent, we will refer to these two
approaches as linear or nonlinear algebraic approach.

2.4 Support Vector Regression approach

None of the approaches described so far includes regular-
ization over the submodel parameters. A natural way of
including regularization is to use SVR with ℓ2 regulariza-
tion, which in the case of linear models, fj(x) = w

T
j x,

yields
∑

j w
T
j wj . Inspired by the hybrid decoupling con-

straint (12), the work of Lauer and Bloch (2008a) combines
this regularizer with a fitting error which is essentially
the product of upper bounds on the errors ξij ≥ |yi −
w

T
j xi| − δj , for thresholds δj . This leads to the following

optimization program

min
wj ,ξij≥0

1

n

n∑

j=1

w
T
j wj +

C

N

N∑

i=1

n∏

j=1

ξij (14)

−ξij−δj ≤ yi−w
T
j xi ≤ δj +ξij , i = 1, . . . , N, j = 1, . . . , n.

where C is the parameter that tunes the trade-off between
the regularizer and the fitting error. A similar formulation
of this method with ℓ1-norm regularization can be found
in (Lauer, 2008).

However, the problem with this formulation is that it
involves a number of variables equal to n× (p+N), which
grows with the number of samples N for a fixed number
of modes n and a fixed number of parameters per mode p.
To resolve this issue, notice that the SVR method can be
reformulated in the proposed general framework by using
the ε-insensitive loss function in (5). This leads to the
optimization problem

min
w1,...,wn

1

n

n∑

j=1

w
T
j wj

︸ ︷︷ ︸

RSV R

+
C

N

N∑

i=1

n∏

j=1

max(0, |yi−w
T
j xi|−δj)

︸ ︷︷ ︸

JSV R

,

which involves only n× p variables. This reformulation of
the SVR approach is the basis for the product-of-errors
approach, which we propose next.

3. PRODUCT-OF-ERRORS ESTIMATOR

In the previous section, we presented a general optimiza-
tion framework for solving the hybrid system identifica-
tion problem, and showed how different methods can be
obtained via different choices of the regularizer and fitting
error, as summarized in Table 1. Some methods, e.g., the
algebraic approach, lead to simple optimization problems,
but suffer from robustness issues. Other methods, e.g., the
SVR approach, can be made robust to noise, but not to
outliers and involve optimization over a large number of
variables.

To circumvent these issues, in this section we propose a
product-of-errors (PE) estimator of the form

min
f1,...,fn

1

n

n∑

j=1

R(fj)

︸ ︷︷ ︸

RP E

+
C

N

N∑

i=1

n∏

j=1

l(yi − fj(xi))

︸ ︷︷ ︸

JPE

. (15)

where R(fj) is a regularizer for submodel fj and l is a
robust loss function, to be defined below. The PE estima-
tor has several important properties. First of all, notice
that for linear models, fj(x) = w

T
j x, the PE estimator is

as efficient as the nonlinear algebraic approach, because it



Table 1. Particular choice of regularizer and loss function leading to the existing methods.

Method Regularizer R(f1, . . . , fn) Fitting error J(f1, . . . , fn, {(xi, yi)}N
i=1

)

SVR approach(Lauer and Bloch, 2008a) 1

n

∑n

j=1
‖wj‖2

2

∑N

i=1

∏n

j=1
max(0, |yi − w

T
j

xi| − δj)

Algebraic approach (Vidal et al., 2003)
∑N

i=1

∏n

j=1
(yi − w

T
j

xi)2

Product-of-errors estimator (this paper) 1

n

∑n

j=1
R(wj), for any R(wj)

∑N

i=1

∏n

j=1
l(yi − fj(xi)), for any l(yi − w

T
j

xi)

optimizes over a number of variables that does not depend
on the number of data points. In fact, JPE coincides
with the algebraic error in (13) when l(e) = e2. However,
the PE estimator can be made robust to outliers by a
suitable choice of the loss function, as we will show in §3.1.
Notice also that the PE estimator coincides with the SVR
approach when R(wj) = w

T
j wj and l is chosen as the ε-

insensitive loss function. However, we will see in §3.1 that
the product of ε-insensitive loss functions is not robust
to outliers, and propose an alternative choice. Finally,
although the PE estimator involves solving a nonlinear
and non-convex program, we will show in §3.2 that global
optimization techniques can be used to find the global
minimum, under the mild requirement of continuity of the
loss function.

3.1 Robustness to outliers

In this paper, we consider only outliers with respect to the
output value, i.e., points with arbitrary value yi, but exact
regression vector xi. For an estimator to be robust to such
outliers, the effect of a single point on the estimation must
be bounded. For instance, in classical linear estimation
problems, the influence function of the squared loss (3),
i.e. its derivative with respect to yi, is unbounded. On
the other hand, the absolute loss (4) has an influence
function bounded by 1 and thus leads to robust estimators.
However, a simple calculation shows that this property
does not hold when using a PE estimator for hybrid
systems. In this case, the influence of a single point on
the objective function (15) becomes

∂JPE

∂yi

=
n∑

j=1

∂l(yi − fj(xi))

∂yi

∏

k∈{1,...,n}\j

l(yi − fk(xi)), (16)

where ∂l(yi−fj(xi))/∂yi = ∂l(yi−fj(xi))/∂(yi−fj(xi))×
∂(yi − fj(xi))/∂yi = l′(eij). Though the derivative l′(e)
of the absolute loss is bounded by 1, the values l(yi −
fk(xi)) cannot be bounded for an unbounded yi. Thus the
influence of a single point cannot be bounded.

In order to obtain a robust PE estimator, one needs a loss
function l leading to l′(e) = 0, for large values of the error
|e|. For this purpose, we propose to use a saturated absolute
loss function defined as

l(e) = min(δ, |e|), (17)

with derivative l′(e) = −1, if e ∈ [−δ, 0[, 1, if e ∈ [0, δ[,
and 0 otherwise.

A similar methodology can be applied to define other
robust loss functions, such as the saturated squared loss
l(e) = min(δ2, e2), also known as Talvar’s loss function, or
the smoother Hampel’s loss function

l(e) =

{
δ2/π (1 − cos(πe/δ)) , if |e| ≤ δ,

2δ2/π, otherwise.
(18)

0
0

0
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0

δ
2δ2/πδ2

−δ−δ δ δδ −δ

Fig. 2. Saturated absolute, saturated squared (or Talvar’s),
and Hampel’s loss functions l(e) versus the error e.

These loss functions are plotted in Fig. 2.

3.2 Optimization of the product-of-errors function

For linear submodels of the form fj(x) = w
T
j x, j =

1, . . . , n,, the product-of-error estimator is given by

min
w1,...,wn

1

n

n∑

j=1

R(wj) +
C

N

N∑

i=1

n∏

j=1

l(yi − w
T
j xi), (19)

where the parameter vectors wj to estimate are of dimen-
sion p = na +nc (or p = na +nc +1 for affine submodels).
Thus the number of variables involved in (19), n × p, is
small and fixed for any number of data N . However, the
objective function in (19) requires to compute a sum over
N terms, hence the linear complexity of the algorithm
w.r.t. N . This allows the optimizer to find the global
minimum in reasonable time, despite the NP-hard nature
of the problem. Here we propose to solve (19) with the
Multilevel Coordinate Search (MCS) algorithm 1 (Huyer
and Neumaier, 1999), that is guaranteed to converge if the
objective is continuous in the neighborhood of the global
minimizer. This optimizer uses only function values (when
required, derivatives are estimated from these) and alter-
nates between global and local search. The local search,
done via sequential quadratic programming (SQP), speeds
up the convergence once the global part has found a point
in the bassin of attraction of the global minimizer.

4. NUMERICAL EXPERIMENTS

In this section, we present some numerical results support-
ing the approach. In particular, we consider the identifica-
tion of a switched linear system from data with noise and
outliers in §4.1, and large-scale experiments in §4.2.

All the experiments are performed on a 2.4GHz Core 2 duo
laptop with 2GB of memory using Matlab. Though the
MCS algorithm can deal with unbounded variables, box
constraints are used to limit the search space and restrain
the variables to the interval [−10, 10] (in practice, these
bounds can be larger with little influence). Beside this, the
default parameters of MCS are used. For all the problems,
N samples are generated by

yi = θ
T
λi

xi + vi, i = 1, . . . , N, (20)

1 Available at http://www.mat.univie.ac.at/˜neum/software/mcs/.



where the θj ∈ R
p are the true parameters to recover

and vi ∼ N (0, σ2
v) is a Gaussian noise. The methods are

compared on the basis of the normalized Mean Squared
Error (MSE) on the parameters, NMSE =

∑n

j=1
‖θj −

wj‖2
2/‖θj‖2

2, where the wj are the estimated parameters.

4.1 Switched linear system identification

Consider the example taken from Vidal (2008). The aim
is to recover, from N = 1000 samples, the parameters
θ1 = [0.9, 1]T and θ2 = [1,−1]T of a dynamical system, ar-
bitrarily switching between n=2 modes, with continuous
state xi = [yi−1, ui−1]

T .

Linear vs. nonlinear algebraic approach. As seen in
§2.3, the algebraic method can be implemented either as
the direct minimization over the model parameters, as in
(13), or as a linear problem solved w.r.t. the product of
parameters. These two algorithms are compared in Table
2, which shows the average and standard deviation of the
NMSE over 100 trials with different noise sequences. These
results highlight the gain in solving the problem directly
for the model parameters wj versus the optimization
over the product of parameters. The larger error obtained
with the linear method for large noise levels is due to
the fact that this method neglects one constraint: the
polynomial must be factorable into the original form (12).
However, the gain in NMSE obtained by solving directly
for the wj comes at the cost of solving a nonlinear
optimization program instead of a linear problem. This
leads to computing times about 30 times larger.

Table 2. Average NMSE and computing time
over 100 trials.

σv Nonlinear algebraic Linear algebraic

0.00 0.00000 0.00000
0.02 0.00000 ± 0.00000 0.00003 ± 0.00012

NMSE 0.10 0.00007 ± 0.00007 0.00447 ± 0.02962
0.20 0.00036 ± 0.00028 0.03968 ± 0.21762
0.30 0.00069 ± 0.00055 0.04449 ± 0.19270

Time (sec.) 0.32 ± 0.02 0.01 ± 0.00

Robustness to outliers. We now study the robustness
to outliers of the PE estimator (19) without regularization.
The data are corrupted with 20% of outliers by forcing
the target outputs yi, at random time steps i, to take uni-
formly distributed random values in the interval [−10, 10].
Table 3 shows the resulting NMSE for the squared, abso-
lute, saturated absolute and Hampel’s loss functions with
parameter δ set to δ = 2.

These results emphasize that the squared loss function
cannot be used to accurately estimate the parameters in
the presence of outliers. On the other hand, the absolute
loss function provides a certain level of robustness even
for a PE estimator and still leads to accurate estimates.
However, the loss functions satisfying the robustness con-
dition for PE estimators, i.e. l′(e) = 0 for |e| > δ, lead to a
lower NMSE. In these experiments, the minimum NMSE is
always obtained with Hampel’s loss function. The benefits
of using saturated loss functions compared to the absolute
loss are also emphasized by the plots in Fig. 3, which show
the NMSE for an increasing percentage of outliers and
additive Gaussian noise (σv = 0.3).

Table 3. Average and standard deviation of the
NMSE for a data set with 20% of outliers.

Loss function σv NMSE Time (sec.)

Squared 0.0 0.22898 ± 0.10684 0.36 ± 0.06
Absolute 0.0 0.00708 ± 0.01618 0.54 ± 0.02
Saturated absolute 0.0 0.00165 ± 0.00442 0.65 ± 0.04
Hampel’s 0.0 0.00009± 0.00007 0.76 ± 0.21

Squared 0.1 0.21267 ± 0.10700 0.37 ± 0.05
Absolute 0.1 0.00276 ± 0.00801 0.61 ± 0.03
Saturated absolute 0.1 0.00152 ± 0.00418 0.65 ± 0.03
Hampel’s 0.1 0.00013± 0.00010 0.68 ± 0.10

Squared 0.2 0.18548 ± 0.10161 0.41 ± 0.07
Absolute 0.2 0.00099 ± 0.00128 0.63 ± 0.03
Saturated absolute 0.2 0.00033 ± 0.00035 0.69 ± 0.05
Hampel’s 0.2 0.00024± 0.00021 0.71 ± 0.13

Squared 0.3 0.22177 ± 0.12003 0.40 ± 0.06
Absolute 0.3 0.00170 ± 0.00141 0.64 ± 0.04
Saturated absolute 0.3 0.00075 ± 0.00059 0.69 ± 0.04
Hampel’s 0.3 0.00050± 0.00042 0.74 ± 0.12
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Fig. 3. Average (left) and standard deviation (right) of the
NMSE over 100 trials vs. the percentage of outliers.

4.2 Large-scale experiments

Large data sets. The method is now evaluated over
100 large-scale problems, generated by (20) with uniformly
distributed random parameters θj ∈ [−2, 2]p, j = 1, 2,
and regression vectors xi ∈ [−5, 5]p, a random switching
sequence {λi} and σv = 0.2. The PE estimator (19) with
squared loss is considered without regularization. For n=2
and p = 3, Table 4 shows the resulting NMSE and the
computing times, averaged over the 100 problems. Note
that the algorithm, including the MCS optimization, is
entirely implemented in non-compiled Matlab code.

Table 4. Average error and computing time
over 100 randomly generated problems.

Number of data N NMSE (×10−3) Time (seconds)

10 000 0.0046 ± 0.0213 1.27 ± 0.17
50 000 0.0010 ± 0.0012 4.77 ± 0.56

100 000 0.0008 ± 0.0010 11.62 ± 1.92
500 000 0.0007 ± 0.0010 63.70 ± 8.23

The times in Table 4 show that the proposed algorithm
has a complexity scaling linearly with the number of data
N . As a result, the method can be applied to large data
sets with hundreds of thousands of data.

Large model structures. The computing time of the
method heavily relies on the number of model parameters
n × p. Thus the method may not be suitable for hybrid
models with numerous modes. However, as shown by
Fig. 4, the average computing time remains below 4
minutes for models with up to 40 parameters. The average
is evaluated over 10 runs of the method using Hampel’s loss



function for N = 10 000 data points, generated by random
sets of parameters.

3 4 5 6 7 8
0

50

100

150

200

250

 

 

n=2
n=3
n=4
n=5

3 4 5 6 7 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

n=2
n=3
n=4
n=5

Fig. 4. Average computing time in seconds (left) and
NMSE (right) vs. the number of parameters per
submodel for n modes.

4.3 Application to real data

The method is now applied to real data from a pick-
and-place machine, described in the comparison paper
by Juloski et al. (2005a). In this paper, most methods
(except the algebraic approach) had to subsample the
data set of 60 000 samples to 750 samples in order to
be applied in reasonable time. This subsampled data
set is then divided in two overlapping subsets of 500
samples. The PE estimator (19) with squared loss and
without regularization is applied to the first subset (with
normalized output and a 1 appended to the regression
vector) to build a hybrid model with 2 modes and orders
na = nc = 2. This model, obtained in 2 seconds, is then
tested on the second subset, leading to a one-step-ahead

prediction MSE =
∑N

i=1
(yi − fλi

(xi))
2 = 0.0590. When

considering the entire data set, divided in two subsets of
30 000 samples, the model, obtained in 18 seconds, leads
to MSE = 5.6248× 10−6. The results reported in Ma and
Vidal (2005) on this application are 0.1195 and 5.3426 ×
10−6 for the two settings, respectively. In comparison, the
PE estimator leads to a lower MSE for the subsampled
data set. Figure 5 shows the simulation of the model on
the entire data set, where the data yi and the model output
f(xi) cannot be distinguished.
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Fig. 5. Model simulation on the real data.

5. CONCLUSION

We have proposed a new framework for hybrid system
identification, which includes some of the most recent
approaches as special cases. We also proposed a specific
optimization framework, which relies on the minimization

of a product of loss functions to circumvent some com-
putational issues. The loss function can be chosen on the
basis of the noise model thanks to a maximum likelihood
interpretation. In addition, we gave a condition for a loss
function to be robust to outliers in the product-of-errors
context. Numerical experiments showed that the resulting
algorithm can identify linear hybrid systems from both
large data sets and data sets corrupted with outliers.

Future work will focus on the estimation of the number
of modes and of the subsystem orders in the presence of
outliers, as well as on the extension of the proposed frame-
work to nonlinear hybrid system identification, e.g. with
nonlinear submodels in kernel form as studied by Lauer
and Bloch (2008b). In addition, robustness to outliers in
the regressors also requires further investigation.
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