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Abstract: This paper presents an inverse problem methodology in timaaoof non-destructive testing,
and more precisely eddy-current testing. Our objectivebiside a precise but expensive-to-evaluate
model of the electromagnetic induction phenomenon in a gotiMk material and to estimate the
characteristics of a flaw by minimization of a regularizeitiecion with theExpected Improvement (EI)
global optimization algorithm. The El algorithm is desigrte estimate a global optimum of a function
with a restricted budget of function evaluations. Thus, wgeet to be able to estimate the characteristics
of a flaw with a relatively low cost despite resorting to anexgive model of the induction phenomenon.
The dficiency of the approach is discussed in the light of prelimimaumerical examples obtained using
synthetic data.

Keywords: eddy current testing; inversion; global optiatian; Gaussian processes; Expected
Improvement algorithm

1. INTRODUCTION optimization algorithm that renders practical the use etjze
but expensive direct models.

This paper presents an inverse problem methodology in tffée paper is organized as follows. First, we present the-theo
domain of non-destructive testing, and more precisely eddyetical formulation of the direct problem and some aspetts o
current testing (ECT). As illustrated by a large number ofts numerical implementatior§(2). Then the inverse problem
contributions in the last ten years, the estimation of therch — along with our regularizing assumptions — will be presénte
acteristics of scattering objects remains quite challegpéiom  (§ 3). Next the new stochastic approach and the optimization
a theoretical, computational afod experimental perspective, task will be in the focus § 4). Finally, numerical examples
even in the case of the simplest configurations (e.g., a hemogpill illustrate the proposed method and the conclusionsef t
neous embedding space). In this paper, our objective iss@usexperiments will be drawr§(5).

precise but expensive-to-evaluate model of the electromiig

induction phenomenon in a conductive material.

Then, to estimate the characteristics of a flaw, a reguldrize 2. THE FORWARD PROBLEM

criterion is minimized using th&xpected Improvement (El)

global optimization algorithm, the latter being designects- In this subsection the theoretical formulation of the direc
timate a global optimum of a function with a restricted budgeproblem and some aspects of its numerical implementatien ar
of function evaluations. The EIl algorithm is well-known et discussed.

domain of global optimization, but to the best of our knowl-

edge, using the EIl algorithm for the ECT problem remainéssume. the arrangement shown in Fig. 1 where two in_finitesi-
largely unexplored. Preliminary results for the charazégion mally thin cracks located in the planar surfaggsandS; inside

of a single volumetric defect have been presented by the a%_r_\on-ferromagnetic plate are searched by a pancgke type ECT
thors in [Bilicz et al., 2008]. In this paper, a more challany coil. The normal vectors of 8, andS, surfaces are, andri,
case is studied. We consider two infinitesimally thin materi respectively. In this Subsection the method used for thetio

defects close to each other. This kind of problem turned 08{ the forward proble_m is discussed. In othervx_/ords, the oeeth
to be more complicated than the case of single defect (s ed for the calculation of the change of the impedance of the

o N . C p CT coil due to the presence of the crack¥) is described
giga.l [T;ggfﬁoool’ or a little bit fierent application by Breard when the location and the orientation®fandS, are arbitrary.

During the solution of the inverse problem, however it widl b
Our contribution is twofold: (i) from the point of view of ECT assumed that the cracks are outer defects (OD) and they are
we would like to show that the methodology we propose iparallel to each other, consequently= f, = X (X is the unit
promising; (ii) from the point of view of the inverse problemvector of thex co-ordinate axis). Fig. 1 shows the particular
community, we would like to bring attention to arffiecient arrangement that is actually assumed for the inverse proble



defect-free plateg(r|r’) = iy - G(r|r’) - ik (k, | = 1,2) where
G(r|r’) is the Green’s dyad transforming the current excitation
into the electric field.

Y.

The surfaces of the cracks are discretized on a regulacdatti
where the unknown dipole density function is approximated
by a piecewise linear function. The integral equation isetes
by first order testing functions and the kernel of the integra
equation is evaluated by the formulae published by Pawb an
Miya [1994]. After solving the linear system of equations ob
tained by the described discretization of the integral &qona
(2)-(2), the dipole density function can be calculated. Wimy
p1(r) and px(r), the impedance variation of the prol&, due

to the presence of the cracks can be calculated based on the
reciprocity theorem [Bowler, 1994]:

3z=-3; 3 [ Eomawar ©

wherel is the current of the exciting coil.

<Y

The results of the described solution of the forward problem

: . . . .. are tested against measurements available for singleciaitifi

Fig. flo.rfv(;?grgggt?n(il/rearvswengrgéltgrisgeometry of the InVesm’a'{ecracks (unfortunately measured results on two paralleksra
are not available in the literature). The comparison vetifies

The electromagnetic interaction of the exciting coil withna  validity of the results.

conducting cracks whose thickness are considerably smal

than their other dimensions might be calculated based on tgg

so-called infinitesimally thin crack approximation debexd by : i SR
Bowler [1994]. This model assumes the cracks in the oth«erwigqu"’ltIons (1)-(2) can be solved by approximatmgr) and

homogeneous conductor as mathematical surfaces that bIcP@r%r) with the function series introduced in [Pavo and Les-

the flow of the eddy currents across their surfaces, in oth grlﬁir’ uzrggfﬂ]'sgf;”\?eﬁh'i,g??g ?{1;25 (;E{C’;Irtfédog Sti\:ee:gtlattﬁgd
words the normal component of the electric field must be zer 9 y y

on the surfaces representing the cracks. In the same time, escribed above. The good agreement supports the validity o

magnetic field is assumed to be continuous on the two sides ?th solution methods.
these surfaces.

r rectangular shaped cracks being parallel to each ottter a
ing perpendicular to the surface of the plate, the integra

3. THE INVERSE PROBLEM
The above boundary conditions might be satisfied by replac-
ing the S; and S, mathematical surfaces with current dipolewhen the probe coil scans the zone containing the cracks, the
distributions, p1(r)f1 and p(r)fz, having the samefect as variations of the coil impedance are measured at each point
the presence of the crack (the functipa(r) and px(r) are of a regular rectangular grid, above the supposedly damaged
non-zero only on the surfac& andS,, respectively). Thus, zone of the plate. In other words, a so-caldface scans
the sum of the electromagnetic field generated by the exgcitiperformed. The scan consists Nf coil locations where the
coil and the secondary sources in the homogeneous condugitgasured impedance variations A&, k= 1,2,...,N.
will provide the field generated by the crack-probe intaoact . . .
Consequently this field must satisfy the above boundaryieon(;rhe pr_oblem Is to chgracterlze Fhe f'?‘W fror_n this set of mea-
tions. In the case of cracks with pianar surfaces, the demgri SUred impedance variations, which will be viewed as theinpu
consideration leads to the following integral equatiororegd ~ data of the inverse problem.
by Pavo [2000]:

0= Epy(r1) — juwpo ff Gaa(ralr )p(r ) dr’—
Sz

3.1 Regularizing assumptions

It is customary to introduce sommegularizing assumptions
: . , N o to reduce the ill-posedness of the inverse problem. In this
~ oo rl_l{& ffs Guu(rlr)pa(ri)dr’,  r1 €8s, (1) work, two rectangular shaped thin cracks are assumed in the
' plate specimen, under (or near) the surface scan measuremen
0=E(r) - | (ralr Y pa(r ) dr = (see Fig. 1). Both cracks are of OD type. Their orientation is
= Enall2) = Jwho S Gr2Al2ll )P supposedly known, together with the “geometrical centdr” o
1 . . ..
the two-cracks-system (i.e. the distances of the crack onndg
— jwuo lim ff O22(rlr )p2(r’)dr’, r2eS,,  (2) from the origin are the same for both cracks in #@\/2) and
e JJs, o in they (B/2) directions as well). As a result, only 6 geometrical
wherer. (k = 1,2) denotes the limiting values of the ap-parameters are needed to describe the configuration: ththlen
proaches towards the pointfrom theri, or —fi directionswis  of the cracksi(, L), their depth D1, D2) and thex-y distances
the angular frequency of the sinusoidal excitation of theber of their centers A, B), respectively (see Fig. 1). To simplify
coil and o is the permeability of the vacuunk, = fix - E'  the notations, the unknown defect parameters are colléated
(k = 1,2), whereE' is the so-called incident field that is the a vectort:
electric field generated by the current of the exciting aothe t =[A, B, Li, Ly, D1, D2].



The definition domain of will be denoted byT, and will be  This two-step procedure is repeated iteratively until @iog
referred to as thparameter space criterion is met, i.e. a sequential optimization algorithsn

The forward solver § 2) is used to compute the impedanceObtamed'

variation due to a fault characterized by its parameterorect
A simulated surface scaronsists of such computed impedance;. 1 Kriging interpolation
variations, denoted asz(t), k = 1,2,...,N. Obviously, the
simulation is performed at exactly the same coil positiaiha

f Let us assume that we have already observed the multivariate
real measurement, thus both the real and the simulatedcsurf y

3calar functiomQ(t) atn pointsty, to, ..., ty of T. In this way,

scan consists dfl coil locations. n function valuesQ; = Q(t1), Q» = Q(ta), ..., Qn = Q(tn)
S are known. We would like to predict the function value at
3.2 Optimization task unobserved sites. One method to achieve this goal is to use

kriging, a random process approach developed in the 60s in
The next step for solving the inverse problem is to achieee thgeostatistics [Chiles and Delfiner, 1999]. The method is als
strongest resemblance between the impedance signal ethtainell-known for modeling computer simulations [Sacks et al.
by simulation,{AZ(t), k = 1,...,N}, and the measurement, 1989].

(AZk k=1,.... N}, by tuning the parameter vector Let&(t) be a Gaussian random process that models the function

The applied inversion method requires a finite parameterespaQ(t). Thus, each observati@y is considered as the realization
T, meaning that one has to set lower and upper bounds for eagfithe Gaussian random varialdigy) (k = 1, 2,. .., n). Kriging
parameter and, moreover, the parameter axes are needed tedr@putes theest linear unbiased predictor (BLUBJ £(t). Let
discretized. Consequently, the spdthas to consist of a finite us denote this prediction k(t). The predictor idinear in the
number of parameter points The bounds and discretization sense that it is a linear combination of the observed random
of each parameter are summarized in Table 1. The parameteasiablest(ty), k = 1, 2, ..., n, which can therefore be written
are independent from each other, thus, the parameter §pacas

can be imagined as a 6 dimensional hypercube, spanned by . n

the 6 parameter axes. The hypercube includes’s = 60025 £(t) = Z A()é(tw)- (5)
parameter points. k=1

Unbiasedness relates to the fact thatrtieanof £(t) is equal to
the mean of(t), i.e. the mean prediction error is zero:

[ L[t D [ D2 | E[&(t)] = E[&(t) - £(1)] = O. (6)

Table 1. Discretization of the parameter axes.

| Parameter [ A ]

B
mgz&uu"r;vf;uee(a% (1)22 2 g g 8:;328 8:;328 The_ term “t_)est" means that the p_rediction eregr) of_the
Step size (mm) 05T 1T 1 11 00125 00125 kriging predictor has themallest varianceamong all unbiased
No. of points s Ts 717 7 ~ predictors. This variance (also callédiging error) may be
written as
A2y 24\ _ 24\ 2
To give a mathematical form to the resemblance between two (1) = varfe(t) - &1 = E[(&(t) - @) @)

surface-scan impedance signals, we definestitmélarity func-  using the unbiasedness condition (6).

tion N The objective is to find the céigcientsA(t) in (5) that provide
Z IAZi(t) — AZ\? the BLUP. The kriging error can be written using the covar@n
= function, which describes the dependence between two rando
Q(t) = N . (4)  variables of the process atfifirent points. Let us denote the
Z IAZ covariance functi_on p}((ta, tp) = cov[é(ta), &(tp)], Whe.reta
= andty, are two points irfl. Let us denote b¥K, thecovariance

matrix whose entries correspond to the covariances of the
random process between the observation points, ..., ty:

k(ts, t2) K(ta, t2) ... Kk(ts, tn)
Kt t1) K(ta. 1) ... K(to, to)

Our objective is thus to minimiz@(t), i.e. to find
t=arg minQ(t).

4. STOCHASTIC MODELING AND OPTIMIZATION OF K=
THE SIMILARITY FUNCTION

(8)

k(tn, t]_) k(tn, t2) e k(tn, tn)

Our objective is to implement the Expected Improvement alf one has some prior knowledge on the function to be modeled
gorithm to minimizeQ(t). One iteration of such an algorithm it can be reflected by giving a prior mean to the predictorc&in
involves mainly two steps: in our case no information is available but the observedtfanc

(1) the construction of an approximation of the similarityvalues' a constant (but unknown) mezd(t)] = C is assumed.

function from a set of past evaluations of the functiorifo simplify the notations let us collect the dbeients Ak(t)

obtained at previous iterations. To this end, a randomto a vectorA(t) = [A1(t) Ax(t) ... A(1)]7, and de-
process is chosen as a model of the similarity function amibte by k(t) the vector whose elements are the values of
an interpolation by kriging is performed. the covariance betweenand the observation point&(t) =

(2) the search of the maximum of the Expected Improvemefk(t, t1) k(t,to) ... k(t,t,)]". It can be shown that the determi-
over the parameter spafiethen the computation of the nation ofA(t) boils down to computing the solution of the linear
similarity function at that parameter point. system of equations (see, e.g., Villemonteix et al. [2008])



1 Table 2. Parameters of the ECT configuration.

K 1 ) = k(®) (9 Metal plate
Thickness (d) 1.25mm | Conductivity(co) | 10° Sm
1... 1|0 (o) 1 | Prob|e coil |
whereu(t) is the Lagrange multiplier, which corresponds to the Inner radius(ry) | 0.6 mm | Outer radius(rz) | 1.6 mm
enforcement of the unbiasedness condition. Height (1) 0.8mm | Lift-of (h) 0.5mm
. No. of turns 140 Frequency 150 kHz
Once_ the yecton(t_) has been comp_uted, a predicted value of Surface scan
the 3|m|la“ty functlonQ(t) can be written as Points in the x dir. | 11 Points in the y dir. | 41
R n Stepinthe x dir. | 0.5mm | Stepintheydi. | 0.5mm
QM) = > A (10) _ -
=1 of the method must not be too high. Thus, we wish to limit the

number of evaluations d in the inversion procedure, which

It is easy to show that the functidn— Q(t) interpolatesQ(t SO S
y QY P L) means that the optimization method used to minintzeust

at observed points. An interesting property of kriginghiattan

estimate of the uncertainty of the prediction is availaltethie be eficient.
kriging error, which can be written as Theexpected improvement (Edlgorithm is an iterative method
G2(t) = k(t, t) — A)TK () — u(t). (11) tofind the global minimizers of an expensive-to-evaluatefu

tion [Jones, 2001]. The method is based on interpolation by
kriging of the function to be optimized. Let us assume that
Q has been evaluated atpoints Q; = Q(t1), Q2 = Q(t2),

..., Qn = Q(tn). An iteration of the EIl algorithm provides the
location of the next evaluation.

This feature will be essential in the adaptive samplingista
of the Expected Improvement algorithm.

4.2 Covariance model

Before focusing on the optimization algorithm, we mentiorFirst, an interpolatiorQ of Q is computed by kriging from
very briefly how the covariance function is chosen in practicthe set of past evaluations, along with the variance of the

(see also Villemonteix et al. [2008]). kriging errorg?(t). Denote the current minimal value in =
First, a simplifying assumption is made — as usually done im);nkzl """ n Qk. Define thémprovemenbverQmin ata point € T

geostatistics (see, e.g., Chiles and Delfiner [1999]) — hame B
that the random process s&ationary Then, the covariance ) H(t) = max(Q Qmin — Q1)). ) _
function is a univariate functiok(h) whereh is a distance However,Q(t) is unknown except at the evaluation points.
between two points,, tp € T. This distanceneeds not to be SinceQ(t) is modeled by the Gaussian random procgsa

the classical Euclidean distance. In our case, the compeoén natural idea is to express the expected valué(Qf which is

t € T are of diferent kinds. Thus, it is reasonable to use somgalled the expected improvement and appears to have a very
anisotropic distance, which may be written as convenient analytical form:

El(t) = E[I(1)] = o(t) [ud(u) + ¢(u)], (14)
(12) whered(:) is the normal cumulative distribution functiop(-)
is the normal density function, ands defined by

wheret, ¢ andty, 4 are thed components of the vectotg and u Qmin — Q(t)

tp, respectively, and the dimension ofl. The parameters a(t)

pa, d = 1,2,...,D, represent theange of the covariance, The next evaluation point is chosen according to the highest

or the typical correlation distancein the direction of thed™  yajye of the expected improvement. Since (14) is straightfo

component. ward to compute, the maximization of the EIl ovRiis not a

Second, a parameterized covariance function is chosen a@blemin practice. A natural stopping criterion is whee i

its parameters are estimated using the data withaaimum IS smaller than a small positive number.

likelihoodmethod (see, e.g, Villemonteix et al. [2008]). We usote that the EI algorithm is known to be consistent, i.e. the

theMatérncovariance 1;unct|on, which can be written as algorithm converges to the location of the global minimizer
T v (under some assumptions) [Locatelli, 1997, Vazquez and, Bec

k(h) = 211 (v) (2\/‘_’ h) (KV(Z W h)’ (13) 2007]. In theory, the convergence rate is unknown but it appe

where%, is the modified Bessel function of the second kind of? Practice that this type of algorithm converges very rapias

ordery. The parameter controls the regularity of the random !llustrated in our numerical studies (see next section).

process — the higher the the more regular the process is. The

parameteo is thevarianceof the processk(0) = o). The pa- 5. NUMERICAL EXAMPLES

rametergy in (12) are also estimated by maximum likelihood

(the covariance function has indeBd+ 2 parameters). In this section a couple of numerical examples are selected t
illustrate the presented inversion method. The parameters

4.3 Expected Improvement the ECT configuration are shown in Table 2 (see also Fig. 1).

The surface scan consists of 451 measured impedance values —
Since the similarity functiorQ (to be minimized) requires to observed at the nodes of a rectangular grid characterizéueby
compute the solution of a forward problem, the computation@arameters given in Table 2. The center of the surface scan is
cost of evaluatind is non-negligible. Moreover, for an inver- at the origin of thex-y coordinate system and the edges of the
sion method to be useful in practice, the computationaldrd grid are parallel to the related coordinate axes.



Table 3. Defect parameters, in case of Initialization 0.06
“A". (exacfreconstructed)
" 0.051
No| i | i | | mifn| o | o | v | ]
#1 [ 0.500.50] 3/3 | 3/3 | 5/5 [ 4040]60/60] 57 | O
#2 | 0.750.75| U1 | 4/4 | 4/3 | 30/40 | 50/50 | 112 21.6
#3 ] 0.750.75| 23 | 7/5 | 3/3 [ 50/50 | 30’50 | 95 | 28.6

g
#4 | 1.000.75] 0/0 | 6/7 | 6/3 | 60/60 | 4040 | 60 | 8.56 N 003 ]
Table 4. Defect parameters, in case of Initialization 002t i
“B’. (exacfreconstructed)
‘No‘ A ‘L‘gg &‘&‘n Qmin‘ 0.011 ]
: mm mm | Mm | mm| T % © | 7103

#1 | 0.500.50| 3/3 | 3/3 | 55 | 4040 | 60/60| 81 0
#2 | 0.790.75| /1 | 42 | 44 | 3040 | 50/50 | 118 | 6.98 -10
#3 | 0.790.75| 2/2 | 7/7 | 3/3 | 50/50 | 30/30 | 79 0

#4 | 1.000.75| 0/0 | 6/6 | 6/5 | 60/60 | 40/40| 109| 4.73

10

y (mm)

Fig. 2. Magnitude of the measured impedances in case No. #4.
Line scan along thex = 0 line. Solid line: real crack
configuration,dashed line:retrieved configuration (case
Initialization “B”). The measured data is almost the same
in both cases, thus it is extremelfitiult to make difer-
ence between the configurations.

Since no experimental measurements are available at it ti
the so-called “measured impedance variatioAZ¢, k =
1,...,N in (4)) of the defects in the assumed test cases are
obtained by numerical simulation.

The necessary initialization of our iterative process iegpthe

evaluation of the similarity function at some well-choseings

of the parameters space. There is no “best” way to choose such

initial points without complementarg priori informations,

therefore it seems reasonable to spread them more or less

uniformly on the parameter space. Too few points can giv&ating that if it is lower than a small limit, the iterationan
misleading information on the similarity function wherg¢as be stopped. But the choice of this limit is not obvious — as it
many points may be unnecessary (thus “uneconomical” in thegillustrated in Fig. 3. In Fig. 3(b), one can see that a si@all
sense of computation time). Two types of initialization arezalue (quite close to the “final” solution in iteration No. )0
presented in the paper: was obtained in iteration No. 60. The parameter vectoredlat
to the observation in iteration No. 60tis= [1.0,0, 6, 4, 60, 40]

(in the same units as in Table 4). This parameter point iseclos
to the real solution and to the reconstructed one (see Table 4
as well. However, the maximal El value in iteration No. 60 is
almost 100 times higher than the one in iteration No. 109.

e Initialization “A™: all the vertices of the 6D parameter
hypercube (2 = 64 points) and the midpoint of the
hypercube (1 point)£65 points;

e Initialization “B”: the same points as in Init.A”, and
all the midpoints of the sides of the hypercube @ =
12 points):X77 points. Note that the two presented performances are related to the

s%ne physical problem, only the initialization of the irsien

r}? cedure dfers. In spite of this, significant filerences can

be found between the behaviour of the algorithm in the two

cases. Thus, one can see that the choice of initial poirmtsgy

The parameters of the cracks to be retrieved and the obtai
results are reported in Table 3 and Table 4. The de@hdX,)
are given in percents of the plate thicknes#\fter the initial-

ization (65 or 77 similarity function evaluations) a fixedmiber ;1.0 ces the latter performance. As it was mentioned above
of iteration cycles were performed (120 in all the cases). |

the column “It.” the number of cycle, in which the final best ere is no general best choice of initial points, moreataray

: ) . S also depend on the problem to be solved.
function value Qmin) was found, is presented; that minimum
value (related to the obtained solution) is also reportetthén It is also important to note that the similarity function mbe
tables. complicated. This is illustrated in Fig. 5: the functiQ{t) is
probably quite flat around its global minimizer, or physigal
different configurations can cause very similar measurable out-
ut signal.

Table 3 and Table 4 illustrate thefieiency of El algorithm
with which an “acceptable” solution — in the sense of a lo
similarity function — is obtained ia few number of iterations
The performance of the algorithm is illustrated in Fig. 3. Omhe computations were performed on a PC with 16 Gb RAM
the bottom diagrams in Fig. 3(a) and Fig. 3(b), theJogf and a 64 bits CPU at 3 GHz. The computation of the Green’s
the maximal expected improvement (i.e. over the total digcr function and of the incident field was made in advance, sep-
parameter space) at the related iteration cycle is predentarately. One average iteration cycle of the optimizatiomplo
One can see that it is decreasing as the iterations are betngk approximately 106 sec. Almost all of that time is needed
performed. However, the decrease is not monotonous. Assit wep perform the kriging prediction and EI computation, thenco
mentioned, in our experiments a fixed number of iterationgweputation of the objective function takes just a few seco(iis.
performed. However, it would be better to construct a stogpi first sight, one can think that the applied inversion metted i
criterion which stops the iterations automatically riglitea more expensive-to-evaluate than the objective functiselfit
finding the solution — to reduce the number of “unnecessary” but note that by using this inversion method, at most some
function calls at the end. By now, no really good stoppin@ rulhundred function calls are needed, whereas the parameiss sp
has been developed. One can rely on the maximal El valug consists of more than 60 thousand points!)



choice of initial observation points — as it was pointed aat v
our numerical examples.
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In this paper, only a brief introduction to the stochasticl$o
and the first results were presented — the research is far from
being finished. The next step can be carrying out a precise
W W comparison of the performances of the proposed EI method

and other methods. It is also an interesting question how the
parameterization of the defects influences the performaree
choice of the applied similarity function can takéeet on the
behaviour of the algorithm as well.
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All'in all, in the light of the presented preliminary resylthe

& - o authors surmise that the use of surrogate models in ECT-inver
terations sion opens new perspectives and it is worthwhile to continue
(@) Initialization “A” the research in this domain.
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