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Abstract

In the framework of fully cooperative multi-agent systems, independent agents learning
by reinforcement must overcome several difficulties as the coordination or the impact of
exploration. The study of these issues allows first to synthesize the characteristics of ex-
isting reinforcement learning decentralized methods for independent learners in cooperative
Markov games. Then, given the difficulties encountered by these approaches, we focus on
two main skills: optimistic agents, which manage the coordination in deterministic envi-
ronments, and the detection of the stochasticity of a game. Indeed, the key difficulty in
stochastic environment is to distinguish between various causes of noise. The SOoN al-
gorithm is so introduced, standing for “Swing between Optimistic or Neutral”, in which
independent learners can adapt automatically to the environment stochasticity. Empirical
results on various cooperative Markov games notably show that SOoN overcomes the main
factors of non-coordination and is robust face to the exploration of other agents.

1 Introduction

Over the last decade, many approaches are concerned with the extension of RL to multi-agent
systems (MAS) [1]. On the one hand, adopting a decentralized point of view with MAS offers
several potential advantages as speed-up, scalability and robustness [2]. On the other hand,
reinforcement learning (RL) methods do not need any a priori knowledge about the dynamics
of the environment, which can be stochastic and non linear. An agent interacting with its
environment tests different actions and learns a behavior by using a scalar reward signal called
reinforcement as performance feedback. Modern RL methods rely on dynamic programming
and have been studied extensively in single-agent framework [3]. By using RL in MAS, their
advantages can be associated : autonomous and “simple” agents can learn to resolve in a
decentralized way complex problems by adapting to them.

However, there are still many challenging issues in applying RL to MAS [4]. For instance,
one difficulty is the loss of theoretical guarantees. Indeed convergence hypothesis of single-
agent framework are no longer satisfied. Another matter is that the computation complexity
of decentralized MAS often grows exponentially with the number of agents [5, 6, 7]. Finally,
a fundamental difficulty faced by agents that work together is how to efficiently coordinate
themselves [8, 9, 10]. MAS are qualified by a decentralized execution, so each agent takes
individual decisions but all of the agents contribute globally to the system evolution. Learning
in MAS is then more difficult since the selection of actions must take place in the presence of
other learning agents. A study of some mis-coordination factors is proposed in this report.

Despite these difficulties, several successful applications of decentralized RL have been re-
ported, like the control of a group of elevators [11] or adaptative load-balancing of parallel
applications [12]. Air traffic flow management [13] and data transportation by a constellation
of communication satellites [14] are other examples of real world applications of cooperative
agents using RL algorithms. We have an interest in practical applications in robotics, where
multiple cooperating robots are able to complete many tasks more quickly and reliably than
one robot alone. Especially, the real world objective of our work is the decentralized control
of a distributed micro-manipulation system based on autonomous distributed air-flow MEMS1,
called smart surface [15]. It consists of an actuators array on which an object is situated. The
objective is for the hundreds of actuators to choose from a small set of actions over many trials
so as to achieve a common goal.

We focus here on learning algorithm in cooperative MAS [16] which is a fitting model for
such a real world scenario. Especially, in this report, we are interested in the coordination of

1Micro Electro Mechanical Systems.
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adaptative and cooperative agents with the assumption of a full individual state observability.
We consider independent learners (ILs) which were introduced in [17] as agents which don’t
know the actions taken by the other agents. The choice of ILs is particularly pertinent given
our objective of robotic applications with numerous agents, where the assumption of joint action
observability required for the joint action learners is hard to satisfy.

Our objective is to develop an easy-to-use, robust and decentralized RL algorithm for au-
tonomous and independent learners in the framework of cooperative MAS. The chosen frame-
work is cooperative Markov games. One of our contribution is to analyse what is at stake in
the learning of ILs in this framework. Thanks to this study, we synthesize the characteristics of
existing RL decentralized methods for ILs in cooperative Markov games. Then, we introduce
a new algorithm named the SOoN algorithm, standing for “Swing between Optimistic or Neu-
tral”, in which ILs can adapt automatically to the environment stochasticity. We successfully
develop this algorithm thanks to our analysis of previous algorithms and apply it within vari-
ous matrix games and Markov games benchmarks. Its performance is also compared to other
learning algorithms.

The report is organized as follows. In section 2, our theoretical framework is described.
Learning in MAS has strong connections with game theory so a great part of the report concerns
repeated matrix games. Matrix games study is a necessary first step toward the framework of
Markov games. Indeed, it allows a better understanding of mis-coordination issues, presented in
section 3 as one of major stakes of ILs in cooperative MAS. We overview related algorithms in
section 4 and provide a uniform notation that has never been suggested and which emphasizes
common points between some of these algorithms. This leads to a recursive version of the
FMQ algorithm in the matrix game framework (section 6). It is successfully applied on matrix
games which contain hard coordination challenges. Finally, in section 7, we present the SOoN
algorithm in the general class of Markov games and show results demonstrating its robustness.

2 Theoretical framework

The studies of reinforcement learning algorithms in MAS are based on Markov games which
define multi-agent multi-state models. They are the synthesis of two frameworks : Markov
decision processes and matrix games. Markov decision processes are a single-agent multi-state
model explored in the field of RL. Matrix games, on the other hand, are a multi-agent single-
state model used in the field of game theory. These frameworks are independently considered
in this section. In addition, some classifications and equilibrium concepts are outlined.

2.1 Markov Decision Processes

Definition 1 A Markov Decision Process (MDP) [18, 19] is a tuple < S,A, T,R > where :

• S is a finite set of states;

• A is a finite set of actions;

• T : S × A× S �→ [0; 1] is a transition function that defines a probability distribution over
next states. T (s, a, s′) is the probability of reaching s′ when the action a is executed in s,
also noted P (s′|s, a),

• R : S × A × S �→ R is a reward function giving the immediate reward or reinforcement
received under each transition.
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At each time step, the agent chooses an action at that leads the system from the state st to the
new state st+1 according to a transition probability T (st, at, st+1). Then it receives a reward
rt+1 = R(st, at, st+1). Solving MDPs consists in finding a mapping from states to actions, called
a policy π : S × A �→ [0; 1], which maximizes a criterion. π(s, a) is the probability of choosing
the action a in state s. Most of single agent RL algorithms are placed within this framework
[20, 21, 3].

2.2 Matrix games

Game theory is commonly used to analyze the problem of multi-agent decision making, where a
group of agents coexist in an environment and take simultaneous decisions. We first define the
matrix game framework and the classification of these games, and then we examine two main
equilibrium concepts.

2.2.1 Definition and strategy

Definition 2 A matrix game2 [22, 23] is a multiple agent, single state framework. It is defined
as a tuple < m,A1, ..., Am, R1, ..., Rm > where :

• m is the number of players;

• Ai is the set of actions available to player i (and A = A1 × ... × Am is the joint action
space);

• Ri : A �→ R is player i’s reward or payoff function.

The goal of a learning agent in a matrix game is to learn a strategy that maximizes its reward.
In matrix games, a strategy3 πi : Ai �→ [0; 1] for an agent i specifies a probability distribution
over actions, i.e. ∀ai ∈ Ai πi(ai) = P (ai). π is the joint strategy for all of the agents and π−i

the joint strategy for all of the agents except agent i. We will use the notation 〈πi,π−i〉 to refer
to the joint strategy where agent i follows πi while the other agents follow their policy from
π−i. Similarly, A−i is the set of actions for all of the agents except agent i. The set of all of
the strategies for the agent i is noted ∆(Ai).

2.2.2 Type of matrix games

Matrix games can be classified according to the structure of their payoff function. If payoff
functions sum is zero, the game is called fully competitive game4. If all agents have the same
payoff function, i.e. R1 = ... = Rm = R, the game is called fully cooperative game5. Finally, in
general-sum game, the individual payoffs can be arbitrary.

In this paper, we focus on fully cooperative game. In these games, an action in the best
interest of one agent is also in the best interest of all agents. Especially, we are interested in
repeated games which consist of the repetition of the same matrix game by the same agents.

The game in table 1 depicts a team game between two agents which is graphically represented
by a payoff matrix. The rows and columns correspond to the possible actions of respectively
the first and second agent, while the entries contain the payoffs of the two agents for the
corresponding joint action. In this example, each agent chooses between two actions a and b.
Both agents receive a payoff of 0 when both selected actions of the agents differ, and a payoff
of 1 or 2 when the actions are the same.

2also called strategic game.
3also called policy.
4also called zero-sum game.
5also called team game or identical payoff game.
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Table 1: Fully cooperative game example.
Agent 2
a b

Agent 1 a 2 0
b 0 1

2.2.3 Equilibria

First, we define the expected gain for an agent i as the expected reward given its strategy and
the strategies of others.

Definition 3 The expected gain for an agent i given a joint strategy π = 〈πi,π−i〉, noted ui,π,
is :

ui,π = Eπ {Ri(a)} =
∑
a∈A

π(a)Ri(a). (1)

From a game-theoretic point of view, two common concepts of equilibrium are used to define
optimal solutions in games. The first one is called Nash equilibrium [24, 23].

Definition 4 A joint strategy π∗ defines a Nash equilibrium iff, for each agent i, there is :

∀πi ∈ ∆(Ai) ui,〈π∗
i ,π∗

−i〉 ≥ ui,〈πi,π∗
−i〉. (2)

Thus, no agent can improve its payoff by unilaterally deviating from a Nash equilibrium. A
matrix game can have more than one Nash equilibrium. For example, the matrix game in table
1 has two Nash equilibria corresponding to the joint strategies where both agents select the
same action. However, a Nash equilibrium is not always the best group solution. That’s why
the Pareto optimality has been defined.

Definition 5 A joint strategy π̂ Pareto dominates another joint strategy π iff :

• each agent i following π̂i receives at least the same expected gain as with πi and,

• at least one agent j following π̂j receives a strictly higher expected gain than with πj,

that’s to say formally :

π̂ > π ⇔ ∀i ui,π̂ ≥ ui,π and ∃j uj,π̂ > uj,π. (3)

Definition 6 If a joint strategy π̂∗ is not Pareto dominated by any other joint strategy, then
π̂∗ is Pareto optimal.

So a Pareto optimal solution is one in which no agent’s expected gain can be improved upon
without decreasing the expected gain of at least one other agent. There are many examples of
general-sum games where a Pareto optimal solution is not a Nash equilibrium and vice-versa (for
example, the prisoner’s dilemma). However, in fully cooperative games, each Pareto optimal
solution is also a Nash equilibrium by definition. This means that if a joint action provides one
agent with maximal possible reward, it must also maximise the reward received by the other
agents. For instance in the matrix game of the table 1, the joint strategy 〈a, a〉 defines a Pareto
optimal Nash equilibrium.
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2.3 Markov games

Markov games can be seen as the extension of matrix games to the multiple states framework.
Specifically, each state of a Markov game can be viewed as a matrix game. Another point of
view is to consider Markov games as an extension of MDP to multiple agents. Markov games
were first examined in the field of game theory and more recently in the field of multi-agent RL.

2.3.1 Definition

Definition 7 A Markov game6 [25] is defined as a tuple < m,S,A1, ..., Am, T,R1, ..., Rm >
where :

• m is the number of agents;

• S is a finite set of states;

• Ai is the set of actions available to the agent i (and A = A1 × ... × Am the joint action
space);

• T : S × A × S �→ [0; 1] a transition function that defines transition probabilities between
states;

• Ri : S ×A �→ R the reward function for agent i.

In Markov game framework, all agents have access to the complete observable state s. The tran-
sition and reward functions are functions of the joint action. An individual policy πi : S×Ai �→
[0; 1] for an agent i specifies a probability distribution over actions, i.e. ∀ai ∈ Ai P (ai|s) =
πi(s, ai). The set of all of the policies for the agent i is noted ∆(S,Ai). If for an agent i and for
all states s, πi(s, ai) is equal to 1 for a particular action ai and 0 for the others, then the policy
πi is called a pure policy.

The same classification for matrix games can be used with Markov games. If all agents
receive the same rewards, the Markov game is fully cooperative. It is then defined as an
identical payoff stochastic game (IPSG)7 [26].

2.3.2 Equilibria

As in matrix games, we can define for each state s the immediate expected gain for an agent i
following the joint strategy π as :

ui,π(s) = Eπ {Ri(s, a)} =
∑
a∈A

π(s, a)Ri(s, a). (4)

Thus, the long term expected gain from the state s for an agent i is, when all the agents follow
π :

Ui,π(s) = Eπ

{ ∞∑
k=0

γkui,π(s)t+k+1|st = s

}
(5)

where γ ∈ [0; 1] is a discount factor.
The concepts of Nash equilibrium and Pareto optimality are also defined in Markov games.

6also called stochastic game.
7also called Multi-agent Markov Decision Process (MMDP).
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Definition 8 A joint policy π∗ defines a Nash equilibrium in a Markov game iff, for each agent
i, there is :

∀πi ∈ ∆(S,Ai) ∀s ∈ S Ui,〈π∗
i ,π∗

−i〉(s) ≥ Ui,〈πi,π∗
−i〉(s). (6)

Definition 9 A joint policy π̂ Pareto dominates another joint policy π iff, in all states :

• each agent i following π̂i receives at least the same expected gain as with πi and,

• at least one agent j following π̂j receives a strictly higher expected gain than with πj,

that’s to say formally :

π̂ > π ⇔ ∀i, ∀s ∈ S Ui,π̂(s) ≥ Ui,π(s) et ∃j Uj,π̂(s) > Uj,π(s). (7)

Definition 10 If a joint policy π̂∗ is not Pareto dominated by any other joint strategy, then
π̂∗ is Pareto optimal.

2.4 Conclusion

In this paper, we are interested in cooperative games, where we defined the objective as finding
a Pareto-optimal Nash equilibrium, also called optimal equilibrium. Indeed, the policies which
define Pareto-optimal Nash equilibria maximise the expected sum of the discounted rewards in
the future for all agents. However, there can be several Pareto-optimal Nash equilibria so some
coordination mechanisms on a single equilibrium are necessary.

3 The independent learners coordination problem

The main difficulty in the cooperative independent learners (ILs) framework is the coordination
of ILs : how to make sure that all agents coherently choose their individual action such that
the resulting joint action is optimal? We analyze this problem using the framework of fully
cooperative matrix games that we have introduced in section 2.2. Each agent independently has
to select an action from its action set. It receives a payoff based on the resulting joint action.
Formally, the challenge in multi-agent RL is to guarantee that the individual optimal policies
π∗i define an optimal joint policy π∗ [27], i.e. a Pareto-optimal Nash equilibrium.

The coordination is a complex problem which arises from the combined action of several
factors. In large games, it is hard to identify these factors since they are often combined
with other phenomena. So the classification proposed here is probably not exhaustive. It
results from a study of matrix games with a small number of agents, where the identification
and interpretation of some factors are more obvious. Of course, the exposed factors can be
adapted to games with many agents and to Markov games. These factors make the analysis
and development of coordination techniques in RL algorithms easier.

Fulda and Ventura [8] identify two main factors : shadowed equilibrium and equilibria selec-
tion problems that we formalized here. We also add two other factors : the noise in the game
and the impact of the exploration of other agents on the learning of one agent.

3.1 Shadowed equilibrium

Definition 11 An equilibrium defined by a strategy π̄ is shadowed by a strategy π̂ iff :

∃i ∃πi u〈πi,π̄−i〉 < min
j,πj

u〈πj ,π̂−j〉 (8)
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Table 2: Simple cooperative matrix game.
Agent 2
a b c

a 5 3 1
Agent 1 b 4 1 1

c 1 1 0

Table 3: The Climbing game and the Penalty game have been introduced in [28] and partially
and fully stochastic variations of the Climbing game, proposed in [29]. In stochastic games, the
probability of each reward is 50%.

(a) Climbing game (b) Partially stochastic Climbing game
Agent 2

a b c

a 11 -30 0
Agent 1 b -30 7 6

c 0 0 5

Agent 2
a b c

a 11 -30 0
Agent 1 b -30 14/0 6

c 0 0 5

(c) Fully stochastic Climbing game (d) Penalty game (k ≤ 0)
Agent 2

a b c

a 10/12 5/-65 8/-8
Agent 1 b 5/-65 14/0 12/0

c 8/-8 12/0 10/0

Agent 2
a b c

a 10 0 k
Agent 1 b 0 2 0

c k 0 10
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A particular structure game could be a game with a shadowed Pareto optimal Nash equilib-
rium. For instance, in the Climbing game (table 3), the Pareto optimal Nash equilibrium 〈a, a〉
and the sub-optimal Nash equilibrium 〈b, b〉 are shadowed because penalties are associated to
mis-coordination on 〈a, b〉 or 〈b, a〉. Moreover, there are no mis-coordination penalties associ-
ated with action c, potentially making it tempting for the agents. The joint action 〈c, c〉 is the
only unshadowed equilibrium in the Climbing game. So 〈c, c〉 is potentially interesting for ILs.

3.2 Equilibria selection problems

The equilibria selection problem takes place whenever at least two agents are required to select
between multiple Pareto optimal Nash equilibria. In this case, some agents must choose between
several optimal individual policies but only some combinations of these optimal individual poli-
cies define an optimal equilibrium. So the equilibria selection problem can be defined as the
coordination of individual policies so that the resulting joint policy is optimal.

Craig Boutilier introduced the set of potentially individually optimal (PIO) actions for agent
i at state s as those actions in Ai that belong to at least one of the optimal joint actions for
s [30]. An optimal joint action is a pure joint policy which defines a Pareto optimal Nash
equilibrium. This set is denoted PIO(i, s). State s is said to be weakly dependent for agent i
if there is more than one PIO choice for i at s. We can define the equilibria selection problem
with this notion.

Definition 12 There is an equilibria selection problem at state s if at least two agents are
required to select between multiple Pareto optimal Nash equilibria at this state, i.e. s is weakly
dependent for at least two agents.

The Penalty game (table 3d) is usually chosen to illustrate the equilibria selection problem.
There are two Pareto optimal Nash equilibria : 〈a, a〉 and 〈c, c〉 and one sub-optimal Nash
equilibrium 〈b, b〉. The set of potentially individually optimal actions for each agent is then
{a, c}. So the Penalty game is weakly dependent for the two agents and agents confront an
equilibria selection problem. Simply choosing an individual optimal action in the set PIO does
not guarantee that the resulting joint action will be optimal since four joint actions are then
possible (〈a, a〉, 〈c, c〉, 〈a, c〉, 〈c, a〉) and only two of them are optimal.

In this game, k is usually chosen inferior to 0 so as to combine shadowed equilibria with
equilibria selection issue. Indeed, the only unshadowed equilibrium in this game is the sub-
optimal Nash equilibrium 〈b, b〉.

3.3 Noise in the environment

Agents in a MAS can be confronted with noise in their environment. Noise in the environment
can be due to various phenomena : stochastic rewards, e.g. in the stochastic variations of
the Climbing game (table 3d and c), unobservable factors in the state space, uncertainty, ... .
However, changing behaviors of the other agents can also be interpreted as noise by an IL. For
instance in the partially stochastic Climbing game, an IL must distinguish if distinct rewards
received for the action b are due to various behaviors of the other agent or to stochastic rewards.
The agent must learn that the average reward for the joint action 〈b, b〉 is 7 and is lower than that
of 〈a, a〉. Thus the difficulty in ILs games is to distinguish between noise due to the environment
and noise due to other agents behaviors. This behavior is notably characterized by actions of
exploration.
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3.4 Exploration

In MAS as in single-agent case, each IL must choose actions of exploration or exploitation
according to its decision strategy. The common action decision called softmax is based on
agent’s individual policy πi computed thanks to a Boltzman distribution :

πi(s, a) =
e

Qi(s,a)

τ∑
u∈Ai

e
Qi(s,u)

τ

(9)

where τ is the temperature parameter that decreases the amount of randomness as it approaches
zero. The ε-greedy strategy is another common action selection method in which an agent fol-
lows its greedy policy8 with probability (1 − ε) (exploitation mode), and otherwise selects a
uniformly random action with probability ε (exploration mode).

The exploration is a major stake in the reinforcement learning of ILs. Indeed, as stated
before, an IL cannot detect the change of behaviors of the other agents. So the exploration of
others can induce noise in received rewards of an IL.

So as to quantify the noise due to the exploration in a game, the concept of global exploration
must be pointed out. The global exploration is the probability of having at least one agent which
explores. It can be formulated with the individual exploration of each agent.

Property 1 Let a n-agents system in which each agent explores according to a probability ε.
Then the probability of having at least one agent which explores is ψ = 1− (1− ε)n. ψ is named
global exploration.

The exploration of an agent can have strong influences on the learned policy of an IL. In a
game with an optimal shadowed equilibrium defined by a policy π̂, let agent i follow its optimal
individual policy π̂i. The exploration of others can then lead to penalties (equation 8). So the
exploration of others has an influence on the learning of i’s individual policy. Moreover, it can
cause the “destruction” of the optimal policy of an IL. So it is necessary that RL algorithms
should be robust face to exploration.

3.5 Conclusion

In this report, we focus our study on cooperative independent learners. In such a framework,
the main issue is to manage the coordination of the learners. We have detailed four factors
responsible of the non-coordination of agents. Solving these difficulties and overcoming mis-
coordination factors is one the main objectives of RL algorithms in MAS. Another key parameter
is the robustness face to exploration.

4 Related works in Reinforcement Learning

Various approaches have been proposed in the literature to prevent coordination problems in
multi-independent-learners systems. In this section, related works dealing with RL algorithms
are reviewed with an emphasis on algorithms dealing with Q-learning [31] and Q-learning vari-
ants for ILs. We propose a uniform notation, that has never been suggested for these algorithms,
and which stresses common points between some of them. For each algorithms, the robustness
face to mis-coordination factors and exploration is discussed.

8A greedy policy based on Qi is to select in a state s the action a for which Qi(s, a) is highest.
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Table 4: Percentage of trials which converged to the optimal joint action (averaged over 1000
trials). A trial consists of 3000 repetitions of the game. At the end of each trial, we determine
if the greedy joint action is the optimal one. Results were obtained with softmax decision and
various exploration strategies : stationary (τ) or GLIE (τ = τini × δt where t is the repetitions
number).

Stationary strategy τ = 1000 τ = 200 τ = 10 τ = 1
Penalty game (k = −100) 62, 6% 65, 3% 62, 8% 65, 1%

GLIE τini = 5000 τini = 500 τini = 100
strategy δ = 0.9 δ = 0.99 δ = 0.995 δ = 0.997 δ = 0.995 δ = 0.995

Penalty game (k = −100) 0% 61, 7% 84% 96, 6% 85, 3% 84, 8%

In the following methods, each IL builds its own Qi-table whose size is independent of
the agents number and linear in function of its own actions. The task is for the agents to
independently choose one action with the goal of maximizing the expected sum of the discounted
rewards in the future.

4.1 Decentralized Q-learning

Q-learning [31] is one of the most used algorithm is single-agent framework because of its
simplicity and robustness. That’s also why it was one of the first RL algorithm applied to
multi-agent environments [17]. The update equation for the agent i is :

Qi(s, ai)← (1− α)Qi(s, ai) + α(r + γmax
u∈Ai

Qi(s′, u)) (10)

where s′ is the new state, ai is the agent’s chosen action, r = R(s, 〈ai, a−i〉) the reward received,
Qi(s, ai) the value of the state-action for the agent i, α ∈ [0; 1] the learning rate and γ ∈ [0; 1]
the discount factor.

Decentralized Q-learning has been applied with success on some applications [32, 33, 34, 35].
However, this algorithm has a low robustness face to exploration. Most of works concerning
decentralized Q-learning use a GLIE9 strategy [36] so as to avoid concurrent exploration. It
consists in avoiding the simultaneous exploration of agents, namely the concurrent exploration.
The principle is to decrease the exploration frequency as the learning goes along so that each
agent should find the best response to the others behaviors. This method is investigated in
MAS [28, 37] and section 5.1.

Avoiding concurrent exploration can improved results of some algorithms by allowing ILs
to overcome some mis-coordination factors. For instance, results of decentralized Q-learning
can be improved as illustrated on table 4. Best results are obtained with a well chosen GLIE
strategy. However, convergence then relies on the choice of decaying parameters. The use of a
GLIE strategy does not ensure convergence to an optimal equilibrium [28] and the key difficulty
of this method is that the convergence relies on the choice of decaying parameters. Moreover,
setting GLIE parameters requires high skills on algorithm behavior and so it is difficult to apply
in real applications.

9Greedy in the limit with infinite exploration.
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Algorithm 1: Distributed Q-learning for agent i 10

begin
Initialization :
forall a ∈ Ai and s ∈ S do

Qi,max(s, a)← 0, πi(s, a) arbitrarily
s← initial state
while s is not an absorbing state do

From s select a according to the ε-greedy selection method based on πi

Apply a and observe reward r and next state s′

q ← r + γmax
u∈Ai

Qi,max(s′, u)

if q > Qi,max(s, a) then
Qi,max(s, a)← q � optimistic update

if Qi,max(s, arg max
u∈Ai

πi(s, u)) �= max
u∈Ai

Qi,max(s, u) then

Select a random action amax ∈ arg max
u∈Ai

Qi,max(s, u)

∀b ∈ Ai πi(s, b)←
{

1 if b = amax

0 else
� equilibria selection mechanism

s← s′

end

4.2 Distributed Q-learning

To get round the issue of shadowed equilibria with ILs, Lauer & Riedmiller [38] introduced
“optimistic independent agents”. Such agents neglect in their update the penalties which are
often due to a non-coordination of agents. For instance the evaluation of an action in matrix
games is the maximum reward received. In the case of multiple optimal joint actions in a single
state, an additional procedure for coordination is used to solve the equilibria selection problem.
This equilibria selection mechanism is a social convention [30] which places constraints on the
possible action choices of the agents. The central idea is to update the current policy πi only if
an improvement in the evaluation values (Qi,max) happens. This mechanism presents the other
interest to allow simultaneously the learning of individual policies and exploration. The indi-
vidual policies can’t be “destroyed” by exploration since when one of the optimal joint policies
is tried, it is nevermore modified.
Distributed Q-learning associated with this equilibria selection method is in algorithm 1. It
addresses two factors that can cause mis-coordination : shadowed equilibria are prevented
through the optimistic update and the equilibria selection problem is solved thanks to the equi-
libria selection method. It is proved that this algorithm finds optimal policies in deterministic
environments for cooperative Markov games. Moreover, distributed Q-learning is robust face to
exploration. However this approach does generally not converge in stochastic environments.

4.3 Variable learning rate algorithms

To minimize the effect of shadowed equilibria with ILs, some authors propose to minimize the
effect that the learning of other agents has on a given agent’s own learning by using a variable
learning rate. For instance some algorithms based on gradient ascent learners use the Win or
Learn Fast (WoLF) heuristic [39] and its variants PD-WoLF [40] or GIGA-WoLF [41]. Others
are based on Q-learning, e.g. the hysteretic Q-learning [42] in which two learning rates α and
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β are used for the increase and decrease rates of Qi-values. The update equation for the agent
i is :

δ ← r + γmax
u∈Ai

Qi(s′, u) (11)

Qi(s, a)←
{

(1− α)Qi(s, a) + αδ if δ ≥ Qi(s, a)
(1− β)Qi(s, a) + βδ else

(12)

The idea is that agents should not be altogether blind to penalties at the risk of staying in
sub-optimal equilibrium or mis-coordinating on the same optimal joint equilibrium. But they
are chiefly optimistic to reduce oscillations in the learned policy (α > β).

4.4 Lenient Multiagent Reinforcement Learning

Panait et al. [43, 44] are interested in varying the degree of optimism of the agents as the
game is repeated. Indeed, being optimistic may be useful at early stages of learning to identify
promising actions. In case of lenient learners, agents are exploring at the beginning so most
selected actions are poor choices and ignoring penalties is then justified. Nevertheless, it may
lead to an overestimation of actions, especially in stochastic domains where rewards are noisy.
And once agents have explored, it becomes interesting to achieve accurate estimation of actions.
So the agents are initially lenient (or optimistic) and the degree of lenience concerning an action
decreases as the action is often selected. The main drawbacks of this method are that a large
number of parameters must be set and that it is only proposed for matrix games.

4.5 Frequency Maximum Q-value (FMQ)

Kapetanakis & Kudenko [29, 45] bias the probability of choosing an action with the frequency
of receiving the maximum reward for that action. In their algorithm, the evaluation of an action
Ei is the Qi-value added to an heuristic value, taking into account how often an action produces
its maximum corresponding reward. The evaluation of an action a is defined as :

Ei(a) = Qi(a) + c× Fi(a)×Qi,max(a) (13)

where Qi,max(a) is the maximum reward received so far for choosing action a, Fi(a) is the
frequency of receiving the maximum reward corresponding to an action, named occurrence fre-
quency, and c is a weight which controls the importance of the FMQ heuristic in the evaluation.
The Frequency Maximum Q value (FMQ) algorithm is described in the algorithm 2. Ci(a) holds
the number of times the agent has chosen the action a in the game and Ci,Qmax(a) the number
of times that the maximum reward has been received as a result of playing a. Although FMQ
algorithm is only proposed for matrix games, it shows interesting results on partially stochastic
games.

Thanks to the uniform notation that we have proposed in this section, it is obvious that the
FMQ has common points with the distributed Q-Learning. Indeed, the same Qi,max table is
computed in both algorithms.

Kapetanakis & Kudenko [29] use with FMQ a softmax decision method and an exponentially
decaying temperature function :

τk = τmaxe
−δk + τ∞ (14)

10Rewards are supposed to be non-negative.
11Rewards are supposed to be non-negative.
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Algorithm 2: FMQ for Matrix Game for agent i 11

begin
Initialization : ∀a ∈ Ai, Qi(a)← 0, Qi,max(a)← 0, Ci(a)← 0
Ci,Qmax(a)← 0, Fi(a)← 1, Ei(a)← 0, πi arbitrarily
repeat

Select a following the policy πi

Apply a and observe reward r
Ci(a)← Ci(a) + 1 � action occurrence counter
Qi(a)← (1− α)Qi(a) + αr
if r > Qi,max(a) then

Qi,max(a)← r � optimistic update
Ci,Qmax(a)← 1 � maximal reward occurrence counter

else if r = Qi,max(a) then
Ci,Qmax(a)← Ci,Qmax(a) + 1

Fi(a)← Ci,Qmax (a)
Ci(a) � occurrence frequency

Ei(a)← Qi(a) + c× Fi(a)×Qi,max(a) � heuristic

∀b ∈ Ai, πi(b)← e
Ei(b)

τ

∑

u∈Ai

e
Ei(u)

τ

until the end of the repetitions
end

Table 5: Percentage of trials which converged to the optimal joint action (averaged over 500
trials). A trial consists of 5000 repetitions of the game. We set α = 0.1 and c = 10. At the end
of each trial, we determine if the greedy joint action is the optimal one.

FMQ

Exploration
strategy

GLIE

τ = 499e−0,006t + 1 100%
τ = 100e−0,006t + 1 59%
τ = 499e−0,03t + 1 86%
τ = 100× 0, 997t 70%

Stationary τ = 20 23%

where k is the number of repetitions of the game so far, δ controls the rate of the exponential
decay, τmax and τ∞ set the values of the temperature at the beginning and at the end of the
repetitions. However, using such a temperature function requires to choose in an appropriate
manner all the decaying parameters. Results in table 5 illustrate the difficulty to choose these
parameters; changing just one setting in these parameters can turn a successful experiment into
an unsuccessful one. So FMQ has a low robustness face to exploration.

4.6 Experimental results

We compare the performance of some of these algorithms in the cooperative matrix games pre-
sented in table 2 and 3. A trial consists of 3000 repetitions of the game. At the end of each trial,
we determine if the greedy joint action is the optimal one. Results were obtained with the best
chosen and tuned action selection strategy in order to achieve the best results of convergence
(see Appendix A). Table 6 brings together the percentage of trials converging to the optimal
joint action according to the algorithm and the type of cooperative matrix.
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Table 6: Percentage of trials which converged to the optimal joint action (averaged over 500
trials). Entries marked with “NT” indicate it has not been tested.

Decentralized Distributed Hysteretic FMQ
Q-learning Q-learning Q-learning

Simple cooperative 100% 100% 100% 100%
game

Climbing game 3% 100% 100% 100%
Penalty game 96% 100% 100% 100%
(k = −100)

Partially stochastic NT 7% 82% 98%
Climbing game
Fully stochastic NT NT 0% 21%
Climbing game

First, it is interesting to notice that with an appropriate exploration strategy, all algorithms
find the optimal joint action in the simple cooperative game. Concerning the distributed Q-
learning, the convergence is managed with a stationary strategy in deterministic games only.
The decentralized Q-learning succeeds in selecting the equilibrium in the Penalty game thanks
to the GLIE strategy which plays an implicit role of equilibria selection mechanism. However,
it could be more difficult to overcome shadowed equilibria as in the Climbing game. Penalties
induce decentralized Q-learning agents to converge towards unshadowed equilibria so it fails.
GLIE strategy does not ensure convergence to an optimal equilibrium. In deterministic matrix
games, hysteretic Q-learning and FMQ achieve the convergence with a GLIE strategy. However,
FMQ heuristic show the best results in partially and fully noisy games. The advantage of the
FMQ is to be able to make the distinction between the noise due to the non-coordination of
agents and the noise due to the environment in weak noise games.

4.7 Conclusion

Table 7 sums up which mis-coordination factors each algorithm is able to overcome and its
robustness face to exploration. We specify that a GLIE strategy is difficult to set and requires
high skills about the system and the algorithm. In view of this synthesis, two methods can be
outlined. On the one hand, distributed Q-learning has been proved to converge in deterministic
Markov games, and in this framework, it overcomes all factors and is robust face to exploration.
But it ceases to be effective when stochastic rewards are introduced. On the other hand, FMQ
heuristic is partially effective in non-deterministic matrix games and it could be an interesting
way to detect the stochasticity causes of a game. Moreover, thanks to our uniform notation,
common points between FMQ and distributed Q-learning have been shown, and especially they
compute the same Qi,max tables. So it would be desirable to have an algorithm that improves
the results of coordination techniques by combining these both methods. The objective is an
algorithm robust face to exploration and able to overcome mis-coordination factors in deter-
ministic and stochastic Markov games.

With the view to combine these two methods, we are first interested in improving FMQ
heuristic in cooperative matrix games (section 5). Indeed FMQ requires a GLIE strategy and
is weakly robust face to exploration. These improvements lead to a recursive FMQ designed for
matrix games, robust face to exploration and gathering FMQ heuristic and optimistic indepen-
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Table 7: Characteristics of RL algorithms for independent learners in cooperative games. Entries
marked with “NT” indicate it has not been tested.
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Decentralized � � � � low
Q-Learning [31] with GLIE partially

Distributed � � � � total
Q-Learning [38]

Lenient learners [43] � NT NT NT low
Hysteretic � � � � � low

Q-Learning [42] with GLIE partially
WoLF PHC [39] � � � NT good

FMQ [29] � � � � low
with GLIE partially

dent agents (section 6). Then, we extend this algorithm to Markov game framework (section
7).

5 Frequency Maximum Q-value study

In this section, we are interested in improving FMQ heuristic in cooperative matrix games.
Indeed, one of its difficulty is its low robustness face to exploration. Especially, there remain
questions towards understanding exactly how the exploration strategy influences the conver-
gence. The convergence also relies on the choice of the weight parameter c. Moreover, the
evaluation of the action proposed in the original FMQ is not relevant. In this section, we in-
vestigate these issues in details and suggest some improvements. The objective is to achieve an
algorithm more robust to the exploration and to get rid of the choice of the weight parameter c
thanks to a novel evaluation of the action.

5.1 Improving the robustness face to the exploration strategy

5.1.1 Link between convergence and exploration

The low robustness of FMQ face to exploration has been illustrated in §4.5. To study these
link between convergence and exploration in the FMQ, an exponentially decaying temperature
is plotted in function of the number of repetitions of the game in figure1. The other curves
are the average rewards and their dispersion received by FMQ agents using this temperature
function and the softmax strategy in the Climbing game. Two phases can be identified. During
a first phase of exploration, the average rewards remain constant; the agents choose all possible
joint actions. Then, during the exponential decay of τ , the agents learn to coordinate until the
temperature reaches some lower limit where agents are following their greedy policy. This is a
phase of coordination.

Both of these phases of exploration and coordination are necessary for the FMQ to converge.
If these phases are wrongly set or if a stationary strategy is used, FMQ success rate highly
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Figure 1: Average rewards received in the Climbing game by FMQ agents (c = 10) with
τ = e0.006×k × 499 + 1.

decreases (table 5). So FMQ has a low robustness face to exploration, i.e. the learning of a
policy cannot be simultaneous to the exploration.

5.1.2 Instability of the frequency face to exploration

The link between convergence and exploration in the FMQ is due to an instability of the occur-
rence frequency F face to exploration. We illustrate this phenomenon on the Climbing game.
We choose to study the instability of the occurrence frequency of the agent 1 for its action a,
i.e. F1(a), face to the exploration of the other agent. a is the optimal individual action so F1(a)
must tend toward 1.

Agents are supposed to be at the beginning of a learning phase. So the frequency F1(a)
is initialized to 1. We plot the evolution of F1(a) according to the action choice of the other
agent12 (Fig. 2 dotted line). Actions chosen by the agents are represented on the diagram13.
From beginning to end, the agent 1 only chooses action a and we study the instability of its
frequency F1(a) face to the exploration of the other agent.

At the beginning, the joint action 〈a, c〉 is chosen many times. Agent 1 always receives the
same reward for the action a. So C1(a) is high. Then, when the optimal joint action 〈a, a〉 is
chosen for the first time (because of an exploration step), a new maximum reward is received
for the action a and :

• the maximum reward received so far is modified Q1,max(a)← 11,

• the number of times that the maximum reward has been received as a result of playing a
is reset C1,Qmax(a)← 1,

• the number of times the agent has chosen the action C1(a) is incremented.
12An agent has 3 actions a, b and c.
13Agents are following a “manual” policy.
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Figure 2: Frequency values of agent 1 vs. the number of repetitions of the game and according
FMQ algorithm. Actions chosen by the agents are in the diagram above the curve.

The frequency value, updated according to F1(a)← CQ1,max

C1(a) = 1
C1(a) , drops at the 15th repeti-

tion (dotted line). Consequently, the action evaluation E1(a) might then be smaller than other
action evaluations and the action a might be chosen only in exploration step. The convergence
is not effective and many exploration steps are necessary so that the frequency F1(a) may in-
crease enough for the coordination on the optimal joint action. Moreover, the later the optimal
joint action is played, the more important is the drop in frequency values, and the higher is the
number of exploration steps necessary for the coordination. So the optimal joint action must
be chosen as sooner as possible. That’s why the first phase of exploration is so important in
the FMQ.

5.1.3 Recursive computation of the frequency

In order to obtain an algorithm more robust to the exploration strategy, the counter C1(a)
must be reset to 1 when a new maximum reward is received for the action a. The frequency
F1(a)← 1

C1(a) is then also reset to 1 as at the fifteenth repetition in figure 2 (solid line). Thus,
the frequency F1(a) is maintained around 1 and will only decrease in case of mis-coordination
because of an exploration step of one agent or in case of noisy reward. The frequency is then
more stable face to exploration.

Using incremental counters as C or CQmax can also be a dependence factor on the oldness.
The oldness is that the increase or decrease rate of the frequency depends on the number of
repetitions after which an action of exploration or exploitation is played. So we introduce a
recursive computation of the frequency :

F (a)←
{

(1− αf )F (a) + αf if r = Qmax(a)
(1− αf )F (a) else

(15)
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Table 8: Percentage of trials which converged to the optimal joint action (averaged over 500
trials). A trial consists of 5000 repetitions of the game. We set α = 0.1, αf = 0.05 and c = 10.
At the end of each trial, we determine if the greedy joint action is the optimal one.

FMQ Modified FMQ

Exploration
strategy

GLIE

τ = 499e−0,006t
+ 1 100% 100%

τ = 100e−0,006t
+ 1 59% 100%

τ = 499e−0,03t
+ 1 86% 100%

τ = 100× 0, 997t 70% 100%
Stationary τ = 20 23% 100%

where αf is the learning rate of the frequency. It is obvious in figure 2 that the frequency
is now more robust to the exploration (solid line). The choice of αf will be discussed in §6.

5.1.4 Results

To check the robustness of modified FMQ with a reset and a recursive computation of the
frequency, we choose the Climbing game. FMQ and its modified version are compared. Results
are given in table 8. Modified FMQ converges with all tested strategies. Especially, a stationary
strategy can be chosen. Using a constant exploration rate requires less parameters to set and
is less inclined to instability due to the exploration. The only care concerns a sufficient number
of repetitions of the game according to the constant exploration rate to ensure a complete
exploration of the action set.

5.2 A new heuristic for the evaluation of the action

Kapetanakis & Kudenko [29] introduce a weight c to control the importance of the FMQ heuris-
tic in the evaluation of an action (equation 13). But the convergence relies on the value of this
parameter [29]. Moreover, Kapetanakis & Kudenko do not justify their choice of an action
evaluation which is the sum of Qmax values, weighted by c, F , and Q values. What are the
theoretical justifications for using such a sum as an action evaluation? We propose another
heuristic which has the advantage of avoiding the choice of any parameters and which is bound
to converge in deterministic games.

First, we remind that both FMQ and distributed Q-learning compute the same Qmax ta-
bles. This function returns in most cases an overestimation of the action evaluation, except in
deterministic games where it is the exact maximal value of an action, as shown by Lauer &
Riedmiller [38]. FMQ also uses Q-values which are an underestimation of the average rewards,
since they include poor values due to mis-coordination. So real action values are between Qmax

and Q values. If Qmax values are used to evaluate the actions in deterministic matrix game, the
agents are ensured to converge if they use an equilibria selection mechanism. If the environment
is stochastic, there is not any fitting algorithm so a solution could be to use Q values as action
evaluations.

So if we can detect the stochasticity of the game, it is possible to evaluate actions with
Qmax is the game is deterministic or with Q values otherwise. To evaluate the stochasticity, we
use the occurrence frequency F of receiving the maximum reward corresponding to an action.
Indeed, if the game is deterministic and if the agents manage the coordination, the frequency
tends to 1. So we propose to use a linear interpolation to evaluate an action a :

E(a) = [1− F (a)]Q(a) + F (a)Qmax(a). (16)
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Thus, actions evaluation is close to optimistic values if the game is deterministic. Otherwise,
it fluctuates between Qmax and Q values according to the coordination of the agents. Indeed,
when a new maximum reward for an action is received, the agent is first optimistic concerning
this action. Then, if the reward is noisy, the frequency decreases and the agent becomes less
optimistic and chooses its action according to Q-values. Thus this evaluation fluctuates between
optimistic evaluation of distributed agents and mean evaluation of decentralized Q-learning
agents according to the detection of the stochasticity.

This action evaluation is a heuristic, so it can be modified or improved. For instance, an
other option could be to apply an “all or nothing” evaluation instead of a linear interpolation.
Then, a bound would be used for the frequency such that the agents would be optimistic
(E = Qmax) if the frequency was upper than this bound, and they would be neutral (E = Q)
if the frequency was lower than this bound. But such a heuristic requires to determine this
bound.

5.3 Conclusion

Two main limitations of FMQ have been studied : its low robustness face to exploration and
face to the weight parameter. Then improvements have been suggested. First, a recursive com-
putation of the frequency is proposed to improve the robustness. Second, a new heuristic based
on a linear interpolation between Qmax and Q values is introduced. Thus, actions evaluation
fluctuates between optimistic and mean evaluations according to the stochasticity of the game,
which is estimated with the occurrence frequency. This method is set out in detail in the next
section where these modifications are applied to the FMQ.

6 Recursive FMQ for cooperative matrix games

Previous modifications are incorporated to modify FMQ. The new algorithm, named recursive
FMQ, is described in algorithm 3. Qmax function is updated as in distributed Q-learning. In
parallel are updated Q-values. These functions are used as bounds in the action evaluation. The
evaluation is a linear interpolation heuristic based on the occurrence frequency. Actions eval-
uations fluctuate between Qmax and Q values according to the stochasticity. The occurrence
frequency is recursively computed thanks to a learning parameter αf and reset when a new
maximum reward is received for an action. Thus if the game is deterministic and if the agents
manage to coordinate on an optimal joint action, frequencies of individual optimal actions will
be close to 1. Agents will be then optimistic. Otherwise, evaluations fluctuate between op-
timistic and mean values. The equilibria selection mechanism of [38] is used, with a random
choice among actions that successfully maximizes the evaluation E.

The principle of this algorithm is then closest in spirit to lenient learners [43] (section 4.4)
given that the degree of optimism of the agents can change. But concerning lenient learners,
the degree of optimism inevitably decreases, although here, if the agents manage to coordinate
in a deterministic environment, they stay optimistic. So they are bound to converge to the opti-
mal joint action in deterministic environment, given that they follow the distributed Q-learning.

One of our stated goals was to obtain a more robust algorithm face to exploration. With
this intention we have suggested a recursive computation of the frequency and removed the
weight parameter c which influenced the convergence. Then a new parameter αf , named the

14Rewards are supposed to be non-negative.
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Algorithm 3: Recursive FMQ for Matrix Game for agent i 14

begin
Initialization :
forall a ∈ Ai do

Qi(a)← 0, Qi,max(a)← 0, Fi(a)← 1, Ei(a)← 0, πi(a) arbitrarily

repeat
Select a according to the ε-greedy selection method based on πi

Apply a and observe reward r
Qi(a)← (1− α)Qi(a) + αr
if r > Qi,max(a) then

Qi,max(a)← r � optimistic update
Fi(a)← 1 � frequency reset

else if r = Qi,max(a) then
Fi(a)← (1− αf )Fi(a) + αf � recursive computation of the frequency

else
Fi(a)← (1− αf )Fi(a)

Ei(a)← [1− Fi(a)]Qi(a) + Fi(a)Qi,max(a) � linear interpolation heuristic
if Ei(arg max

u∈Ai

πi(u)) �= max
u∈Ai

Ei(u) then

Select a random action amax ∈ arg max
u∈Ai

Ei(u)

∀b ∈ Ai πi(b)←
{

1 if b = amax

0 else
� equilibria selection

until the end of the repetitions
end

learning rate parameter of the recursive frequency, has been introduced. First, the benefit of
removing the parameter c is that the new evaluation, based on a linear interpolation, has been
justified and is more relevant. Second, the choice of αf can be stated so as to obtain a robust
frequency. This will be the topic of the next paragraph.

6.1 Setting of the learning rate of the frequency αf

The frequency role is to detect the stochasticity in the game. So it must be able to set apart
noise due to the non-coordination from noise due to the environment. So it is necessary that the
frequency of one agent should not be sensitive to the exploration of others. Indeed, as stated in
§3.4, the exploration of others can be considered as noise by an IL. The discrimination between
various noise causes is all the more complex as agents number increases. Indeed, many agents
imply that the noise due to their exploration increases. Thus the impact of many agents in a
system can start to look like stochasticity. So we must make sure of the robustness face to the
exploration of the frequency. αf choice is important and must be specified in function of global
exploration.

αf sets the increase and decrease rates of the recursive frequency. With αf = 0, recursive
FMQ is the same as distributed Q-learning. The higher is αf , the more sensitive is the frequency
to the exploration of others. Indeed, let two agents be coordinated in a deterministic game, the
agents’ occurrence frequencies for the optimal individual actions are close to 1. If one explores,
the received reward is smaller than the maximum reward. Then, for the greedy agent, the
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Table 9: Advocated choices for the learning rate of the frequency αf vs. global exploration ψ.

Global exploration Learning rate
of recursive frequency

ψ = 0.1 αf = 0.01
ψ = 0.15 αf = 0.001
ψ = 0.2 αf = 0.0001

Table 10: Percentage of trials which converged to the optimal joint action (averaged over 500
trials). A trial consists of 5000 repetitions of the game. The exploration strategy is stationary.
We set α = 0.1, αf = 0.01 and ε = 0.05. At the end of each trial, we determine if the greedy
joint action is optimal (x%) or sub-optimal (y%). Results are noted x%[y%].

Simple game Penalty game Climbing game
(k = −100) deterministic partially stochastic fully stochastic

recursive 100% 100% 100% 100% 56% [3%]
FMQ

frequency decreases according to (1 − αf ). So if αf is too much high, occurrence frequencies
can be “destroyed” by exploration of others. αf must be chosen all the smaller as the global
exploration is high.

Advocated choices for the learning rate of the frequency are given in table 9 vs. global
exploration. These choices arise from experimentations and lead to a robust frequency face to
exploration. We advise against choosing a GLIE strategy because the choice of αf would then be
complex15. This is in accordance with our previous warning about using such strategies, given
their setting difficulties and their influence over the convergence. However, a stationary strategy
is well fitted. In this case, a sufficient exploration must be set on the one hand for agents to
find the optimal joint policy, and on the other hand for frequencies to converge toward their
right values. Yet the global exploration must be restricted to avoid too much noise. Typically
we suggest the value 0.2 as maximum bound for the global exploration.

6.2 Results on cooperative matrix games

We try recursive FMQ algorithm on various matrix games with 2 and more agents. These
games bring together some mis-coordination factors. A key parameter of these tests is the
exploration strategy and the repetitions number of the game per trial. As stated previously, we
use a stationary strategy with recursive FMQ, since it is easier to set and the choice of αf is
less complex (table 9). Nevertheless, it leads with many agents to a large number of repetitions.
Indeed, on the one hand, a sufficient exploration must be realized for agents to find optimal
equilibria. But on the other hand, the global exploration is limited to avoid too much noise.The
number of joint actions is exponential with the number of agents. So the number of repetitions
per trial is growing with the number of agents.

6.2.1 2 agents games

We test the performance of recursive FMQ on cooperative matrix games presented in table 2
and 3. Results are given in table 10. Recursive FMQ is used with a stationary strategy (ε-
greedy). It succeeds in all deterministic games and in partially stochastic Climbing game. Yet

15GLIE is not necessary anymore.
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Table 11: Percentage of trials which converged to the optimal joint action in Penalty game with
n > 2 agents (averaged over 500 trials). Chosen parameters are specified in Appendix B. At the
end of each trial, we determine if the greedy joint action is optimal (x%) or sub-optimal (y%).
Results are noted x%[y%].

Decentralized Distributed WoLF Recursive
Q-learning Q-learning PHC FMQ

n =
3

deterministic 100% [0%] 100% [0%] 100% [0%] 100% [0%]
stochastic 98% [2%] 0% [100%] 87% [13%] 99% [1%]

n =
4

deterministic 100% [0%] 100% [0%] 100% [0%] 91% [9%]
stochastic 6% [94%] 0% [100%] 0% [100%] 92% [8%]

n =
5

deterministic 100% [0%] 100% [0%] 100% [0%] 97% [3%]
stochastic 10% [90%] 0% [100%] 1% [99%] 94% [6%]

only half trials converge to the optimal in the fully stochastic Climbing game. So results are
equivalent to original FMQ but the main interest of recursive FMQ is its robustness face to
exploration thanks to a relevant choice of the frequency learning rate in function of the global
exploration.

6.2.2 n agents games with n > 2

The role of the frequency is to distinguish noise from stochasticity versus noise from the other
agents. In order to check that the frequency sets apart noise sources, we test recursive FMQ
on large matrix games. Indeed, when there are many agents, it is more difficult to distinguish
noise due to the environment from noise due to the others exploration.

We use a n agents Penalty game detailed in appendix B. Recursive FMQ is compared with
other RL algorithms. Results are given in table 11. Decentralized Q-learning succeeds in all
deterministic games but with a well-chosen GLIE strategy. In stochastic games, its performances
greatly reduce with the number of agents. However it is difficult to blame a wrong choice of
the GLIE parameters or the lack of robustness face to noisy environments of the algorithm.
Similarly, WoLF-PHC algorithm fails as soon as rewards are noisy. But we stress that in
stochastic games, these algorithms converge toward sub-optimal equilibria.

Concerning distributed Q-learning, results comply with theoretical guarantee [38]. It suc-
ceeds in all deterministic games but fails in stochastic games.

Lastly, best results are achieved with recursive FMQ. It succeeds more than nine times out
of ten with all games. In particular, it outperforms decentralized Q-learning in stochastic games
with n > 3 agents. So the linear interpolation is a good measure of real actions values and the
frequency manages the distinction between noise from stochasticity and noise from the other
agents.

6.3 Conclusion

This section leads to a recursive version of the FMQ algorithm, which is more robust to the
choice of the exploration strategy. A means of decoupling various noise sources in a matrix
games has been studied. The recursive frequency sets apart noise due to others exploration
from noise due to stochasticity. The choice of frequency parameter has been stated versus
global exploration so as to obtain a robust frequency.

Recursive FMQ is effective with a constant exploration rate and is bound to converge in
deterministic matrix game. It also outperforms the difficulties of partially stochastic environ-
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Algorithm 4: Straightforward extension of recursive FMQ to Markov Games for i16

begin
Initialization :
forall a ∈ Ai and s ∈ S do

Qi(s, a)← 0, Qi,max(s, a)← 0, Fi(s, a)← 1, Ei(s, a)← 0, πi(s, a) arbitrarily
s← initial state
while s is not an absorbing state do

From s select a according to the ε-greedy selection method based on πi

Apply a and observe reward r and next state s′

Qi(s, a)← (1− α)Qi(s, a) + α(r + γmax
u∈Ai

Qi(s′, u))

q ← r + γmax
u∈Ai

Qi,max(s′, u)

if q > Qi,max(s, a) then
Qi,max(s, a)← q � optimistic update
Fi(s, a)← 1 � occurrence frequency reset

else if q = Qi,max(s, a) then
Fi(s, a)← (1− αf )Fi(s, a) + αf � recursive frequency

else
Fi(s, a)← (1− αf )Fi(s, a)

Ei(s, a)← [1− Fi(s, a)]Qi(s, a) + Fi(s, a)Qi,max(s, a) � linear interpolation
heuristic
if Ei(s, arg max

u∈Ai

πi(s, u)) �= max
u∈Ai

Ei(s, u) then

Select a random action amax ∈ arg max
u∈Ai

Ei(s, u)

∀b ∈ Ai π(s, b)←
{

1 if b = amax

0 else
� equilibria selection

s← s′

end

ments. The result is an easy-to-use and robust algorithm able to solve hard repeated matrix
games. But an extension to Markov games is necessary.

7 The Swing between Optimistic or Neutral algorithm

In this section, we plan to design an algorithm for ILs in cooperative Markov games. We first
propose a straightforward extension to Markov games of our previous recursive FMQ algorithm.
But this extension presents few limits and some modifications are required to manage the
coordination. We introduce a fitting frequency for multi-state framework. The Swing between
Optimistic or Neutral (SOoN) algorithm is then proposed. We apply the SOoN algorithm to
various multi-state benchmarks.

7.1 Straightforward extension to Markov games

The straightforward extension of recursive FMQ to Markov Games is in algorithm 4. This
extension is obvious except the occurrence frequency Fi(s, a) computation.

The frequency Fi(a) computed in matrix games is the probability of receiving the maximum
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Figure 3: Two agents cooperative Markov game

reward corresponding to an action a :

Fi(a) = Pr {rt+1 = Qi,max(at)|at = a} . (17)

In Markov games, the frequency is defined as following and named myopic frequency..

Definition 13 When action a is taken at state s, the myopic frequency Fi(s, a) of agent i is the
probability that the immediate transition should return a reward and a state whose evaluation,
according to a greedy policy on Qi,max, is equal to the expected maximum value of Qi,max(s, a),
i.e. :

Fi(s, a) = Pr

{
rt+1 + γmax

b∈Ai

Qi,max(st+1, b) = Qi,max(st, at)|st = s, at = a

}
. (18)

In the straightforward FMQ extension, following functions are defined for each individual
agent i :

• the value function Qi updated as in decentralized Q-learning,

• the value function Qi,max updated as in distributed Q-learning,

• the myopic frequency Fi computed according to its definition 13,

• the evaluation function Ei based on a linear interpolation between Qi and Qi,max values,

• the policy πi updated according to an equilibria selection mechanism based on a random
choice among actions maximizing the evaluation function Ei.

The myopic frequency is an immediate measure taking only the frequency in the current state
into account. But is this myopic frequency enough for multi-state games?

7.2 Limitations of the myopic frequency

The straightforward extension can raise issues in some cases. To explain these limitations, we
perform experiments on the cooperative Markov game given in figure 3, detailed in appendix C.
This benchmark is difficult because agents must coordinate in each state. Especially, we study
the development of the myopic frequency.

Optimal values of Qi,max for each agent i, at state sk, are :
{
Q∗

i,max(sk, a) = 10× γj−k−1

Q∗
i,max(sk, b) = 10× γj−k

From the point of view of one agent, we study two cases.
16Rewards are supposed to be non-negative.
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• The agent i plays the action b at state sk, so whatever the other agent plays, the next
state s′ is sk and for each agent i :

qi = γ max
u=1..2

Qi,max(sk, u) = 10× γj−k = Q∗
i,max(sk, b) (19)

So from the viewpoint of an agent, the action b is reliable and the occurrence frequency
of receiving the Qi,max for the action b, namely Fi(sk, b), increases each time action b is
played at s by i. Moreover, it never decreases so Fi(sk, b) converges to 1.

• The agent plays the action a at state sk. If the other agent also plays a, they coordinate
and the next state s′ is sk+1 :

qi = γ max
u=1..2

Qi,max(sk+1, u) = 10× γj−k−1 = Q∗
i,max(sk, a) (20)

If the other agent plays b, they mis-coordinate and the next state s′ is sk :

qi = γ max
u=1..2

Qi,max(sk, u) = 10× γj−k < Q∗
i,max(sk, a) (21)

So Fi(sk, a) decreases each time the other agent plays b.

On the one hand, Fi(s, b) increases each time action b is played at state s by agent i and never
decreases. On the other hand, Fi(s, a) decreases each time agents mis-coordinate at s. Con-
sequently, from the viewpoint of one agent, the action b is safer than a. Q∗

i,max(s, a) is close
to Q∗

i,max(s, b) because Q∗
i,max(s, b) = γQ∗

i,max(s, a). The evaluation E(s, b) can be higher than
E(s, a). So the exploitation strategy of the agents is to choose the joint action < b, b > and so,
to remain on the spot. Its failure to coordinate is illustrated in results presented in figure 4 at
page 28 (dotted line). The number of steps per trial quickly increases since agents remain on
the spot and mis-coordinate. At the beginning of the learning, agents have a random behavior
so the number of steps per trial is low.

This example illustrates a limitation in the straightforward extension of the recursive FMQ
to Markov games due to the myopic frequency. This immediate measure only concerns the
frequency in the current state, which is inadequate in multi-state games. The frequency must
be globally considered by taking frequencies of future states into account. Indeed, in a given
state, the myopic frequency of an action could be high, but this action could lead to a state
where the optimal action has a low myopic frequency. In other words, an action could appear
interesting in the current step according to its immediate frequency but could be a bad choice
considering the future.

Using a myopic frequency could mislead the algorithm. So it could be relevant to use a long
term or farsighted frequency.

7.3 Farsighted frequency

Definition 14 When action a is played at state s, the farsighted frequency Gi(s, a) for agent
i is the probability that all future transitions return rewards and states whose evaluations, ac-
cording to a greedy policy on Qi,max, are equal to the expected maximum value Qi,max for these
states, i.e. :

Gi(s, a) = P πmax
r

{
rt+1 + γmax

b∈Ai

Qi,max(st+1, b) = Qi,max(st, at) ∧

rt+2 + γmax
b∈Ai

Qi,max(st+2, b) = Qi,max(st+1, at+1) ∧ . . . |st = s, at = a

}
(22)
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The question is how to estimate this farsighted frequency?

We make the assumption that precedent events are independent, i.e. the occurrence of one
event makes it neither more nor less probable that the other occurs. So the statement above is
equivalent to :

Gi(s, a) = P πmax
r

{
rt+1 + γmax

b∈Ai

Qi,max(st+1, b) = Qi,max(st, at)|st = s, at = a

}
×

P πmax
r

{
rt+2 + γmax

b∈Ai

Qi,max(st+2, b) = Qi,max(st+1, at+1) ∧ . . . |st = s, at = a

}
. (23)

According to the definition 13, the first term of the previous equation is equal to Fi(s, a). And
thanks to the total probability theorem, the second term is :

P πmax
r

{
rt+2 + γmax

b∈Ai

Qi,max(st+2, b) = Qi,max(st+1, at+1) ∧ . . . |st = s, at = a

}
=

∑
s′∈S

P πmax
r

{
rt+2 + γmax

b∈Ai

Qi,max(st+2, b) = Qi,max(st+1, at+1) ∧ . . . |st = s, at = a, st+1 = s′
}
×

Pr

{
st+1 = s′|st = s, at = a

}
. (24)

The πmax policy is following so at+1 ∈ arg max
b∈Ai

Qi,max(st+1, b) and :

Gi(s, a) = Fi(s, a)
∑
s′∈S

Pr

{
st+1 = s′|st = s, at = a

}
Gi(s′, arg max

b∈Ai

Qi,max(st+1, b)) (25)

If P a
ss′ is the probability of each next possible state s′ given a state s and an action a, we obtain :

Gi(s, a) = Fi(s, a)
∑
s′∈S

P a
ss′Gi(s′, arg max

u∈Ai

Qi,max(s′, u)) (26)

As P a
ss′ is unknown, we suggest to evaluate the farsighted frequency by following a temporal

difference recursive computation :

Gi(s, a)← (1− αg)Gi(s, a) + αgFi(s, a) max
v∈arg max

u∈Ai

Qi,max(s′,u)
Gi(s′, v) (27)

where αg ∈ [0; 1] is the learning rate of the farsighted frequency. The improvement supplied
to the farsighted frequency is the product of the current state-action couple myopic frequency
with the myopic frequency of the optimal action in the next state. Thus, if an action has at
current state a high myopic frequency, but can lead to a state where the optimal action has a
low farsighted frequency, then, this action will have a low farsighted frequency.

We could draw connections between the farsighted frequency general idea and bonus prop-
agation for exploration [46]. Bonus propagation leads to a full exploration of the environment
thanks to a mechanism of retro-propagation concerning local measures of exploration bonuses.
In the case of the farsighted frequency, values of myopic frequencies are spread : for each vis-
ited state, the agent “looks forward” future states to take into account values of frequencies of
optimal actions in these states.
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Algorithm 5: SOoN algorithm for Markov Game for agent i17

begin
Initialization :
forall a ∈ Ai and s ∈ S do

Qi(s, a)← 0, Qi,max(s, a)← 0, Fi(s, a)← 1, Gi(s, a)← 1, Ei(s, a)← 0, πi(s, a)
arbitrarily

s← initial state
while s is not an absorbing state do

From s select a according to the ε-greedy selection method based on πi

Apply a and observe reward r and next state s′

Qi(s, a)← (1− α)Qi(s, a) + α(r + γmax
u∈Ai

Qi(s′, u))

q ← r + γmax
u∈Ai

Qi,max(s′, u)

if q > Qi,max(s, a) then
Qi,max(s, a)← q � optimistic update
Fi(s, a)← 1 � myopic frequency reset
Gi(s, a)← 1 � farsighted frequency reset

else if q = Qi,max(s, a) then
Fi(s, a)← (1− αf )Fi(s, a) + αf � frecursive myopic frequency

else
Fi(s, a)← (1− αf )Fi(s, a)

� farsighted frequency update
Gi(s, a)← (1− αg)Gi(s, a) + αgFi(s, a) max

v∈arg max
u∈Ai

Qi,max(s′,u)
Gi(s′, v)

� linear interpolation heuristic
Ei(s, a)← [1−Gi(s, a)]Qi(s, a) +Gi(s, a)Qi,max(s, a)
if Ei(s, arg max

u∈Ai

πi(s, u)) �= max
u∈Ai

Ei(s, u) then

Select a random action amax ∈ arg max
u∈Ai

Ei(s, u)

∀b ∈ Ai πi(s, b)←
{

1 if b = amax

0 else
� equilibria selection

s← s′

end

7.4 Swing between Optimistic or Neutral algorithm

We use the farsighted frequency in a new algorithm, named Swing between Optimistic or Neu-
tral (SOoN) and detailed in algorithm 5. Same functions as those defined at §7.1 are used. The
novelty is the state-action evaluation based on the farsighted frequency G. The evaluation of a
state-action couple sways from distributed Qmax values to decentralized Q values according to
G values and so according to a detection of stochasticity in the game. In deterministic Markov
games, the farsighted frequency tends toward 1 and thus, the SOoN algorithm is close to the
distributed Q-learning and is insured to converge towards optimal joint actions. Otherwise, in
stochastic Markov games, the farsighted frequency is between 0 and 1 and the SOoN algorithm
swings between optimistic or neutral evaluations.

We apply the SOoN algorithm to the cooperative Markov game of the figure 3 where the
coordination of the two agents is difficult. Results are given in figure 4 (solid line). It is obvious
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Figure 4: Two agents cooperative Markov game experiments with 10 states averaged over 200
runs (α = 0.1, γ = 0.9, αf = 0.05, αg = 0.3, ε = 0.05). Steps to goal vs. trial number.

Figure 5: Boutilier’s coordination game.

that the agents then manage the coordination after 15 trials thanks to the use of the farsighted
frequency.

7.5 Experimentations on Markov game benchmarks

We now show results of applying the SOoN algorithm to a number of different Markov games.
We compare the performance of decentralized Q-learning, distributed Q-learning, WoLF-PHC,
hysteretic Q-learning and SOoN. The domains include various levels of difficulty according to the
agents number (2 and more), the state observability (full or incomplete), and mis-coordination
factors (shadowed equilibria, equilibria selection, deterministic or stochastic environments). For
each benchmarks, we state what is at stake in the learning of ILs. Moreover, and in a concern
to be fair, all algorithms used ε-greedy selection method with a stationary strategy and global
exploration of ψ = 0.1. It allows to check the robustness face to the exploration of each method.

7.5.1 Boutilier’s coordination Markov games

The Boutilier’s coordination game with two agents was introduced in [47] and is shown in
figure 5. This multi-state benchmark is interesting because all mis-coordination factors can

17Rewards are supposed to be non-negative.
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Table 12: Percentage of cycles which converged to the optimal joint action (averaged over 50
cycles). We set α = 0.1, γ = 0.9, δlose = 0.006, δwin = 0.003, αf = 0.01, αg = 0.03, ε = 0.05.
β = 0.01 in deterministic games and β = 0.05 in stochastic games. At the end of each cycle, we
determine if the greedy joint action is optimal.

Boutilier’s coordination game
deterministic stochastic

k = 0 k = −100 k = 0 k = −100
Decentralized Q-learning 100% 6% 100% 12%
Distributed Q-learning 100% 100% 0% 0%

WoLF-PHC 100% 36% 100% 40%
Hysteretic Q-learning 100% 100% 100% 30%

SOoN 100% 100% 100% 96%

easily be integrated and combined. At each state, each agent has a choice of two actions. The
transitions on the diagram are marked by a pair of corresponding actions, denoting player 1’s
move and player 2’s move respectively. “ * ” is a wild card representing any action. States
that yield a reward are marked with the respective value. All other states yield a reward of 0.
A coordination issue applies in the second state of the game. Both agents should then agree
on the same action. Moreover, there are two optimal equilibria so the agents are face to an
equilibria selection problems and must coordinate on the same. Mis-coordination in the second
state produces a penalty k. So the potential of choosing the action a for the first agent in
the state s1 is shadowed by the penalty k associated to mis-coordination. We also propose a
partially stochastic version of the Boutilier’s game with a random reward (14 or 0) received in
state s6 with equal probability instead of 7.

A trials ends when agents reach one of the absorbing states (s4, s5 or s6). One cycle consists
of 50000 learning trials. At the end of each cycle, we determine if the greedy joint action is
optimal. Results are in table 12.

In deterministic game with k = 0, all algorithms manage the coordination. Similarly,
in the stochastic game with k = 0, all algorithms except for distributed Q-learning succeed.
Indeed, an easy way to put Distributed Q-learning agents in the wrong is to insert stochastic
rewards. So distributed Q-learning never manages the coordination in the partially stochastic
Boutilier’s game. When mis-coordination penalties are introduced in the deterministic game,
decentralized Q-learning and WoLF-PHC fail because of shadowed equilibria. Distributed Q-
learning, hysteretic Q-learning and SOoN succeed in the coordination. But in the stochastic
version with k = −100, SOoN is the only one to be close to 100% of optimal joint action.

So SOoN gets best convergence results. In deterministic games, it turns towards the Dis-
tributed Q-learning. In the stochastic Boutilier’s game without penalties, it turns towards the
decentralized Q-learning. In the stochastic game with penalties, SOoN outperforms all other
algorithms. The linear interpolation to evaluate state-action couples is a pertinent heuristic to
measure real values of actions.

7.5.2 Two predators pursuit domains

The pursuit problem is a popular multi-agent domain in which some agents, called predators,
have to capture one or several preys in a gridworld [48]. In the two agents pursuit domains,
predators have to explicitly coordinate their actions in order to capture a single prey in a
discrete 10× 10 toroidal grid environment (Fig. 6a). At the beginning of each trial, predators
and prey are set up in distinct random positions. At each time step, all predators simultaneously
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(a) Complete 10 × 10 toroidal grid. (b) Possible capture
position.

Figure 6: Two predators pursuit problem.

execute one of the 5 possible actions : move north, south, east, west or stand still. Moreover,
noise is added to the environment through uncertainty in actions results. Any action moves
a predator in the intended direction with probability 0.8, and otherwise a random action is
applied. The prey moves according to a randomized policy : it remains on its current position
with a probability of 0.2, and otherwise moves to ones of its free adjacent cells with uniform
probability. A prey is captured when both predators are located in cells adjacent to the prey,
and one of the two predators moves to the location of the prey while the other predator remains,
for support, on its current position (Fig. 6b). A trials ends when the prey is captured.

The state space is represented by the relative position of the two predators to the prey. So
each IL computes a Qi table with 99× 98× 5 values, i.e. 48510 different state-action pairs for
each of both agents. A capture results in a reward R = 10 for every agent, and predators and
prey are replaced to distinct random positions. Furthermore, predators receive penalties in case
of mis-coordination. They both receive a penalty of −50 when one of them moves to the prey
without support or when they end up in the same cell. Then both are moved to a random,
empty cell. In all other situations, the reward is 0.

The main factors which complicate the coordination are action shadowing induced by penal-
ties and the stochastic environment due to the random behavior of the prey and the uncertainty
in actions results.

A trial consists of 10000 steps. We make out learning trials and greedy trials in which agents
are following their learned greedy policies. After each learning trial is done a greedy trial. For
each greedy trial, we plot the number of captures per trial and the sum of received rewards per
agent during the trial. With the number of captures per trial, we can compare greedy policies
learned with each algorithm; with the sum of received rewards, the number of collisions or
non-support is observed. Results obtained on 10000 greedy trials are given in figure 7. We can
notice that :

• greedy policies learned by decentralized Q-learning fail to coordinate,

• there is the same number of capture with WoLF-PHC and hysteretic Q-learning, but the
second one creates less collisions,

• despite the stochastic environment, greedy policies learned by distributed Q-learning man-
age the coordination with around 45 captures per trial. However, collisions are not much
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avoided,

• SOoN gets best results. After around 4500 trials, it outperforms distributed Q-learning.
Two phases can be identified : during a first phase, SOoN behaves as distributed Q-
learning (2000 first trials). Indeed, agents are initially optimistic. This first stage is in
some way an adaptative phase to the environment; the frequency refines according to the
stochasticity of the environment. Then evaluations swing between optimistic or neutral.
The second phase is when SOoN manages the coordination : the number of captures
increases and overcome all other results. So SOoN realizes an automatic adaptation to the
environment.

7.5.3 Four agents pursuit domains

In the four agents pursuit domains, four predators have to coordinate their actions in order to
surround a single prey in a discrete 7×7 toroidal grid environment (Fig. 8a). Agents observations
suffer from low resolution. Indeed, a predator perceives the others according to the 8 cardinal
directions and a close or distant criterion (Fig. 8b), so 16 perceptions. Given that each predator
perceives its 3 teammates plus the prey, there are 164 possible observations per agent. Each
agent has 5 possible actions, i.e. a Qi-table of size 164 × 5 for each predator. Concerning the
reinforcement function, if at least one agent is in the situation in figure 8c, every agent receives
R = 25. When the prey is captured, they each receive R = 100. The low resolution in the
perception induces stochasticity in the environment so the main factor here which complicates
the coordination of predators is the noise.

A trial consists of 1000 steps. We make out learning trials and greedy trials in which agents
are following their learned greedy policies. After each learning trial is done a greedy trial. For
each greedy trial, we plot the number of captures per trial (Fig. 9). We can compare greedy
policies learned with each algorithm. We can notice that :

• it is very difficult for distributed Q-learning to do the coordination. Indeed, optimistic
agents capture the prey for the first time after 48000 trials, and they capture the prey 5
times per trial at 80000 trials. The low resolution in perceptions induces stochasticity in
the environment which puts optimistic agents in the wrong,

• decentralized Q-learning shows interesting results in this stochastic environment. It con-
firms that this algorithm can be applied with success on some MAS and manages the
coordination,

• WoLF-PHC is the first one to achieve captures but its performance increases slowly,

• hysteretic Q-learning manages first captures late, but its performance increases fast. It
notably overcomes WoLF-PHC and is close to decentralized Q-learning after 80000 trials
with around 60 captures per trial,

• SOoN gets best results. Two phases can be identified. During the first adaptative phase,
agents are initially optimistic so SOoN does not manage any captures as distributed Q-
learning. Then, once the frequency is fitted to the environment, the number of captures
per trial increases. It is the second phase of coordination. After around 50000 trials, 90
captures are managed per trial. SOoN realizes an automatic adaptation to the environ-
ment.

We can also notice that greedy policies learned with SOoN and decentralized Q-learning are
noised, unlike WoLF-PHC or distributed Q-learning policies. So even if SOoN realizes a fast
and successful coordination, it is more sensitive to the stochasticity in this game.
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7.5.4 Discrete smart surface with 270 agents

Given our real world application of a decentralized control of a smart surface, we have developed
a discrete smart surface benchmark. The system is composed of 270 actuators organized in array
(Fig. 10). At each time step, all actuators simultaneously execute one of the 5 possible actions :
up, down, right, left or nop, represented by arrows and a circle. Uncertainty is added to actions
results : with a probability 0.001, each actuator executes a random action. An object is situated
on the surface. The motion of the object is proportional to the actions sum of the actuators
which are under and by the object. The influence factor on the actions of the actuators by the
object is three times higher than the influence factor on the actions of the actuators under the
object. The object moves in the four cardinal directions but it does not rotate. Additionally,
the object cannot get out of the surface and instead stays by the edge. The system’s state is
the index position of the object (according to its up and left corner). Each actuator is driven
by an independent agent so it has only access to the index position and to its action. In real
application, the full state observability can be done thanks to an overhead camera that extracts
the index position.

The goal is for the agents to cooperate so as to move the object to a goal position. Then,
all agents receive R = 10 and the trial ends. If the object is getting closer to the vertical edges
of the surface, every agent receives a penalty (R = −50). Otherwise, the reward is 0.

A trial starts with the object at its initial position and ends when the object reaches the
goal position (absorbing state). For each trial, we plot the number of steps to the goal and the
sum of received rewards per agent (Fig. 11). With the sum of received rewards, we can observe
if the object is getting closer to the vertical edges of the surface. With the number of steps to
the goal, we can check if the learned policies are close to best policy achieved “by hand”‘ which
makes 3 steps per trial (without uncertainty). We can notice that :

• the environment is stochastic so distributed Q-learning fails to coordinate. Moreover,
optimistic agents are unaware of penalties so they do not avoid edges of the surface; the
sum of received rewards per trial is low,

• decentralized Q-learning shows interesting results : after 300 trials, 20 steps are required
to reach the goal and the object is getting closer to the vertical edges around 4 times
per trial. However, learned policies are not stable. Mis-coordination penalties and the
lack of robustness face to exploration lead to destruction of individual policies. During
the experimentations, we notice that agents coordinate to avoid edges : the object move
round in circles in the area without penalties,

• hysteretic Q-learning is close to decentralized Q-learning. But as these agents are chiefly
optimistic, they do not avoid as much the edges and the sum of rewards increases slowly,

• with WoLF-PHC, learned policies are stable but slow,

• after 300 trials, best results are obtained with SOoN : 12 steps are required to reach the
goal and the object is getting closer to the vertical edges around once per trial. Moreover,
these performances are achieved from 100 trials. Again two phases draw attention. The
first phase of adaptation when agents are initially optimistic and so fails to move the
object to the goal. Then, SOoN adapts its frequency to the environment : the number of
steps to goal decreases. So the second phase is the coordination.
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7.6 Conclusion

In this section, the objective was to design an algorithm for ILs, robust face to exploration
and mis-coordination factors in cooperative Markov games. Starting from the recursive FMQ,
we show that using a one-step lookahead with the myopic frequency in multi-stage games
could mislead the algorithm. So we introduced the computation of a farsighted frequency
to detect the stochasticity of the game. This frequency is used in a heuristic to evaluate
state-action couples in the Swing between Optimistic or Neutral algorithm. This heuristic is
based on a linear interpolation between optimistic or neutral evaluations. Thus, SOoN realizes
an automatic adaptation to the environment stochasticity of its evaluations. Especially, two
phases are characteristic of this method. An adaptative phase when the frequency detects the
stochasticity. Indeed, at the beginning, agents are optimistic. If the environment is deterministic
and the agents manage the coordination, agents stay optimistic. Otherwise, the frequency
adjusts evaluations between optimistic or neutral. When these evaluations are adjusted, the
second phase is the successful coordination of agents. These both phases have been illustrated
with some experimentations on Markov games. They confirm that the linear interpolation is a
pertinent evaluation of real values of state-actions. They also highlight that SOoN is able to
overcome mis-coordination factors and is robust face to exploration.

8 Conclusion

In this report, we focused on the learning of independent agents in cooperative multi-agent
systems. First, we highlighted some of the difficulties encountered by ILs in this framework.
Especially, we analyzed some factors which complicate the ILs coordination : shadowed equi-
libria, equilibria selection and noise. These factors have been identified and interpreted in
matrix games. The impact of the exploration has also been studied as a major stake in the
reinforcement learning of ILs.

Through a section suggesting a uniform notation, related algorithms based on Q-learning
have been reviewed according to some factors : the robustness face to exploration, the learning
of optimal individual policies despite shadowed equilibria and noise, and the selection of a single
optimal equilibria. Thanks to this study, we focused on developing an algorithm robust face to
the exploration strategy and able to overcome mis-coordination factors in cooperative Markov
games. For that, we emphasized common points between FMQ heuristic and distributed Q-
learning. On the one hand, distributed Q-learning is robust face to exploration and insured to
converge toward a Pareto optimal Nash equilibrium in deterministic Markov games. On the
other hand, FMQ outperforms the difficulty of weakly noisy matrix games by decoupling noise
due to agents behaviors and noise due to the environment.

Thus, we contribute to improve the FMQ algorithm in matrix games and propose a recursive
version which is easy-to-use, robust and able to solve hard repeated matrix games. We further
proposer the SOoN algorithm, standing for “Swing between Optimistic or Neutral”. Thanks
to the computation of a farsighted frequency and to a novel evaluation of the state-action
values, this algorithm sways automatically from optimistic to neutral evaluation according to a
detection of the noise in the environment. At the beginning, the environment is supposed to be
deterministic and so agents are optimistic. Then, the SOoN automatically adapts its frequency
to the stochasticity of the environment through the assessment of the probability of attaining
the optimal gain.

We specify the choice of the two parameters of the SOoN so as to obtain an algorithm robust
face to the exploration. The noise due to agents behaviors has been defined with the global
exploration. We demonstrate empirically the robustness and advantages of the SOoN algorithm
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Table 13: Characteristics of RL algorithms for independent learners in cooperative games.
Entries marked with “NT” indicate it has not been tested.
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Decentralized � � � � low
Q-Learning [31] with GLIE partially

Distributed � � � � total
Q-Learning [38]

Lenient learners [43] � NT NT NT low
Hysteretic � � � � � low

Q-Learning [42] with GLIE partially
WoLF PHC [39] � � � NT good

FMQ [29] � � � � low
with GLIE partially

Recursive FMQ � � � � good
partially

SOoN � � � � � good
partially

on a number of multiple states cooperative Markov games with numerous agents. Results show
that this algorithm overcomes all mis-coordination factors, even weakly noise Markov games,
and is robust face to the exploration strategy (table 13). The SOoN manages the coordination
thanks to two characteristic phases : an adaptative phase where the frequency automatically
fits to the stochasticity, and the coordination phase where the agents coordinate themselves.
Moreover, results confirm that the linear interpolation can be a pertinent evaluation of real
values of state-action couples, especially in stochastic games.

Our research has raised a number of issues to be investigated in on-going and future work.
The first perspective is to test the SOoN algorithm on a real problem as the decentralized
control of a smart surface.

The second perspective is to improve the proposed evaluation of action. Indeed, we presented
encouraging experimental results, but the proposed linear interpolation to evaluate a state-
action couple could be modified. Specifically, a bound for the farsighted frequency could be
defined to mark optimistic or neutral evaluation out.

An other prospect concerns a common issue in RL of making algorithms scale to large prob-
lems. Indeed, the SOoN algorithm uses explicit table representations of Q, Qmax and frequency
functions. In larger state-action spaces application scenarios, explicit table representations be-
come intractable. So it would be interesting to generalize and approximate these tables with
some kind of function approximation mechanism. So an interesting direction of this work is to
combine function approximation mechanism with the SOoN algorithm.
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Appendix A :

The following were the learning and decay rates used for the results presented in §4. Here t is
the number of repetitions of the game. With the detailed algorithmic descriptions in section 4
and these parameters details, all of the presented results are reproducible.

• Decentralized Q-learning

α = 0.1 γ = 0 τ = 5000× 0.997t

• Distributed Q-learning
α = 1 γ = 0 ε = 0.05

• Hysteretic Q-learning

α = 0.1 β = 0.01 γ = 0 τ = 5000e−0.003t

• Original FMQ
α = 0.1 γ = 0 c = 10 τ = 499e−0.006t + 1

Appendix B :

In the Penalty game with n > 2 agents, each agent has 3 actions a, b and c. If half agents or
more play a and the others play c, the received reward is 10. If less than half agents play a and
the others play c, the received reward is −100 since they fail to coordinate. If half agents or
more play b and the others play c, the received reward is 2. Otherwise, the reward is 0.

There are many Pareto optimal Nash equilibria when half agents or more play a and the
others play c. These optimal equilibria are shadowed by penalties in case of mis-coordination.
There are also many sub-optimal Nash equilibria when half agents or more play b and the others
play c. So this game presents mis-coordination factors. Additionally, the reward can be noised :
instead of receiving a reward equal to 2, 12 and 6 are received with equal probabilities.

The following were the learning and decay rates used for the results presented in §6.2. Here
t is the number of repetitions of the game. With the detailed algorithmic descriptions and these
parameters details, all of the presented results are reproducible.

• decentralized Q-learning

Table 14: Learning parameters choices with decentralized Q-learning.
agents repetitions algorithm decision exploration
number per trial parameters method strategy
n = 3 t = 30000 α = 0.1 softmax GLIE

γ = 0 τ(t) = 5000 ∗ exp(−0.0003 ∗ t)
n = 4 t = 50000 α = 0.1 softmax GLIE

γ = 0 τ(t) = 5000 ∗ exp(−0.0002 ∗ t)
n = 5 t = 80000 α = 0.1 softmax GLIE

γ = 0 τ(t) = 5000 ∗ exp(−0.0001 ∗ t)

• recursive FMQ

• WoLF-PHC
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Table 15: Learning parameters choices with recursive FMQ.
agents repetitions algorithm decision exploration
number per trial parameters method strategy
n = 3 t = 30000 α = 0.1 αf = 0.01 ε-greedy stationary

γ = 0 Qmax,ini = −100 ψ = 0.1
n = 4 t = 50000 α = 0.1 αf = 0.001 ε-greedy stationary

γ = 0 Qmax,ini = −100 ψ = 0.15
n = 5 t = 80000 α = 0.1 αf = 0.0001 ε-greedy stationary

γ = 0 Qmax,ini = −100 ψ = 0.2

Table 16: Learning parameters choices with WoLF-PHC.
agents repetitions algorithm decision exploration
number per trial parameters method strategy
n = 3 t = 30000 α = 0.1 δlose = 0.006 ε-greedy stationary

γ = 0 δwin = 0.001 ψ = 0.1
n = 4 t = 50000 α = 0.1 δlose = 0.0006 ε-greedy stationary

γ = 0 δwin = 0.0001 ψ = 0.15
n = 5 t = 80000 α = 0.1 δlose = 0.0006 ε-greedy stationary

γ = 0 δwin = 0.0001 ψ = 0.2

Appendix C :

The following is the description of the cooperative Markov game in figure 3. Each agent has
a choice of two actions a and b. The game starts in state s1. The transitions on the figure
are marked by a pair of corresponding actions, denoting agent 1’s action and agent 2’s action
respectively. “ * ” is a wild card representing any action. So if both agents are coordinated
on the joint action < a, a > in the state sk, they move to the next state sk+1. If at least one
agent plays b, they remain on the spot. When agents reach the absorbing state sj , they receive
a reward 10. All other states yield a reward of 0.

References

[1] Lucian Busoniu, Robert Babuska, and Bart De Schutter. Multi-agent reinforcement learn-
ing: A survey. In Int. Conf. Control, Automation, Robotics and Vision, pages 527–532,
December 2006. 1

[2] Peter Stone and Manuela M. Veloso. Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8(3):345–383, 2000. 1

[3] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
Cambridge, 1998. 1, 3

[4] Erfu Yang and Dongbing Gu. Multiagent reinforcement learning for multi-robot systems:
A survey. Technical report, Department of Computer Science, University of Essex, 2004. 1

[5] C.H. Papadimitriou and J.N. Tsitsiklis. On the complexity of designing distributed proto-
cols. Information and Control, 24(4):639–654, 1982. 1

36



[6] C.H. Papadimitriou and J.N. Tsitsiklis. The complexity of markov decision processes.
Mathematics of Operations Research, 12(3):441–450, 1987. 1

[7] D. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of decentralized
control of markov decision processes. Math. Oper. Res., 27(4):819–840, 2002. 1

[8] Nancy Fulda and Dan Ventura. Predicting and preventing coordination problems in cooper-
ative q-learning systems. In Proceedings of the International Joint Conference on Artificial
Intelligence, 2007. 1, 6

[9] Gang Chen, Zhonghua Yang, Hao Ge, and Kiah Mok Goh. Coordinating multiple agents
via reinforcement learning. Autonomous Agents and Multi-Agent Systems, 10(3):273–328,
2005. 1

[10] Andrew Garland and Richard Alterman. Autonomous agents that learn to better coordi-
nate. Autonomous Agents and Multi-Agent Systems, 8(3):267–301, 2004. 1

[11] Robert H. Crites and Andrew G. Barto. Elevator group control using multiple reinforcement
learning agents. Machine Learning, 33(2-3):235–262, 1998. 1
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Figure 7: Number of captures and sum of received rewards per agent for 10000 steps (averaged
over 20 runs) with α = 0.1, β = 0.01, αf = 0.01, αg = 0.3, δlose = 0.06, δwin = 0.03, γ = 0.9.
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(a) Capture (b) Perceptions (c) Reinforcement

Figure 8: Four predators pursuit problem. a) The prey is captured. b) (2 × 8)4 perceptions
per agent. c) The reinforcement is attributed in an individual way and is only function of local
perceptions (and similar situations obtained by rotation of 90◦).
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Figure 9: Number of captures for 80000 steps (averaged over 5 runs) with α = 0.3, β = 0.03,
αf = 0.03, αg = 0.3, δlose = 0.06, δwin = 0.03, γ = 0.9.
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Figure 10: Discrete smart surface
benchmark with 9× 30 agents.
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Figure 11: Steps to goal (on the top) and sum of rewards
received at each trial by an agent (on the bottom) vs. trial
number (averaged over 100 runs and logarithmic scale).
α = 0.1, αf = 0.01, αg = 0.3, γ = 0.9 and ε = 0.0005.
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